Electronic Supplementary Information (ESI)

LiVTeO₅: A Mid-Infrared Nonlinear Optical Vanadium Tellurate exhibiting Enhanced Second Harmonic Generation Activities and Notable Birefringence

Yuheng She,^a Jinmiao Jiao,^a Zheng Wang,^b Jing Chai,^a Song jie,^a Ning Ye,^a Zhanggui Hu,^a Yicheng Wu^a and Conggang Li^{*a}

aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China. bSchool of Physics and Electronic Engineering, Xingtai University, Xingtai 054001, China. **Corresponding Author** E-mail: cgli@email.tjut.edu.cn

Atoms	X	У	Z	U _{eq}	BVS
Li(1)	9512(18)	6178(9)	-180(8)	16(2)	0.97
Te(1)	9504(1)	6883(1)	3498(1)	8(1)	3.80
V(1)	4598(1)	5222(1)	1481(1)	7(1)	5.09
O(1)	2862(6)	6727(4)	925(3)	13(1)	1.91
O(2)	3125(7)	3258(4)	824(3)	17(1)	1.92
O(3)	3643(7)	4916(4)	3112(3)	14(1)	1.69
O(4)	7832(6)	6075(4)	1868(3)	13(1)	2.17
O(5)	8427(7)	5239(4)	4663(3)	13(1)	2.46

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å²×10³) for LVTO, U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor, and the bond valence sum for each atom in asymmetric unit.

Table S2. Selected bond lengths [Å] and angles (°) for LVTO.

Li(1)-O(1)#3	2.108(10)	V(1)-O(1)	1.642(3)	
Li(1)-O(1)#4	2.077(8)	V(1)-O(2)	1.918(3)	
Li(1)-O(3)#5	2.102(8)	V(1)-O(3)	1.650(3)	
Li(1)-O(4)	2.142(8)	V(1)-O(4)	1.886(3)	
Li(1)-O(5)#5	1.956(9)	V(1)-O(5)#2	2.055(3)	
Te(1)-O(2)#1	1.912(3)			
Te(1)-O(4)	1.906(3)			
Te(1)-O(5)	1.852(3)			
O(5)#2-Li(1)-O(1)#6	98.6(4)	O(1)-V(1)-O(3)	104.48(17)	
O(5)#2-Li(1)-O(3)#2	92.7(4)	O(1)-V(1)-O(4)	106.22(15)	
O(1)#6-Li(1)-O(3)#2	107.2(3)	O(3)-V(1)-O(4)	98.71(16)	
O(5)#2-Li(1)-O(1)#8	146.6(4)	O(1)-V(1)-O(2)	108.78(16)	
O(1)#6-Li(1)-O(1)#8	109.8(4)	O(3)-V(1)-O(2)	92.88(14)	
O(3)#2-Li(1)-O(1)#8	95.2(4)	O(4)-V(1)-O(2)	138.87(16)	
O(5)#2-Li(1)-O(4)	73.6(3)	O(1)-V(1)-O(5)#2	98.94(15)	
O(1)#6-Li(1)-O(4)	99.8(4)	O(3)-V(1)-O(5)#2	156.41(16)	
O(3)#2-Li(1)-O(4)	151.3(4)	O(4)-V(1)-O(5)#2	77.05(13)	
O(1)#8-Li(1)-O(4)	84.4(3)	O(2)-V(1)-O(5)#2	76.80(13)	
O(5)-Te(1)-O(4)	94.73(14)			
O(5)-Te(1)-O(2)#1	91.13(14)			
O(4)-Te(1)-O(2)#1	98.63(14)			

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y+1/2,-z+1/2#2 -x+3/2,-y+1,z-1/2#3 x-1,y,z#4 x-1/2,-y+3/2,-z#5 -x+3/2,-y+1,z+1/2#6 x+1/2,-y+3/2,-z#7 -x+1,y-1/2,-z+1/2#8 x+1,y,z

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	<i>U</i> ₁₂
Li(1)	20(4)	16(3)	14(4)	2(3)	0(3)	1(4)
Te(1)	9(1)	8(1)	6(1)	0(1)	1(1)	0(1)
V(1)	7(1)	8(1)	6(1)	-1(1)	1(1)	0(1)
O(1)	9(2)	12(1)	17(2)	2(1)	1(1)	2(1)
O(2)	26(2)	14(2)	12(2)	-1(1)	5(1)	-12(2)
O(3)	19(2)	16(2)	8(2)	2(1)	-1(1)	-2(1)
O(4)	10(2)	22(2)	8(2)	-3(1)	0(1)	-2(1)
O(5)	13(2)	13(2)	13(2)	5(1)	-2(1)	-4(1)

Table S3. Anisotropic displacement parameters ($Å^2 \times 10^3$) for LVTO.

Table S4. The magnitude (Debye) of LiO₅, TeO₃ and VO₅ polyhedral dipole moments in LVTO.

Species	polyhedron	X(a)	Y(b)	Z(c)	Magnitude Debye
	LiO ₅	2.2380	0.0145	-1.7990	2.8714
LVTO	TeO ₃	-20.606	-7.4780	1.5948	21.9794
	VO ₅	0.4360	0.6360	4.3500	4.4178

Figure S1. Powder XRD patterns of the initial and melting LVTO samples, respectively.

Figure S2. The as-grown single crystal of LVTO.

Figure S3. (a)The Li-O bond lengths [Å] for LVTO. (b-c) The connection mode of Li atoms viewed along the *bc* and *ac* plane, respectively.

Figure S4. (a-e) Energy-dispersive spectroscopy (EDS) analysis of the LVTO crystal.

Figure S5. The Raman spectrum of the LVTO crystal.

Figure S6. The orientations of the dipole moments of the anionic groups for (a) LVTO and (b) LiNbTeO₅.