Supplementary Information

Porous Graphene/CNT@Metal (Hydr)oxide Composite Films Achieving Fast Ion and Electron Kinetics for Asymmetric Supercapacitors with Ultra-High Volumetric Performance

Chunjuan Qiu^a, Baoquan Hou^a, Lili Jiang^{a,*}, Huimin Shi^a, Jie Chen^b, Xiaoming Zhou^c, Xuena Lu^d, Jian Shi^e, Lizhi Sheng^{c,f,*}

^aKey Laboratory for Special Functional Materials in Jilin Provincial Universities, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China.

^bCenter of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China.

^cWood Material Science and Engineering Key Laboratory of Jilin Province, Beihua University, Jilin 132013, P. R. China.

^dRiseSun MengGuLi New Energy Science & Technology Co., Ltd., Beijing 102299, P. R. China.

^eHubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, P. R. China.

^fDepartment of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.

*Corresponding author: jianglidipper@126.com (L. Jiang); <u>shengli_zhi@126.com</u> (L. Sheng).

Fig. S1 XRD spectrum of PGNs/CNT@Fe₂O₃ film.

Fig. S2 Physical image of PGNs/CNT@Fe₂O₃ film under bending.

Fig. S3 (a) TEM and (b) SEM image of the PGNs/CNT@Fe₂O₃ film.

Fig. S4 (a, b) Lattice spacing diagram of PGNs/CNT@Fe₂O₃ film.

Fig. S5 (a) N_2 adsorption/desorption isotherms and (b) pore-size distribution curves of PGNs/CNT@Fe₂O₃ film.

Fig. S6 (a) XPS spectrum of PGNs/CNT@Fe₂O₃ film. (b) O 1s high-resolution XPS spectra of PGNs/CNT@Fe₂O₃ film.

Sample	C 1s At.%	O 1s At.%	N 1s At.%	Fe 1s At.%
PGNs/CNT@Fe ₂ O ₃	79.71	15.06	1.25	3.98

Table S1. The chemical composition of PGNs/CNT@Fe₂O₃ film.

Fig. S7 N 1s high-resolution XPS spectra of PGNs.

Fig. S8 Thermogravimetric spectra of PGNs/CNT@Fe₂O₃ film.

Fig. S9 (a) CV and (b) GCD of PGNs/CNT@Fe₂O₃ film. (c) Gravimetric capacitance of Fe₂O₃ and PGNs/CNT@Fe₂O₃ film. (d) PGNs/CNT@Fe₂O₃ at 20 mV s⁻¹ with k_1v outlined into red area based on $i(V)=k_1v + k_2v^{1/2}$.

Fig. S10 (a) At 50 mV s⁻¹, the CV curves of Fe₂O₃ and PGNs/CNT@Fe₂O₃ film. (b)
CV curve and (c) GCD curve of CNT@Fe₂O₃. (d) Gravimetric capacitance of Fe₂O₃, CNT@Fe₂O₃ and PGNs/CNT@Fe₂O₃ film. (e) Nyquist plots of Fe₂O₃ and CNT@Fe₂O₃ film. (f) τ₀ (ms) of CNT@Fe₂O₃.

through an equivalent circuit.					
Sample	$R_{ m s}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$			
PGNs/CNT@Fe ₂ O ₃	0.033	0.29			
CNT@Fe ₂ O ₃	0.16	0.06			
Fe ₂ O ₃	1.2	1.5			

Table S2 The R_s and R_{ct} of PGNs/CNT@Fe₂O₃, CNT@Fe₂O₃ and Fe₂O₃ fitted

Fig. S11 (a) CV and (b) Power law dependence of log current on log scan rate of Fe_2O_3 .

Fig. S12 XRD patterns of PGNs/CNT@Fe₂O₃ film before and after 10,000 cycles.

Fig. S13 Cross-sectional SEM image of the PGNs/CNT@Fe₂O₃ film after 10000

cycles.

Fig. S14 XRD spectrum of PGNs/CNT@Ni(OH)₂ film.

Fig. S15 (a) SEM and (b) TEM image of the PGNs/CNT@Ni(OH)₂ film.

Fig. S16 (a) N₂ adsorption/desorption isotherms and (b) pore-size distribution curves of PGNs/CNT@Ni(OH)₂ film.

Fig. S17 Lattice spacing diagram of PGNs/CNT@Ni(OH)2 film.

Fig. S18 (a) XPS spectrum of PGNs/CNT@Ni(OH)₂ film. (b) N 1s high-resolution XPS spectra of PGNs/CNT@Ni(OH)₂ film.

Table S3. The chemical composition of PGNs/CNT@Ni(OH)₂ film.

Sample	C 1s At.%	O 1s At.%	N 1s At.%	Ni 1s At.%
PGNs/CNT@Ni(OH) ₂	71.56	21.38	2.68	4.37

Fig. S19 Thermogravimetric spectra of PGNs/CNT@Ni(OH)₂ film.

Fig. S20 (a) GCD curves of PGNs/CNT@Ni(OH)₂. (b) The gravimetric capacitance of Ni(OH)₂ and PGNs/CNT@Ni(OH)₂.

Fig. S21 (a) CV and (b) GCD curves of Ni(OH)₂.

Table S4 The R_s and R_{ct} of PGNs/CNT@ Ni(OH)₂ film and Ni(OH)₂ fitted through an

Sample	R _s	R _{ct}
PGNs/CNT@Ni(OH)2	0.05	0.59
Ni(OH) ₂	0.1	1

Fig. S22. The XRD test of PGNs/CNT@Ni(OH)2 after cycling.

Fig. S23 Cross-sectional SEM image of the PGNs/CNT@Ni(OH)₂ film after 10000

cycles.

Fig. S24 (a) CV curves of PGNs/CNT@Ni(OH)₂//PGNs/CNT@Fe₂O₃ ASC.

Fig. S26 CV curves of all-solid-state PGNs/CNT@Ni(OH)_//PGNs/CNT@Fe_2O_3 $\rm CNT}$

ASC.