Supporting Information

for

Highly effective synthesis of mercapto-functionalized cubic silsesquioxanes as the first step in designing advanced nano delivery systems

Kamil Hanek^a, Monika Wałęsa-Chorab^a and Patrycja Żak^{a,*}

^a Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. E-mail: <u>pkw@amu.edu.pl</u>

CONTENTS:

1.	Analytical data of isolated products P1-P12	S-1
2.	Photophysical spectra of isolated products P1-P12	S-6
3.	NMR spectra of isolated products P1-P12	S-12

1. Analytical data of isolated products P1-P12

2. Photophysical spectra

Figure S1. Emission spectra of compound **P9** (λ_{ex} = 285 nm).

Figure S2. Emission spectra of compounds excited at the absorption maxima: **P1** (•) (λ_{ex} . = 245 nm), **P2** (•) (λ_{ex} . = 250 nm), **P3** (•) (λ_{ex} . = 245 nm), **P4** (•) (λ_{ex} . = 255 nm), **P7** (•) (λ_{ex} . = 250 nm), **P8** (•) (λ_{ex} . = 252 nm), **P10** (•) (λ_{ex} . = 245 nm), **P11** (•) (λ_{ex} . = 261 nm) and **P12** (□) (λ_{ex} . = 255 nm).

Figure S3. Emission spectra of compounds excited at the absorption maxima: **P5** (\triangleleft) (λ_{ex} . = 242 nm) and **P6** (\blacklozenge) (λ_{ex} . = 242 nm).

Figure S4. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P1**.

Figure S5. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P2**.

Figure S6. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P3**.

Figure S7. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P4**.

Figure S8. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P8**.

Figure S9. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P5**.

Figure S010. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P9**.

Figure S11. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P7**.

Figure S12. The dependence of the photoluminescence spectra on the excitation wavelength for compound **P10**.

3. NMR spectra of isolated products P1-P12

Product P1

Figure S14. ¹³C NMR (101 MHz, CDCl₃) of product **P1**

ł

3.07

26.88

12.02-*

f1 (ppm)

Figure S16. ¹H NMR (400 MHz, CDCl₃) of product **P2**

Figure S18. ^{29}Si NMR (79 MHz, CDCl₃) of product P2

Product P3

Figure S20. ¹³C NMR (101 MHz, CDCl₃) of product **P3**

Figure S24. ^{29}Si NMR (79 MHz, CDCl₃) of product P4

Figure S26. $^{\rm 13}C$ NMR (101 MHz, CDCl_3) of product P5

Product P6

Figure S28. ¹H NMR (400 MHz, CDCl₃) of product **P6**

Figure S30. ^{29}Si NMR (79 MHz, CDCl₃) of product P6

Figure S32. $^{\rm 13}C$ NMR (101 MHz, CDCl₃) of product P7

Figure S33. ²⁹Si NMR (79 MHz, CDCl₃) of product **P7**

Product P8

Figure S36. ^{29}Si NMR (79 MHz, CDCl₃) of product P8

Product P9

Figure S38. 13 C NMR (101 MHz, CDCl₃) of product **P9**

67.63 -67.89 -68.09

Figure S42. ^{29}Si NMR (79 MHz, CDCl_3) of product P10

Figure S44. ¹³C NMR (101 MHz, CDCl₃) of product **P11**

67.64 67.89 68.12

Figure S45. ²⁹Si NMR (79 MHz, CDCl₃) of product **P11** Product P12

Figure S48. ^{29}Si NMR (79 MHz, CDCl₃) of product P12