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Materials characterization 

The X-ray diffraction (XRD) patterns were acquired at room temperature using an 

X-ray diffractometer (D/Max2500, Rigaku Corporation) with Cu Kα radiation (λ = 

1.5406 Å). The morphology and structure of the samples were observed on field-

emission scanning electron microscope (FESEM, GeminiSEM 300) and Transmission 

electron microscopy (TEM) measurements were proceeded on a FEI Tecnai F20 with 

an acceleration voltage of 120 kV. N2 adsorption-desorption isotherms were measured 

using the Micromeritics ASAP 2460 analyzer. Raman spectrum was recorded on a 

HORIBA Evolution Raman Microscope spectrometer with the excitation wavelength 

of 532 nm. X-ray photoelectron spectrum (XPS) measurements was carried out on a 

Thermo Fisher Scientific 1063 X-ray photoelectron spectrometer with Al Kα radiation 

and the binding energies were calibrated based on the graphite C 1s peak (284.8 eV). 

The pyrolysis experiments were performed in a sensitive thermobalance (Perkin-Elmer, 

Pyris1 TGA) at a heating rate of 10 ℃/min up to a final temperature of 600 ℃ under 

the helium flow rate of 50 mL/min. A quadrupole mass spectrometer (Perkin-Elmer, 

Clarus 500 MS) coupled to the thermobalance was used for the evolved gas analysis. 

To avoid secondary reactions, a probe was placed very close to the sample pan of the 

thermobalance in the direction of the gas flow. The transfer lines between the TGA and 

MS were heated to 200 ℃ in order to avoid cold spots and thus prevent the condensation 

of the gaseous products. The evolving rates of the gaseous products were estimated 

from the measurements.

Electrochemical measurements



The electrochemical measurements were conducted on the Princeton 

electrochemical workstation and rotating disk electrode equipment (Pine Instruments 

Co. Ltd. USA) with a three-electrode system at room temperature. Graphite rod and 

Ag/AgCl (3 M KCl) were served as the counter and reference electrode, respectively. 

The electrolyte was 0.1 M KOH solution. The catalyst ink was prepared as our previous 

work [1]: 4 mg of catalyst was dispersed in 15 μL of 5 wt.% Nafion and 300 μL of 

isopropyl alcohol solution, then ultrasonicated for 1 h to obtain a well-dispersed 

catalytic ink. 10 μL of catalyst ink was dropped on the rotating disk glassy carbon 

electrode (5 mm in diameter, pine instrument) and dried by an infrared lamp. The 

catalyst loading was approximately 0.65 mg cm-2.

The cyclic voltammograms (CVs) were recorded from 1.2 to 0.2 V (vs.Ag/AgCl) 

at a scan rate of 50 mV s-1 for ten cycles until the steady state cyclic voltammogram 

curves reached. The linear sweep voltammograms (LSVs) for ORR were recorded from 

0.2 to 1.0 V (vs.Ag/AgCl) at a scan rate of 5 mV s-1 with various rotation rates from 

400 to 1600 rpm. The LSVs for OER were recorded from 0.0 to 1.0 V (vs.Ag/AgCl) at 

a scan rate of 5 mV s-1 with the rotation rate of 1600 rpm. The electrolyte was aerated 

using high-purity O2 for 0.5 h before each test and O2 was maintained during the test. 

The potentials were converted to the reversible hydrogen electrode (RHE) by using the 

equation ERHE = EAg/AgCl + 0.197 + 0.0591pH. The onset potential is defined as the 

potential when the ORR current density reaches 1% of the limiting diffusion current 

density.

Density functional theory (DFT) calculations



All the DFT calculations were conducted based on the Vienna Ab-inito Simulation 

Package (VASP) [2, 3]. The exchange-correlation effects were described by the 

Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient 

approximation (GGA) method [4, 5]. The core-valence interactions were accounted by 

the projected augmented wave (PAW) method [6]. The energy cutoff for plane wave 

expansions was set to 450 eV, and the 3×3×1 Monkhorst-Pack grid k-points were 

selected to sample the Brillouin zone integration. The vacuum space is adopted 15 Å 

above the surfaces to avoid periodic interactions. The structural optimization was 

completed for energy and force convergence set at 1.0×10-4 eV and 0.02 eV Å-1, 

respectively. 

The Gibbs free energy change (ΔG) of each step is calculated using the following 

formula:

        ∆G = ∆E + ∆ZPE - T∆S

where ΔE is the electronic energy difference directly obtained from DFT calculations, 

ΔZPE is the zero point energy difference, T is the room temperature (298.15 K) and ΔS 

is the entropy change. ZPE could be obtained after frequency calculation by [7]:

ZPE = 

1
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And the TS values of adsorbed species are calculated according to the vibrational 
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Fig.S1. The XRD pattern of ZIF-8 and Co/Zn-ZIF.

Fig. S2. The SEM image of ZIF-8.



Fig. S3. The SEM images of Co/Zn-ZIFs at different magnifications.

Fig. S4. The SEM image of Co2P/NPC-0.1.

Fig. S5. The SEM image of Co2P/NPC-0.3.



Fig. S6. The SEM image of CoP/NPC-2.

Fig. S7. The TEM image of CoP@Co2P/NPC-0.5.



Fig. S8. The EDS linear scan profile of C, N, Co, O, and P.

Fig. S9. The pore-size distributions of CoP@Co2P/NPC-0.3, CoP@Co2P/NPC-0.5, 
and CoP/NPC-2.
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Fig. S10. The high-resolution XPS spectrums of (a, c) C 1s, (b, d) N 1s for 
CoP@Co2P/NPC-0.3 and CoP/NPC-2.

Table S1. The peak area ratio of four nitrogen species in the N 1s high-resolution 
spectra for CoP@Co2P/NPC-0.3, CoP@Co2P/NPC-0.5 and CoP/NPC-2.

CoP@Co2P/NPC-0.3 CoP@Co2P/NPC-0.5 CoP /NPC-2

Peak area % Atomic % Atomic %

pyridinic N 32.61 31.48 27.09

pyrrolic N/Co-Nx 25.78 10.92 20.18

graphitic N 26.28 38.20 36.46

oxidized N 15.33 19.40 16.27
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Fig. S11. The LSV curves in O2-saturated 0.1 M KOH solution at various

rotation rates and corresponding Koutecky-Levich plots at different potentials of (a, b) 

Co2P/NPC-0.1, (c, d) CoP@Co2P/NPC-0.3 and (e, f) CoP/NPC-2.

Fig. S12 (a) The LSV curves of Pt/C in O2-saturated 0.1 M KOH solution at various 
rotation rates; (b) Corresponding Koutecky-Levich plots at different potentials.
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Fig. S13. (a) Plots showing the extraction of the Cdl; (b) Nyquist plots of Co2P/NPC-
0.1, CoP@Co2P/NPC-0.3, CoP@Co2P/NPC-0.5, and CoP/NPC-2.

Fig. S13. The stability test for OER at 1600 rpm in O2-saturated 0.1 M KOH solution 
after 10000 CV cycles.

Table S2 Comparison of bifunctional catalytic activity of the catalysts in this work 
with the recently reported noble-metal phosphide based catalysts in alkaline solutiona.

E1/2 (vs. 

RHE)

Eonset (vs. 

RHE)

Tafel slope 

(mV dec-1)

EOER at 10 

mA cm-2 

(vs. RHE)

Tafel slope 

(mV dec-1)

ΔE (V)

Ref 
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CoP@Co2P/NPC-0.5 0.83 0.92 71.94 1.61 94.40 0.79 This work

Co2P/Co-N-C 0.82 0.98 102 1.65 115 0.83 [9]

Cu-Co2P/CNFs 0.778 undefined 95.2 1.60 87.3 undefined [10]

Co2P/doped-CNTs 0.843 0.91 55 1.573 96.1 0.814 [11]

Fe-Co2P@NPDC 0.895 1.059 91 1.55 61 0.655 [12]

Co2P/CoP@NPGC-1 0.93 0.986 69 1.57 116 0.64 [13]

Co/Co2P@NPCNTs 0.88 1.00 55.4 1.54 71.5 0.66 [14]

CoxP@NPC 0.83 undefined undefined 1.55 87 0.75 [15]

Co2P@NPCNTs-900 0.80 0.94 68.9 1.59 62.4 undefined [16]

Co2P@NCNTs-15 0.82 0.90 73 1.74 151 0.93 [17]

Co2P/NPC 0.84 0.92 45.9 1.55 59.6 0.78 [18]

a All the potentials values above are converted to vs. RHE for comparison. In 0.1 M KOH electrolyte 
(pH=13), E(vs. RHE) = E(vs. Ag/AgCl) + 0.197 V + 0.0591pH.



Fig. S15. Free energy diagrams for ORR and OER on CoP@Co2P/NPC and 
CoP/NPC at electrode potential U=1.23 V.

Table S3. Performances of recently reported Zn-air batteries based on bi-functional 
catalysts.

Open-circuit 

voltage (V)

Peak power 

density (mW 

cm-2)

Durability
Ref 

(year)

yolk-shell Co-N-C@GNP 1.60 236.2

Over 94 

hours@ 5 

mA/cm2

This 

work

Pt/C+RuO2 1.50 203.1
91 h@5 

mA/cm2

This 

work
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Co‐NCNT 1.42 44
30 hours@ 2 

mA/cm2
[19]

N-doped CNT arrays 
embedded with confined Co 

nanoparticles
1.40 44.8 2000 min@1 

mA cm-2 [20]

Activated carbon cloth 1.367 52.3
1000 min@1 

mA cm-2
[21]

MnOx/carbon cloth 1.427 32
66 h@0.7 mA 

cm-2
[22]

N doped graphene quantum 

dots engineered 3D NiCo2S4 

nanoarray/ carbon cloth

1.4 26.2
500 h@25 mA 

cm-2
[23]

CNT fibers 1.31 undefined
80 min@1 mA 

cm-2
[24]

Fe-Co4N@N-C 1.34 72
45 cycles@4 

mA cm-2
[25]
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Fig. S16. The XRD spectra of CoP@Co2P/NPC-0.5 before and after 30 recharging 
cycles in Zn-air battery.
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Fig. S17. (a) The TEM image; (b) X-ray diffraction pattern (SAED); (c, d) The 
HRTEM images of CoP@Co2P/NPC-0.5 after 30 recharging cycles in Zn-air battery.
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