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Fig. S1 XRD pattern of Ti3O7
2− nanosheets.

Fig. S2 FTIR spectrum of PAN@Zn and PTO@Zn.



Fig. S3 Contact angles of PAN@Zn electrode.

Fig. S4 EIS spectra of the bare Zn, PAN@Zn and PTO@Zn symmetric cells.



Fig. S5 Nyquist plots over the frequency range of 100 kHz to 10 mHz of (a) the symmetrical cell 
with Ti as electrodes and (b) the symmetrical cell with PTO-coated Ti as electrodes (inset: 
enlargement of indicated range). The ionic conductivity (σ) is calculated according to the following 
equation,

𝜎=
𝐿

𝑅𝑏 ∙ 𝑆

where L is the thickness of the PTO layer, Rb is the bulk impedance of the PTO layer, and S is the 
contact area.

Fig. S6 (a) SEM image and (b) corresponding EDS mapping of S element of the Zn foil after being 
soaked in 2 M ZnSO4 for 10 days.



Fig. S7 Photographs of (a) bare Zn and (b) PTO@Zn symmetrical battery after stripping/plating.

Fig. S8 Cycling performance of symmetrical PAN@Zn||PAN@Zn cell at 1 mA cm-2 with a capacity 
of 1 mAh cm-2.



Fig. S9 Cycling performance of symmetrical Zn||Zn and PTO@Zn||PTO@Zn cells at 1 mA cm-2 
with a capacity of 1 mAh cm-2. The PTO coating layers have different mass ratios of PTO and 2D 
Ti3O7

2− nanosheets. For the layers with m(PAN):m(Ti3O7
2−) ratios of 1:1, 7:3 and 3:7, the electrodes 

are donated as PTO@Zn, PTO@Zn(7:3), and PTO@Zn(3:7), respectively.

Fig. S10 Digital images of the electrodes and separators disassembled from the (a) bare Zn and (b) 
PTO@Zn symmetric cells after 20 cycles at 5 mA cm-2/5 mAh cm-2.



Fig. S11 The XRD patterns of the bare Zn and PTO@Zn before and after cycling.

Fig. S12 Cycling performance of Zn||MnO2 and PTO@Zn||MnO2 cells under low N/P ratio cycled 
at 1 A g-1.



Table S1. Comparison of cycling performance for this work with recently reported Zn-based 
Zn||MnO2 full cells.

Anode 
(Thickness, μm)

Cathode 
mass 

loading
(mg cm−2)

N/P 
ratio

Current density
Specific 
capacity 

(mAh g−1)
Reference

Zn0.73Al0.27@Zn
(200)

2.0 ~63
1.2 C

(1C = 616 mA g-1)
~243 1

Zn|Sn
(20)

1.2 ~33 1 A g-1 124

Zn|Sn
(250)

15.8 ~31 0.2 A g-1 92
2

Zn@MCFs
(100)

1.0 / 1 A g-1 236.1 3

AEC-Zn
(80)

1.0 /
2 C

(1 C=308 mA g−1)
244 4

Cu@Zn
(40)

1.5 / 1 A g-1 ~120 5

~1.3 / 176.1PA-Zn
(20) ~15 /

2 C
(1 C=300 mA g−1)

175

6

ZnS@Zn
(10)

~0.8 /
5 C

(1 C=308 mA g−1)
125.8 7

Zn‐VSGDY
(10)

1.3-2.6 / 1 A g-1 125.4 8

PTO@Zn
(30)

1.0-1.2 ~47 198.6

PTO@Zn
(10)

~2.1 ~9
1 A g-1

196.8
This work
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