Stepwise Optimization of Tumor-Targeted Dual-Action Platinum(IV)-Gemcitabine Prodrugs

Supporting information

Alexander Kastner^{1,5}, Theresa Mendrina^{1,2}, Tomer Babu³, Subhendu Karmakar³, Isabella Poetsch², Walter Berger^{2,4}, Bernhard K. Keppler^{1,4}, Dan Gibson^{*3}, Petra Heffeter^{*2,4}, and Christian R. Kowol^{*1,4}

¹ University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Waehringer Str. 42, 1090 Vienna, Austria.

² Center of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria.

³ Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, 9112102 Jerusalem, Israel

⁴ Research Cluster "Translational Cancer Therapy Research", 1090 Vienna, Austria.

⁵ University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Waehringer Str. 42, 1090 Vienna, Austria.

E-Mail: christian.kowol@univie.ac.at; petra.heffeter@meduniwien.ac.at; dang@ekmd.huji.ac.il

Figure S1: Sulfur traces of fetal calf serum (+150 mM phosphate buffer, pH 7.4) as well as pure albumin in phosphate buffer (50 mM, pH7.4), both measured by SEC-ICP-MS. The small peak at ~3.3 min corresponds to the albumin dimer.

Figure S2: Peak assignment via HPLC-MS of the stability experiment for CisPt-GemCarb-C₂Mal depicted in Figure 3.

Figure S3. UV/Vis-traces (220 nm) of stability measurements of 1 mM **CisPt-GemCarb-OAc (A), CisPt-GemSucc-OAc (B)** and **CarboPt-GemSucc-OAc (C)** in phosphate buffer (150 mM, pH 7.4) at 37 °C, measured with UHPLC.

Figure S4. Maleimide hydrolysis of 1 mM **CisPt-GemSucc-C₅Mal** in phosphate buffer (150 mM, pH 7.4) at 37 °C, monitored with UHPLC (220 nm).

Figure S5: A) Gemcitabine release of the reduction kinetics of **CisPt-GemCarb-OAc** and (B) gemcitabine succinate release of the reduction kinetics of **CisPt-GemSucc-OAc**. The data were measured with UHPLC at 1 mM drug concentration in phosphate buffer (150 mM, pH 7.4) at 20 °C with 10 eq of ascorbic acid over 24 h.

Figure S6: ¹⁹⁵Platinum (A) and ⁴⁸sulfur (B) traces of 100 μ M **CisPt-GemSucc-C₅Mal** incubated in FCS (buffered with 150 mM phosphate buffer, pH 7.4) at 37 °C, measured with ICP-MS.

Figure S7: ¹⁹⁵Platinum (A) and ⁴⁸sulfur (B) traces of 100 µM **CarboPt-GemSucc-C₅Mal** incubated in FCS (buffered with 150 mM phosphate buffer, pH 7.4) at 37 °C, measured with ICP-MS.

HPLC column:	Acquity UPLC BEH 200Å 1.7 μm, 4.6x150 mm
Eluent:	$50 \text{ mM CH}_{3}\text{COONH}_{4}$, pH = 6.8
Flow rate:	400 μL/min
Injection volume:	0.5 μL
Column temperature:	37 °C
Autosampler temperature:	37 °C

 Table S1: SEC-HPLC parameters for SEC-ICP-MS measurements.

Nebulizer:	Quartz
Spray chamber:	Scott type
Nebulizer gas flow:	1.08 L/min
Aux. gas flow:	0.9 L/min
Plasma gas flow:	15 L/min
Reaction gas (oxygen):	30 %
ICP RF power:	1550 W
m/z measured:	195, 48

 Table S2: ICP-MS parameters for ICP-MS measurements.

CisPt-GemCarb-OAc

Figure S8: ¹H-NMR of CisPt-GemCarb-OAc.

Figure S10: ¹⁹⁵Pt-NMR of CisPt-GemCarb-OAc.

Figure S11: RP-HPLC chromatogram of CisPt-GemCarb-OAc.

CisPt-GemCarb-C₂Mal

Figure S12: ¹H-NMR of CisPt-GemCarb-C₂Mal.

Figure S13: ¹³C-NMR of CisPt-GemCarb-C₂Mal.

Figure S14: RP-HPLC chromatogram of CisPt-GemCarb-C₂Mal.

CisPt-GemCarb-C₅Mal

Figure S16: RP-HPLC chromatogram of CisPt-GemCarb-C₅Mal.

CisPt-GemSucc-OAc

Figure S17: ¹H-NMR of CisPt-GemSucc-OAc.

Figure S18: ¹³C-NMR of CisPt-GemSucc-OAc.

Figure S19: ¹⁹⁵Pt-NMR of CisPt-GemSucc-OAc.

Figure S20: RP-HPLC chromatogram of CisPt-GemSucc-OAc.

CisPt-GemSucc-C₅Mal

Figure S21: ¹H-NMR of CisPt-GemSucc-C₅Mal.

Figure S22: ¹³C-NMR of CisPt-GemSucc-C₅Mal.

Figure S23: RP-HPLC chromatogram of CisPt-GemSucc-C₅Mal.

CarboPt-GemSucc-OAc

Figure S25: ¹³C-NMR of CarboPt-GemSucc-OAc.

Figure S26: ¹⁹⁵Pt-NMR of CarboPt-GemSucc-OAc.

Figure S27: RP-HPLC chromatogram of CarboPt-GemSucc-OAc.

CarboPt-GemSucc-C₅Mal

Figure S28: ¹H-NMR of CarboPt-GemSucc-C₅Mal.

Figure S29: ¹³C-NMR of CarboPt-GemSucc-C₅Mal.

Figure S30: RP-HPLC chromatogram of CarboPt-GemSucc-C₅Mal.