Supporting Information

$Na_{10}Zn(NO_3)_4(SO_3S)_4$: a nonlinear optical crystal combining inorganic

$\pi\text{-}conjugated$ and non- $\pi\text{-}conjugated$ heteroanion groups

Zihao Yu,^a Qingran Ding,^{*, a} Yuhang Jiang,^a Weiqi Huang,^b Changsheng Yang,^a Sangen Zhao,^b and Junhua Luo^{*, a, b}

¹ School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China

² State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

*Corresponding Author(s): Junhua Luo: jhluo@fjirsm.ac.cn; dqr@jxnu.edu.cn;

Contents

Raman Spectra3
Thermal Stability
Table S1. Crystal data and structure refinement for Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 4
Table S2. Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10 ³) for Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ . <i>U</i> (eq) is defined as one third of the trace of the orthogonalized <i>U</i> _{ii} tensor
Table S3. Selected bond lengths (Å) for Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 6
Table S4. Selected Angles (°) for Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 8
Table S5. Anisotropic displacement parameters (Å ² ×10 ³) for Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 9
Figure S1. Energy dispersive X-ray spectroscopy result for Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 10
Figure S2. Raman spectra of Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 10
Figure S3. The crystal photograph of Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 11
Figure S4. TG and TGA curves for Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 11
Figure S5. The thickness of Na ₁₀ Zn(NO ₃) ₄ (SO ₃ S) ₄ 12
References

Raman Spectra.

The Raman spectra of Na₁₀Zn(NO₃)₄(SO₃S)₄ was obtained using the CCD detector of the LABRAM HR evolution spectrometer with 532 nm radiation.¹ Approximately 0.01 g Na₁₀Zn(NO₃)₄(SO₃S)₄ powders were placed on a slide and exposed to laser irradiation with a wavelength of 532 nm.² The Raman spectra of Na₁₀Zn(NO₃)₄(SO₃S)₄ were recorded in the 4000–100 cm⁻¹ region (2.5–100 μ m)¹ and shown in Figure S2.

Thermal Stability.

The thermal stability was investigated by the thermogravimetry (TG) on a simultaneous NETZSCH STA 449C thermal analyzer in an atmosphere of flowing N₂. Approximately 10.3 mg Na₁₀Zn(NO₃)₄(SO₃S)₄ powders were placed into an Al₂O₃ crucible, heated at a rate of 15 K min⁻¹ from room temperature to 1073 K.³

Empirical formula	$Na_{10}Zn(NO_3)_4(SO_3S)_4$
Formula weight	991.79
Wavelength (Å)	1.54056
Temperature (K)	293
Crystal system, space group	tetragonal, $P^{\overline{4}}$
a, b, c (Å)	11.2790(2), 11.2790(2), 5.3919(2)
α, β, γ (°)	90, 90, 90
Volume (ų)	685.94(4)
Z, Calculated density (g/cm ³)	1, 2.401
Absorption coefficient (mm ⁻¹)	9.540
F(000)	488.0
Crystal size (mm)	0.08 × 0.03 × 0.03
20 range for data collection (deg.)	7.84 to 153.14
Limiting indices	-14 ≤ h ≤ 14, -14 ≤ k ≤ 13, -4 ≤ l ≤ 6
Reflections collected / unique	6360
Independent reflections	1422 [R _{int} = 0.0385, R _{sigma} = 0.0289]
Data / restraints / parameters	1422/0/108
Goodness-of-fit on F ²	1.061
Final R indices [I>2sigma(I)]	$R_1 = 0.0207, wR_2 = 0530$
R indices (all data)	$R_1 = 0.0213, wR_2 = 0.0534$
Largest diff. peak and hole (e.A ⁻³)	0.23/-0.33
Flack parameter	0.0 (2)

Table S1. Crystal data and structure refinement for $Na_{10}Zn(NO_3)_4(SO_3S)_4$.

[a] $R1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$ and $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w F_0^4]^{1/2}$ for $F_0^2 > 2\sigma (F_0^2)$.

Atoms	X	Ŷ	Ζ	U(eq)
Zn1	3725.2(14)	3373.5(15)	3650.3(16)	8.8(3)
Zn1	5027(5)	7455(7)	3113(6)	16.9(13)
S1	7445.7(11)	4605.6(18)	3570.2(12)	6.8(3)
S2	4991.9(11)	9606.0(19)	3674.0(13)	9.1(3)
01	5346.5(16)	5881(3)	3512(2)	10.8(5)
02	2027.8(16)	5879(3)	3497.1(19)	10.6(5)
03	2903(4)	3238(5)	6304(4)	71.1(12)
04	1026(5)	5305(8)	3158(7)	20.9(15)
05	4924(4)	7078(6)	6295(4)	73.0(12)
O6	5882(2)	2026(3)	6494(3)	41.5(7)
N1	8007.8(15)	4137(2)	6513.3(18)	8.3(4)
Na1	2004(5)	7456(7)	3023(6)	15.2(13)
Na2	4481(5)	4853(8)	3122(7)	22.7(16)
Na3	2571(5)	4821(7)	3078(6)	17.6(14)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2 x 10^3$) for Na₁₀Zn(NO₃)₄(SO₃S)₄. *U*(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Atom Atom	lengths (Å)	Atom Atom	lengths (Å)
Zn1-S1	2.3590(6)	O4-Na2	2.444(2)
Zn1-S1 ¹	2.3590(6)	Na1-05 ⁴	2.5009(17)
Zn1-S1 ²	2.3590(6)	Na1-O2 ⁶	2.3201(18)
Zn1-S1 ³	2.3590(6)	Na1-O2 ¹⁰	2.3201(18)
S2-S1	2.0274(7)	Na1-O1 ⁴	2.3465(18)
S2-O3	1.4576(16)	Na1-Na3 ¹⁰	3.9829(14)
S2-O2	1.4573(17)	Na1-Na3	3.6102(13)
S2-01	1.4746(17)	Na1-Na3 ⁶	3.9829(14)
S2-Na3 ⁴	3.3321(10)	Na1-Na3 ⁴	3.6102(13)
S2-Na2 ³	3.3700(11)	Na1-Na2 ⁵	3.4262(10)
S2-Na2 ⁵	3.3859(11)	Na1-Na2 ⁸	3.4262(10)
S1-Na2 ⁵	3.0259(13)	Na3-S2 ⁴	3.3321(10)
O6-N1	1.248(3)	Na3-O6 ⁸	2.503(2)
O6-Na3 ⁶	2.498(2)	Na3-O6 ⁹	2.498(2)
06-Na3 ⁷	2.503(2)	Na3-O5 ⁹	2.584(2)
O6-Na2 ⁶	2.761(2)	Na3-O1 ⁴	2.3528(19)
O3-Na3	2.4729(18)	Na3-N1 ⁸	2.965(2)
O3-Na2	2.2791(18)	Na3-N1 ⁹	2.927(2)
O5-N1	1.253(3)	Na3-O4 ⁸	2.653(2)
O5-Na1	2.5009(17)	Na3-Na1 ⁹	3.9829(14)
O5-Na3 ⁶	2.584(2)	Na3-Na2 ¹¹	3.9814(15)
O5-Na3	2.848(2)	Na3-Na2 ⁸	3.7152(14)
O5-Na2 ⁸	2.981(2)	Na3-Na2	3.3541(14)
O2-Na1 ⁹	2.3201(18)	Na2-S2 ¹²	3.3858(11)
O2-Na2 ³	2.286(2)	Na2-S1 ¹	3.3700(11)
O1-Na1	2.3465(18)	Na2-S1 ¹²	3.0259(13)
O1-Na3 ⁴	2.3528(19)	Na2-O6 ⁹	2.761(2)
O1-Na25	2.4859(19)	Na2-O5 ⁷	2.981(2)
N1-O4	1.249(3)	Na2-O2 ¹	2.286(2)
N1-Na3 ⁷	2.965(2)	Na2-O1 ¹²	2.4859(19)
N1-Na3	3.053(2)	Na2-Na1 ¹²	3.4262(10)

Table S3. Selected bond lengths (Å) for $Na_{10}Zn(NO_3)_4(SO_3S)_{4.}$

N1-Na3 ⁶	2.927(2)	Na2-Na3 ⁷	3.7152(14)
O4-Na3 ⁷	2.653(2)	Na2-Na3 ¹³	3.9814(15)
O4-Na3	2.491(2)		

Symmetry transformations used to generate equivalent atoms:

¹-1/2+X,1/2-Y,-1/2+Z; ²+X,1-Y,-1/2+Z; ³1/2+X,1/2-Y,-1/2+Z; ⁴1/2+X,1/2+Y,+Z; ⁵1/2+X,-1/2+Y,+Z; ⁶+X,1+Y,+Z; ⁷+X,2-Y,-1/2+Z; ⁸-1/2+X,1/2+Y,+Z; ⁹-1/2+X,3/2-Y,-1/2+Z; ¹⁰1/2+X,1/2-Y,1/2+Z; ¹¹+X,-1+Y,+Z; ¹²+X,1-Y,1/2+Z; ¹³1/2+X,3/2-Y,1/2+Z; ¹⁴-1/2+X,1/2-Y,1/2+Z; ¹⁵-1/2+X,-1/2+Y,+Z

Atom Atom Atom	Angles (°)	Atom Atom Atom	Angles (°)
S1 Zn1 S1	105.22(3)	O6 N1 O5	119.4(2)
S1 Zn1 S1 ²	111.637(16)	O6 N1 O4	119.92(18)
S1 ³ Zn1 S1 ²	105.22(3)	O4 N1 O5	120.7(2)
S1 ¹ Zn1 S1 ³	111.637(16)	O2 S2 S1	109.66(8)
S1 Zn1 S1 ³	111.637(16)	O2 S2 O3	111.37(11)
S1 ¹ Zn1 S1 ²	111.637(16)	O2 S2 O1	110.43(11)
S2 S1 Zn1	111.98(3)	O1 S2 S1	102.87(7)
O3 S2 O1	110.32(10)	O3 S2 O1	111.88(7)

Table S4. Selected angles (°) for Na₁₀Zn(NO₃)₄(SO₃S)₄.

Symmetry transformations used to generate equivalent atoms:

¹-1/2+X,1/2-Y,-1/2+Z; ²+X,1-Y,-1/2+Z; ³1/2+X,1/2-Y,-1/2+Z; ⁴1/2+X,1/2+Y,+Z; ⁵1/2+X,-1/2+Y,+Z; ⁶+X,1+Y,+Z; ⁷+X,2-Y,-1/2+Z; ⁸-1/2+X,1/2+Y,+Z; ⁹-1/2+X,3/2-Y,-1/2+Z; ¹⁰1/2+X,1/2-Y,1/2+Z; ¹¹+X,-1+Y,+Z; ¹²+X,1-Y,1/2+Z; ¹³1/2+X,3/2-Y,1/2+Z; ¹⁴-1/2+X,1/2-Y,1/2+Z; ¹⁵-1/2+X,-1/2+Y,+Z

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Zn1	14.58(18)	14.58(18)	32.0(3)	0	0	0
S1	12.8(2)	30.5(3)	38.2(3)	-14.0(3)	-2.7(2)	3.8(2)
S2	11.5(2)	14.7(2)	17.3(2)	0.99(19)	0.06(18)	0.29(17)
01	15.6(8)	24.0(8)	26.8(8)	-3.3(6)	-6.1(6)	-2.1(6)
02	28.9(9)	31.0(9)	22.3(8)	6.5(7)	7.6(7)	5.9(7)
03	23.4(8)	16.3(7)	37.8(9)	2.7(7)	3.6(8)	1.0(6)
04	33.8(10)	35.2(10)	23.0(8)	-3.5(8)	-6.2(7)	-2.1(8)
05	28.6(9)	23.4(8)	40.9(10)	3.1(8)	0.4(9)	-9.8(6)
06	38.6(11)	31.3(9)	25.6(9)	5.5(8)	1.4(7)	-11.2(9)
N1	21.5(9)	19.7(9)	19.8(9)	1.4(7)	-1.1(8)	-2.3(7)
Na1	25.2(6)	26.2(7)	21.8(6)	0	0	9.0(5)
Na2	28.1(5)	39.9(6)	30.2(5)	4.6(5)	-5.0(4)	-15.2(4)
Na3	20.2(4)	26.7(5)	29.3(5)	-4.8(4)	-1.6(4)	0.0(3)

 Table S5. Anisotropic displacement parameters (Å2×103) for Na₁₀Zn(NO₃)₄(SO₃S)₄.

The Anisotropic displacement factor exponent takes the form: -

 $2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...].$

Figure S1. Energy dispersive X-ray spectroscopy result for Na₁₀Zn(NO₃)₄(SO₃S)₄.

Figure S2. Raman spectra of $Na_{10}Zn(NO_3)_4(SO_3S)_4$.

Figure S3. The crystal photograph of Na₁₀Zn(NO₃)₄(SO₃S)₄.

The thermogravimetry (TG) and differential thermal analysis (DTA) curves reveal that $Na_{10}Zn(NO_3)_4(SO_3S)_4$ could be stable up to 547 K (Figure S4). This result indicates that $Na_{10}Zn(NO_3)_4(SO_3S)_4$ possesses a good thermal stability.

Figure S5. The thickness of $Na_{10}Zn(NO_3)_4(SO_3S)_4$.

References.

- W. L. Xie, Y. H. Yun, L. H. Deng, G. M. Li and S. L. Pan, Second-Harmonic Generation-Positive Na₂Ga₂SiS₆ with a Broad Band Gap and a High Laser Damage Threshold, *Inorg. Chem.*, 2022, 61, 7546-7552.
- J. Z. Zhou, Y. Chu, J. J. Li and S. L. Pan, Ba₂BS₃Cl and Ba₅B₂S₈Cl2: first alkaline-earth metal thioborate halides with [BS₃] units, *Chem. Commun*, 2021, 57, 6440-6443.
- S. X. Ke, H. X. Fan, C. S. Lin, N. Ye and M. Luo, Constructing ultraviolet nonlinear optical crystals with large second harmonic generation and short absorption edges by using polar tetrahedral S₂O₃ groups, *Inorg. Chem. Front.*, 2023, 10, 2811-2817.