Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers.

Regulating the microscopic structure of solutions to synthesize centimeter-sized low-dimensional Cs_mSb_nCl_{m+3n} perovskite single crystals for visible-blind ultraviolet photodetectors

Wenzhen Wang, ^{a,b,d} Shanhu Xu, ^a Ziyi Lai, ^a Xiaoxi Feng, ^a Huanzhen Qi, ^a Qiutao Pan, ^a Zichen Yang, ^c Jiaxing Kang, ^c Yue Li, ^c Xin Shu, ^c Zifa Zhang, ^c Yan Zhu, ^d Jiaxin Bai, ^e Feng Hong, ^c Juan Qin, ^b Run Xu, *^{a,b} Ying He,^c Fei Xu^c and Linjun Wang^{a,b c}

^a School of Materials Science and Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China.

^b Zhejiang Institute of Advanced Materials, SHU, 2189 Jiashan Street, Jiashan 314113, China.

^c Department of Physics, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.

^d Shanghai Technical Institute of Electronics & Information, 3098 Wahong Road, Shanghai 201411, China.

^e Hebei Institute of Pure Iron Materials and Application Industry Technology, Handan 056300, China.

* Corresponding Author. Email: runxu@shu.edu.cn

Solvent	CsCl	SbCl ₃	CsCl+SbCl ₃	Cs ₃ Sb ₂ Cl ₉	
DI Water	Highly Soluble	Hydrolysis Reaction	Insoluble	Insoluble	
Hydrochloric Acid (37 wt.%)	Highly Soluble	Soluble	Slightly Soluble	Slightly Soluble	
Hydrochloric Acid (8 wt.%)	Highly Soluble	Highly Soluble	Soluble	Soluble	
Ethyl Alcohol	Slightly soluble	Highly Soluble	Insoluble	Insoluble	
Isopropanol	Slightly soluble	Soluble	Insoluble	Insoluble	
DMSO	Slightly soluble	Highly Soluble	Slightly Soluble	Slightly Soluble	
NMP	Slightly soluble	Highly Soluble	Slightly Soluble	Insoluble	
DMF	Insoluble	Soluble	Insoluble	Insoluble	
GBL	Insoluble	Soluble	Insoluble	Insoluble	
DMSO+DMF	Slightly soluble	Highly Soluble	Slightly Soluble	Slightly Soluble	
DMSO+NMP	Slightly soluble	Highly Soluble	Slightly Soluble	Slightly Soluble	
DMSO+GBL	Slightly soluble	Highly Soluble	Slightly Soluble	Slightly Soluble	
DMSO+ Hydrochloric Acid (8 wt.%)	Soluble	Highly Soluble	Highly Soluble	Highly Soluble	

Table S1. Solubilities of CsCl, SbCl₃, CsCl and SbCl₃ mixed powders, and ground powder from as-grown $Cs_3Sb_2Cl_9$ single crystals in different solvents at 60 °C.

Notes: Highly Soluble: > 10 g/100 g (solvent); Soluble: 1 g/100 g (solvent) ~ 10 g/100 g (solvent); Slightly soluble: 0.01 g/100 g (solvent) ~ 1 g/100 g (solvent); Insoluble: < 0.01 g/100 g (solvent).

Figure S1. Solubilities of CsCl and SbCl₃ mixed powders in the hybrid solvent of DMSO and the dilute hydrochloric acid in different concentrations with the fixed volume ratio of 4:1.

Figure S2. The typical Tyndall effect of the colloidal solution.

	x/a	y/b	z/c	U(eq)	Wyck.		
Cs1	0.33333	0.66667	0.32567	0.000	2d		
Cs2	0.00000	0.00000	0.00000	0.000	1a		
Sb	0.33333	0.66667	0.82006	0.000	2d		
C11	0.53012	0.53012	0.00000	0.000	3e		
C12	0.35597	0.20333	0.32530	0.000	6g		
Bond lengths (Å)	Sb–Cl1			2.8470(0)			
	Sb-Cl2			2.5280(0)			
Bond angles (°)	С11-Sb-С11		87.1780				
	C12-Sb-C12		92.6074				
	Cl1-	Sb-Cl2		90.3757			
a (Å)	7.8093						
c (Å)	9.5738						
α (°)		90					
γ (°)			120				

 $\label{eq:solution} \textbf{Table S2.} Atomic parameters of trigonal α-Cs_3Sb_2Cl_9$ obtained from the Rietveld refinement of PXRD data.$

Figure S3. Schematic illustration of the crystal structures of CSC. a) $2D \alpha$ -Cs₃Sb₂Cl₉, b) $0D Cs_5Sb_2Cl_{11}$.

	x/a	y/b	z/c	U(eq)
Cs1	0.58913(2)	0.29623(2)	0.35755(2)	0.02030(7)
Cs2	0.71850(2)	0.02074(2)	0.14475(2)	0.02073(7)
Cs3	0.5	0.5	0.0	0.01673(7)
Sb1	0.59006(2)	0.66240(2)	0.38202(2)	0.01097(6)
Cl1	0.5	0.5	0.5	0.01822(18)
Cl2	0.76046(5)	0.55251(5)	0.39049(5)	0.02110(14)
Cl3	0.65128(5)	0.77309(5)	0.52129(5)	0.02301(14)
Cl4	0.66432(5)	0.78799(6)	0.26887(5)	0.02351(14)
C15	0.41422(4)	0.76951(5)	0.38693(5)	0.01893(13)
C16	0.52496(5)	0.54427(5)	0.23593(4)	0.01913(13)

Table S3	Positional	narameters of	Cs-Sh-Cl.	obtained from	the Rietveld	refinement	of XRD data
I able 55.	1 OSITIOIIAI	parameters or	C55502C111	obtained nom	the Kietvelu	rennement	OI AND uata.

Bond	Bond lengths (Å)
Sb1-Cl1	2.8920(17)
Sb1-Cl2	2.6277(6)
Sb1-Cl3	2.5629(7)
Sb1-Cl4	2.4592(7)
Sb1-Cl5	2.6698(6)
Sb1-Cl6	2.7057(6)

 $\label{eq:stables} \textbf{Table S4.} Bond \ \text{lengths of } Cs_5Sb_2Cl_{11} \ \text{obtained from the Rietveld refinement of } XRD \ \text{data}.$

Bond	Bond angles (°)
Cl4-Sb1-Cl3	93.12(2)
Cl3-Sb1-Cl2	88.51(2)
Cl3-Sb1-Cl5	89.11(2)
Cl4-Sb1-Cl6	87.33(2)
Cl2-Sb1-Cl6	91.42(2)
Cl4-Sb1-Cl1	174.327(19)
Cl2-Sb1-Cl1	87.718(16)
Cl6-Sb1-Cl1	87.125(15)
Cl4-Sb1-Cl2	91.21(2)
Cl4-Sb1-Cl5	92.63(2)
Cl2-Sb1-Cl5	175.58(2)
Cl3-Sb1-Cl6	179.54(2)
Cl5-Sb1-Cl6	90.94(2)
Cl3-Sb1-Cl1	92.419(17)
Cl5-Sb1-Cl1	88.667(15)
Sb1-Cl1-Sb1#10	180.0

 $\label{eq:stable} \textbf{Table S5.} Bond angles of Cs_5Sb_2Cl_{11} \ obtained from the Rietveld refinement of XRD \ data.$

 $Cs_{3}Sb_{2}Cl_{9}-1 \ Cs_{3}Sb_{2}Cl_{9}-2 \ Cs_{3}Sb_{2}Cl_{9}-3 \ Cs_{3}Sb_{2}Cl_{9}-4 \ Cs_{5}Sb_{2}Cl_{11}-1 \ Cs_{5}Sb_{2}Cl_{11}-2 \ Cs_{5}Sb_{2}Cl_{11}-3 \ Cs_{5}Sb_{2}Cl_{11}-4 \ Cs_{5}Sb_{2}Cl_{11}-4 \ Cs_{5}Sb_{2}Cl_{11}-3 \ Cs_{5}Sb_{2}Cl_{11}-4 \ Cs_{5}Sb_{2}Cl_{11}-4 \ Cs_{5}Sb_{2}Cl_{11}-3 \ Cs_{5}Sb_{2}Cl_{11}-4 \ Cs_{5}Sb$

Figure S4. Summary of X-ray fluorescence results for multiple CSC single crystal samples.

Figure S5. X-ray photoelectron spectroscopy spectra of CSC single crystals. a, d) Cs 3d. b, e) Sb 3d. c, f) Cl 2p. a, b, and c) Cs₃Sb₂Cl₉. d, e, and f) Cs₅Sb₂Cl₁₁.

Figure S6. PL intensity and FWHM of CSC crystals as a function of temperature. a) Cs₃Sb₂Cl₉. b) Cs₅Sb₂Cl₁₁.

Figure S7. I-V curves of the $Cs_5Sb_2Cl_{11}$ single-crystal photodetector in the dark and under different irradiations at 266 nm for bias voltage in the range from -30 V to 30 V.