Supplementary material

Enhancing the Lithium Storage Properties of Molten Salt-Etched $Ti_3C_2T_x$ through Sequential Intercalation of Alkali Ions

Yanchao Ou,^a Peng Zhang,^{*a,b} Razium Ali Soomro,^a Ning Qiao,^{*a} Haonan Cui,^a and Bin Xu^{*a}

^{*a*} State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: zp7312769@163.com, qiaoning@mail.buct.edu.cn, binxumail@163.com

^b Henan Key Laboratory of Photovoltaic Materials, School of Future Technology, Henan University, Zhengzhou 450046, China

Fig. S1 (a) SEM image and (b) XRD pattern of the Ti_3AlC_2 powders.

Fig. S2 (a) SEM image and (b) XRD pattern of the Na-MXene, (c) SEM image and (d) XRD pattern of the K-MXene.

Fig. S3 STEM images of K-MXene and corresponding elemental mappings showing distribution of C, O, Cl, Ti, and K elements.

and 5 days.

Fig. S5 (a) N₂ adsorption-desorption isotherm and (b) pore size distribution of the K-MXene.

Fig. S6 Relationship between interlayer spacings and specific surface areas of the AII-MXene in reference to MS-MXene.

Fig. S7 Water contact angles of the (a) Li/Na/K-MXene, and (b) MS-MXene.

Fig. S8 Zeta potentials of the (a) MS-MXene and (b) Li/Na/K-MXene.

Fig. S9 Electrical conductivities of the Li/Na/K-MXene and MS-MXene.

Fig. S10 CV curves of the (a) Li-MXene and (b) Li/Na-MXene.

Fig. S11 Galvanostatic charge/discharge curves of the (a) MS-MXene, (b) Li-MXene, and (c) Li/Na-MXene at a current density of 50 mA g⁻¹.

Fig. S12 The last five GCD curves of the Li/Na/K-MXene during100 cycles at 0.1 A g⁻¹.

cycles at 1 A g⁻¹.

Fig. S14 (a) XRD pattern and (b) TEM images of the Li/Na/K-MXene after 100 cycles at 1 A g⁻¹.

Fig. S15 Initial three GCD curves at 100 mA g^{-1} of the (a) Li/Na/K-Ti₂CT_x and (b) Li/Na/K-

 Nb_2CT_x in comparison with their MS-Ti₂CT_x and MS-Nb₂CT_x counterparts.

Fig. S16 CV profile measured at various scan rates of (a) 0.2, (b) 0.5, (c) 1, (d) 1.5, (e) 2, and (f) 3 mV s⁻¹ with shaded area displaying the corresponding capacitive contributions for the Li/Na/K-MXene.

Fig. S17 CV profile measured at various scan rates of (a) 0.2, (b) 0.5, (c) 1, (d) 1.5, (e) 2, and (f) 3 mV s⁻¹ with shaded area displaying the corresponding capacitive contributions for the MS-MXene.

Fig. S18 EIS spectra of the Li/Na/K-MXene and MS-MXene after 20 cycles at 50 mA g⁻¹.

_	Cycle performance				Rate performance		
Samples	Initial capacity	Current density	<mark>Cycle</mark>	Final capacity	Current density	Capacity	<mark>Ref.</mark>
	(mAh g ⁻¹)	(mA g ⁻¹)	number	<mark>(mAh g⁻¹)</mark>	<mark>(A g⁻¹)</mark>	<mark>(mAh g⁻¹)</mark>	
Li/Na/K-MXene	<mark>346.7</mark>	<mark>50</mark>	<mark>100</mark>	<mark>323.1</mark>	<mark>2</mark>	<mark>170.0</mark>	This
		1000	<mark>1200</mark>	<mark>254.7</mark>			work
Self-supported MS-MXene	<mark>225</mark>	<mark>200</mark>	-	•	<mark>2</mark>	<mark>~150</mark>	<mark>S1</mark>
	•	<mark>4000</mark>	<mark>2000</mark>	<mark>~85</mark>	<mark>16</mark>	<mark>95</mark>	
$MS-Nb_2CT_x$	<mark>305</mark>	<mark>100</mark>	-	•	<mark>2</mark>	<mark>~150</mark>	<mark>S2</mark>
	•	1000	<mark>1500</mark>	<mark>~190</mark>	<mark>10</mark>	<mark>80</mark>	
$MS-Ti_3C_2T_x$	•	-	-	•	~0.12 (0.6 C)	<mark>205</mark>	<mark>S3</mark>
	•	-	-	•	~1.8 (13 C)	<mark>142</mark>	
Cl-terminated Ti ₂ CT _x	•	-	-	•	0.1	<mark>277</mark>	<mark>S4</mark>
	-	-	-		2	<mark>162</mark>	
$Ti_3C_2Br_x$	•			<u> </u>	0.05	<mark>189</mark>	<mark>S5</mark>
	-	<mark>1000</mark>	<mark>1000</mark>	<mark>~80</mark>	<mark>2</mark>	<mark>70</mark>	
$MS-Ti_2CT_x$	•	<mark>500</mark>	<mark>200</mark>	<mark>99.2</mark>	<mark>2</mark>	<mark>88.0</mark>	<mark>S6</mark>
	•				<mark>8</mark>	<mark>57.6</mark>	

Table S1 Comparison of the lithium storage properties of Li/Na/K-MXene with other previously reported MS-MXene.

References

2022, 10, 22135-22144.