Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supplementary Information

Introducing Alkyl Chains to Realize the Construction of Superhydrophobic/Superoleophilic

MOFs and the Transformation from Three-Dimensional to Two-Dimensional Structure

Xinglei He, Chunlong Yu, Jingheng Li, Zhihua Wang, Ke-Yin Ye*

Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College

of Chemistry, Fuzhou University, Fuzhou 350108, China

E-mail: kyye@fzu.edu.cn

Content

SI-1	Experimental section
SI-2	Crystal data and structure refinement details
SI-3	N ₂ adsorption dataS9
SI-4	Elemental analyses by EDSS10
SI-5	Structure and characterizationS11
SI-6	Stability analysis
SI-7	Component analyses of 1-R s and 2-R s
SI-8	Study on hydrophobicity of 1-R s
SI-9	Synthesis and characterization of small size 1-Oct (s 1-Oct)
SI-10	Analysis of 1-Oct load in PDMS/1-Oct@MSS18
SI-11	Morphology characterization and composition analysis of PDMS/1-Oct@MSS20
SI-12	Oil-water separation experiment
SI-13	The influence of functional groups on the N ₂ adsorptionS23
SI-14	¹ H NMR spectra
SI-15	References

SI-1 Experimental section

Synthesis of CuL^s

Scheme S1 Schematic diagram of synthesis of CuL^s.

Synthesis of **S2** (4-Bromo-2-tert-butylphenol)

S2 was synthesized according to the literature,¹ but slightly modified. S1 (3.75 g, 25 mmol) was dissolved in dichloromethane (200 mL). Tetra-n-butyl ammonium tribromide (TBABr₃, 14.47 g, 30 mmol) was slowly added and the solution was stirred for 3 h at room temperature. The solvent was removed by rotary evaporation and the crude product was partitioned between ethyl acetate and water. The ethyl acetate (EA) layer was washed sequentially with 1 M HCl (2 × 30 mL) and brine (2 × 30 mL). The organic layer was separated and dried over Na₂SO₄. The solvent was evaporated and the crude product was purified by chromatography on silica gel to afford clear yellow oil. Yield: 5.20 g (90.8 %). ¹H NMR (400 MHz, Chloroform-d, δ): 7.37 (s, 1H, Ar H), 7.17 (dd, J = 8.4, 2.5 Hz, 1H Ar H), 6.56 (d, J = 8.4 Hz, 1H, Ar H), 5.19-5.06 (m, OH), 1.40 (s, 9H, *t*-Bu).

Synthesis of S3 (5-bromo-3-(tert-butyl)-2-hydroxybenzaldehyde)

S3 was synthesized according to the literature.² In a dry two-necked flask, a solution of S2 (15.2 g, 66.3 mmol), $MgCl_2$ (21.0 g, 221 mmol), and Et_3N (55 mL) in 174 ml of anhydrous CH_3CN were

stirred at room temperature for 30 minutes. Then, 22.3 g (791 mmol) of paraformaldehyde was added and the reaction mixture was stirred at 85 °C for 4 h. After cooling at room temperature, the mixture was diluted with EA (100 mL) and washed with HCl 1M (3 x 50 mL), H2O (3 x 50 mL), brine (3 x 50 mL). The organic phase was dried over Na₂SO₄ and filtered. The crude was purified by chromatographic column on flash silica gel. Yield: 12.35 g (72.1 %). ¹H NMR (400 MHz, Chloroformd, δ): 11.72 (s, 1H, OH), 9.81 (s, 1H, CHO), 7.58 (d, J = 2.5 Hz, 1H, Ar H), 7.51 (d, J = 2.5 Hz, 1H, Ar H), 1.40 (s, 9H, *t*-Bu).

Synthesis of **S4** (3-tert-butyl-5-(4-pyridyl)-2-hydroxybenzaldehyde)

S4 was synthesized according to the literature.³ A mixture of S3 (2.5 g, 9.72 mmol), 4pyridinylboronic acid (1.31 g, 10.69 mmol), Na₂CO₃ (1.55 g, 14.58 mmol), and Pd(PPh₃)₄ (1.13 g, 0.98 mmol) was refluxed in 1,4-dioxane and H₂O (3:1 v/v, 60 mL, degassed with N₂) at 102 °C for 1 h. After cooling to room temperature, the reaction contents were poured into water (50 mL). The aqueous mixture was extracted with CH₂Cl₂ (50 mL), and the combined extracts were dried over Na₂SO₄ before being concentrated under reduced pressure. The crude was purified by chromatographic column on flash silica gel to afford a pale yellow solid. Yield: 1.23 g (53.2 %). ¹H NMR (400 MHz, Chloroform-d, δ): 11.94 (s, 1H, OH), 9.98 (s, 1H, CHO), 8.66 (d, J = 5.5 Hz, 2H, Ar H), 7.80 (d, J = 2.3 Hz, 1H, Ar H), 7.69 (d, J = 2.4 Hz, 1H, Ar H), 7.53-7.48 (m, 2H, Ar H), 1.48 (s, 9H, *t*-Bu).

Synthesis of **S5** (3,3'-Diaminocyclohexanediylbis(nitromethylidine)bis [3-tert-Butyl2-hydroxy-5-(4pyridinyl)-benzald ehyde)

S5 was synthesized according to the literature.³ **S4** (3.92 g, 15.4 mmol) was dissolved in methanol (50 mL). A solution of (1,2)-diaminocyclohexane (860 mg, 7.58 mmol) in methanol (10 mL) was added dropwise and the solution turned bright yellow. The solvent was evaporated. The crude compound

was purified by flash chromatography on silica gel with EA to get a yellow solid. Yield: 3.48 g (78.1 %) ¹H NMR (400 MHz, Chloroform-d) δ 14.18 (s, 2H, OH), 8.61-8.53 (m, 4H, Ar H), 8.36 (s, 2H, CHO), 7.51 (d, J = 2.3 Hz, 2H, Ar H), 7.38-7.32 (m, 4H, Ar H), 7.27 (d, J = 1.9 Hz, 2H, Ar H), 3.44-3.36 (m, 2H, CH), 1.97-1.92 (m, 2H, CH₂), 1.89-1.82 (m, 2H, CH₂), 1.83-1.74 (m, 2H, CH₂), 1.56-1.50 (m, 2H, CH₂), 1.44 (s, 18H, *t*-Bu).

Synthesis of CuL^s

A solution of **S5** (588 mg, 1 mmol) in MeOH (20 mL) was added dropwise to $Cu(NO_3)_2 \cdot 2.5H_2O$ (232.6 mg, 1 mmol) in MeOH (5 mL). The reaction mixture was stirred at 60 °C for 3 h. The dark purple powder precipitate of **CuL**^s was collected by filtration, washed with MeOH, and dried under reduced pressure. Yield: 0.60 g (92.2 %).

Synthesis of H₂L-Rs (R = ethyl, n-butyl, n-hexyl, n-octyl)

H₂L-Rs was synthesized according to the literature.⁴

Scheme S2. Schematic diagram of synthesis of H₂L-Rs.

Synthesis of S7 (methyl 2-acetoxy-4-iodobenzoate)

Concentrated H_2SO_4 (85 uL) was added to **S6** (methyl 2-hydroxy-4-iodobenzoate) (2.0 g, 7.2 mmol) in acetic anhydride (3 mL) and the mixture was stirred at 80 °C overnight. After cooling to room temperature, water (15 mL) was added and the solution was extracted with CH_2Cl_2 (2 × 50 mL). The combined organic extracts were passed through a plug of silica and washed with saturated NaHCO₃ solution, dried over Na₂SO₄, filtered and the solvents removed in vacuo to give a white solid. Synthesis of **S8** (dimethyl 3,3'-diacetoxy-[1,1'-biphenyl]-4,4'-dicarboxylate)

S7 (1.60 g, 13.70 mmol), copper powder (3.00 g, 46.0 mmol), and DMF (4 mL) were mixed under N_2 atmosphere and then heated to 155 °C for 10 h. After the reaction mixture was filtered while it was still hot, the filtrate was collected, poured into water (40 mL), and stirred vigorously. The formed precipitate was collected by filtration and dried under reduced pressure at 60 °C overnight to afford a white solid.

Synthesis of S9 (3,3'-dihydroxy-[1,1'-biphenyl]-4,4'-dicarboxylic acid)

S8 (1.16 g, 3 mmol) was dissolved in a mixed solution of methanol (30 mL) and THF (tetrahydrofuran 30 mL), then added to a 100 mL one-neck flask equipped with a condenser and a magnetic stirrer. After that 6 mL 2 M NaOH solution was added drop by drop, and the reaction mixture was refluxed overnight. After cooling to room temperature, the reaction mixture was concentrated in vacuo to remove some organic solvent. 50 mL water was added to the residue, the aqueous layer was acidified with concentrated HCl until a pH < 3 was attained and the resulting precipitate was collected by filtration, washed with ample H_2O , and dried to obtain a white powder.

Synthesis of **S10** (dimethyl 3,3'-dihydroxy-[1,1'-biphenyl]-4,4'-dicarboxylate)

S9 (0.55 g, 2 mmol) was dissolved in methanol (40 mL) and added to a 100 mL one-neck flask equipped with a condenser and a magnetic stirrer. After that 800 uL concentrated H_2SO_4 was added drop by drop, and the reaction mixture was refluxed 24 h. After cooling to room temperature, the reaction mixture was concentrated in vacuo to remove MeOH. 50 mL water was added to the residue after the solution was filtered, the precipitate was dried under vacuum and a white powder was obtained.

Synthesis of H₂L-Rs

S10 (302 mg, 1 mmol), K₂CO₃ (276 mg, 2 mmol), and DMF (5 mL) were added to a 50 mL one-neck

flask equipped with a condenser and a magnetic stirrer, Br-R (R = ethyl, n-butyl, n-hexyl, n-octyl) (2.5 mmol) was added dropwise to the mixture. The reaction mixture was heated at 85 °C for 3 h. After cooling to room temperature, the reaction mixture was concentrated in vacuo to remove DMF. After that, a mixed solution of methanol (10 mL) and THF (10 mL) was added, and 2 mL 2 M NaOH solution was added drop by drop to the reaction mixture and refluxed overnight. After cooling to room temperature, the reaction mixture was concentrated in vacuo to remove organic solvent. Water (50 mL) was added to the residue, the aqueous layer was acidified with concentrated HCl until a pH < 3 was attained and the resulting precipitate was collected by filtration, washed with ample H_2O , and vacuum-dried to obtain a white powder.

SI-2 Crystal data and structure refinement details

Complex	1	2	1-Oct			
Formula	$C_{52}H_{50}CdCuN_4O_6$	C55H56CuZnN5O7	$C_{128}H_{147}Cd_2Cu_2N_8O_{16}$			
formula weight, fw	1002.90	1027.95	2405.41			
Temperature, T [K]	296.15(10)	296.15	293.15			
crystal system	orthorhombic	orthorhombic	triclinic			
space group	Pbca	Pbca	<i>P1</i>			
a [Å]	26.966(2)	13.7150(6)	11.2898(9)			
b [Å]	13.9127(10)	25.9845(8)	13.6418(11)			
c [Å]	26.3405(14)	26.6380(11)	23.3580(19)			
α [°]	90	90	103.862(7)			
β [°]	90	90	97.472(7)			
γ [°]	90	90	104.800(7)			
V [Å ³]	9882.3(12)	9493.2(6)	3306.0(5)			
Z	8	8	1			
ρ [g cm ⁻³]	1.348	1.438	1.208			
μ [mm ⁻¹]	0.912	1.014	0.695			
θ range	2.1540-18.8990	2.291-24.438	2.7450-22.2700			
F(000)	4120	4288	1253			
goodness-of-fit, GOF	0.990	1.144	1.032			
$R_{1^{a}}[I > 2\sigma(I)]$	0.0601	0.0759	0.1169			
wR_2^b (all data)	0.1569	0.2264	0.2835			
^a R ₁ :	$= F_{o} - F_{c} / F_{o} $. ^b W	$R_2 = \left[w(F_0^2 - F_c^2)^2 / w F_0^2 \right]$	²] ^{1/2} .			

Tab. S1 Crystal data and structure refinement details of 1, 2, and 1-Oct.

SC-XRD of 1, 2, and 1-Oct were tested on a Bruker D8 Venture using Mo K α radiation. The empirical absorption correction was performed using the Crystal Clear program. The structure was solved by direct methods and refined on F^2 by the full-matrix least-squares technique using the SHELXL program package. Table S1 shows the refinement details of 1, 2, and 1-Oct.

SI-3 N₂ adsorption data

_

Sample	$S_{\rm BET}({ m m}^2{ m g}^{-1})$	$V_{\rm t}$ (cc g ⁻¹)	P (%)
1	94.812	133.8184	16.5
2	23.154	81.8093	16.1
1-NH ₂	0.913	2.7987	
1-Et	189.174	52.8486	
1-Oct	4.392	2.7678	13.1

Tab. S2 BET surface area, pore volume and porosity of 1, 2, 1-NH₂, 1-Et, and 1-Oct.

 S_{BET} is the BET surface area. V_t stands for the single point total pore volume determined by using the adsorption branch of the N₂ isotherm at $P/P_0 = 0.99$. P stands for porosity calculated by the PLATON program.

SI-4 Elemental analyses by EDS

Element	Intensity (c/s)	Conc.	Units
С	830.73	30.809	wt. %
Ν	208.32	17.179	wt. %
0	599.11	26.106	wt. %
Si	2,404.29	20.661	wt. %
Cu	19.91	1.878	wt. %
Cd	69.32	3.367	wt. %

Tab. S3 Elemental analyses by EDS of PDMS/1-Oct@MS.

Tab. S4 Elemental analyses by EDS of PDMS/1-Oct@MS after 50 cycles.

Element	Intensity (c/s)	Conc.	Units
С	1,270.12	29.786	wt. %
Ν	403.36	23.454	wt. %
0	822.25	29.011	wt. %
Si	2,262.88	14.902	wt. %
Cu	23.98	1.731	wt. %
Cd	30.51	1.116	wt. %

SI-5 Structure and characterization

Fig. S1 Asymmetric units of 1 and 2.

Fig. S2 N₂ adsorption-desorption isotherms of 1 and 2.

Fig. S3 PXRD patterns of 1 and 2 (a), 1-Et (b), 1-But and 1-Hex (c), and 1-Oct (d).

Fig. S4 The dihedral angle formed by a carboxyl group and the connected benzene ring in 1(a) and 1-Oct (b).

Fig. S5 (a) PXRD patterns after soaking **1** in different solvents (dichloromethane (DCM), acetonitrile (CH₃CN), DMF, ethyl acetate (EA), H₂O, methanol (MeOH), tetrahydrofuran (THF), 1,4-dioxane) for 60 days. (b) PXRD patterns after soaking **1** in aqueous solutions of different pH for 48 hours. (c) PXRD patterns after soaking **2** in different solvents for 60 days. (d) PXRD patterns after soaking **2** in aqueous solutions of different pH for 48 hours.

Fig. S6 The thermogravimetric analyses of 1 and 2.

Fig. S7 Coordination modes of metal atoms in the secondary building units (SBUs) of 1 (a) and 2 (b).

Fig. S8 The thermogravimetric analyses of 1-Rs (a) and 2-Rs (b).

SI-7 Component analyses of 1-Rs and 2-Rs

Fig. S9 The ¹H NMR spectra of digested 1-Et, 2-Et and H_2L -Et.

Fig. S10 The ¹H NMR spectra of digested 1-But, 2-But and H₂L-But.

Fig. S11 The ¹H NMR spectra of digested 1-Hex, 2-Hex and H₂L-Hex.

Fig. S12 The ¹H NMR spectra of digested 1-Oct, 2-Oct and H₂L-Oct.

Digested process: 100 mg **1-R**s and **2-R**s were added to 10 mL aqua regia ($V_{HCl(Conc.)}$: $V_{HNO3(Conc.)}$) by ultrasound for 10 minutes. Then the mixed solution was extracted with ethyl acetate (20 × 3 mL), the collected organic phase was washed with saturated salt water (20 × 3 mL), dried with anhydrous Na₂SO₄, concentrated in a vacuum, and white solids were collected.

SI-8 Study on hydrophobicity of 1-Rs

Fig. S13 The WCAs of 1-Oct and 1-Oct after standing for 30 minutes.

Fig. S14 The PXRD patterns (a), thermogravimetric analyses (b), WCAs and digital photograph (c) of 1-NH₂.

 H_2L-NH_2 (2-Amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid) was obtained through commercial purchase replaced H_2L as ligand to synthesize **1-NH**₂. The PXRD patterns demonstrate correct crystal structure and high phase purity of **1-NH**₂. The thermogravimetric analyses reflect the thermal stability of **1-NH**₂. The WCA shows the superhydrophilicity of **1-NH**₂.

Fig. S15 (a) The SEM and WCA images of s1-Oct. (b) The PXRD patterns of 1-Oct and s1-Oct.

SI-10 Analysis of 1-Oct load in PDMS/1-Oct@MS

Tab. S5 The average	and standard	deviation	of MS	of 1x1x1	cm ³	and	coated	MS	of 1x1x1	cm ³	with
PDMS or/and 1-Oct.											

Weight (mg) Sample	M _M	x _M	М _{РМ}	M _P	- Xp	SP	M _{POM}	M _{PO}	x _{PO}	S _{PO}	- x _o		
1	7.9		39.8	31.9									
2	7.4		43.1	35.7									
3	6.8		39.4	32.6	31.9	2.5							
4	8.6		38.5	29.9									
5	6.7		36.2	29.5							6.6		
6	6.9	/./					43.1	36.2			0.0		
7	8.1								49.3	41.2			
8	8.0						48.3	40.3	38.5	2.2			
9	7.3						44.1	36.8					
10	8.2						46.3	38.1					

 M_M , M_{PM} , M_P , M_{POM} , and M_{PO} , stand for the weight of MS, PDMS/MS, loaded PDMS, PDMS/1-Oct@MS, and loaded PDMS/1-Oct, respectively (mg). \bar{x}_M , \bar{x}_P , and \bar{x}_{PO} are the averages of MS, loaded PDMS, and loaded PDMS/1-Oct, respectively (mg); S_P and S_{PO} stand for the standard deviation values of loaded PDMS and loaded PDMS/1-Oct, respectively; \bar{x}_O (mg) is obtained by subtracting \bar{x}_{PO} from $\bar{x}_{P.}$.

 \overline{x} is the average value (mg); S is the standard deviation value (%); n stands for total number of samples; i stands for serial number of samples.

SI-11 Morphology characterization and composition analysis of PDMS/1-

Oct@MS

Fig. S16 (a) The hydrophobicity analysis of 1-Oct@MS. (b) The shedding of 1-Oct in 1-Oct@MS

after pressing. (c) The SEM images of 1-Oct@MS.

Fig. S17 The SEM images of MS (a and d), PDMS/MS (b and e), and PDMS/1-Oct@MS (c and f).

Fig. S18 EDS-mapping images of PDMS/1-Oct@MS.

Fig. S19 The PXRD patterns (a) and FTIR spectra (b) of 1-Oct, MS, PDMS/MS, and PDMS/1-

Oct@MS.

Fig. S20 EDS-mapping images of PDMS/1-Oct@MS after 50 cycles.

SI-12 Oil-water separation experiment

Before pumping

After pumping

Fig. 21 Water level of outlet before and after pumping.

SI-13 The influence of functional groups on the N_2 adsorption

Fig. S22 N_2 adsorption-desorption isotherms of 1, 1-NH₂, 1-Et, and 1-Oct at 77 K (The hollow sphere stands for adsorption and the solid sphere stands for desorption).

Fig. S23 Pore size distribution of 1-Et.

SI-14 ¹H NMR spectra

SI-15 References

A. B. Williams, P. T. Weiser, R. N. Hanson, J. R. Gunther and J. A. Katzenellenbogen, Synthesis of biphenyl proteomimetics as estrogen receptor-α coactivator binding inhibitors, *Org. Lett.*, 2009, **11**, 5370-5373.

2 Y. Peng, C. Zhu and Y. Cui, Synthesis, structure and property of one porous Zn(salen)-based metal-metallosalen framework, *Sci. China Chem.*, 2014, **57**, 107–113.

J. Xu, Y. Zhang, J. Zhang, Y. Li, B. Li, H. Qiu, P. Zhang and S. Yin, Constructing a triangular metallacycle with salen–Al and its application to a catalytic cyanosilylation reaction, *Chem. Commun.*, 2021, **57**, 10399-10402.

N.-X. Zhu, Z.-W. Wei, C.-X. Chen, D. Wang, C.-C. Cao, Q.-F. Qiu, J.-J. Jiang, H.-P. Wang and C.-Y. Su, Self-generation of surface roughness by low-surface-energy alkyl chains for highly stable superhydrophobic/superoleophilic MOFs with multiple functionalities, *Angew. Chem. Int. Ed.*, 2019, 58, 17033-17040.