Supporting Information

1 Experimental Section

1.1 Preparation of Acetate Ions-Intercalated Ni_{0.7}Co_{0.3}-LDH and other LDHs

Firstly, 174.2 mg (0.7 mmol) of nickel acetate tetrahydrate and 74.7 mg (0.3 mmol) of cobalt acetate tetrahydrate were dispersed into the 20 mL methanol, ultrasonic for 30 min to dissolve the metal salt completely. Then the solution was transferred into a 50 mL Teflon lining sealed in a stainless-steel shell and heated at 120 °C for 72 h. After cooling to room temperature, the precipitate was washed by centrifugation with water and ethanol for 3 times separately, 8000 rpm for 5 mins per time, to remove unreacted metal salts and unstable intercalated acetate ions. The product was dried in a vacuum oven at 60 °C for 24 h and collected by grinding, which is named Ni_{0.7}Co_{0.3}-LDH. In order to compare the experiments, the total amount of metal salts was kept constant at 1 mmol, and other reaction conditions were kept unchanged, only the molar ratio of nickel acetate and cobalt acetate was changed for the synthesis of Ni-LDH, Ni_{0.3}Co_{0.7}-LDH, and Co-LDH.

1.2 Material characterization

The morphology was observed through a scanning electron microscope (SEM, Hitachi, Regulus 8200) and transmission electron microscope (TEM, JEOL, JEM-2100Plus). Crystalline structure was detected by X-ray diffraction (XRD, Bruker, D2 PHASER). The chemical composition and chemical state of synthesized samples were estimated using Fourier transform infrared (FTIR, Shimadzu IRTracer-100) spectroscopy and X-ray photoelectron spectroscopy (XPS, PerkinElmer PHI-5700 ESCA System). The particle pore size distribution and specific surface area were calculated by the N₂ adsorption-desorption isotherms at 77 K (Quantachrome IQ2) using the Brunauer-Emmett-Teller (BET) and non-local density functional theory (NLDFT) methods. Thermal stability was evaluated throuth the thermogravimetric analysis (TGA) conducted on a thermal analysis instrument (Netzsch, TG-209F3) over temperature ranging from RT to 800 °C under a nitrogen atmosphere with a heating rate of 5 °C min⁻¹.

1.3 Electrochemical Measurements

Electrochemical measurements were conducted by a CHI660E electrochemical workstation. The CV, GCD, and EIS of samples were tested in the three-electrode system with a Hg/HgO reference electrode, platinum sheet counter electrode, and 6M KOH electrolyte. EIS measurements were carried out from 0.01 Hz to 100 kHz of the frequency range. Meanwhile, the as-prepared 75 wt.% NiCo-LDH as active materials, 20 wt.% conductive carbon black, and 5 wt.% polytetrafluoroethylene (PTFE) were uniformly mixed for the preparation of the working electrode, respectively. The loading mass of every electrode is 2.0 mg. The asymmetric supercapacitors (ASCs) were assembled using Ni_{0.7}Co_{0.3}-LDH electrode as positive electrode and activated carbon as negative electrode with 6M KOH solution electrolyte. The gravimetric specific capacitance (C_s , F g⁻¹), power density (P, W kg⁻¹) and energy density (E, Wh kg⁻¹) of Ni_{0.7}Co_{0.3}-LDH //AC were calculated based on the equation:

$$C_s = \frac{it}{m\Delta V} \tag{1}$$

$$E = \frac{1}{2}C_{s}(\Delta V)^{2} = \frac{i\int Vdt}{M*3.6}$$
 (2)

$$P = \frac{E}{t} * 3600 \tag{3}$$

Where *i* and *t* are the discharge current and discharge time, m means the loading mass of cathode active material. The ΔV represents the charging-discharging potential window. *M* represents the total active material loading mass of the positive electrode and negative electrode.

1.4 DFT calculation

Generalized gradient approximation with the Perdew-Burke-Ernzerhof functional (GGA-PBE) was used for the exchange-correlation energy calculations. The commercial version of the DMol3 program and spin-polarized calculations were applied to calculate the ionization energy. The commercial version of the CASTEP program and spin-polarized calculations were used for the calculation of the electron

density difference map and partial density of states (PDOS). The Brillouin zone was sampled by a Monkhorst-Pack grid as the Γ -point for all systems with $1 \times 1 \times 1$ k-points. The self-consistent field (SCF) convergence for each electronic energy was set as 1.0 $\times 10^{-5}$ Ha, 0.002 Ha Å⁻¹ for force and 0.005 Å for displacement.

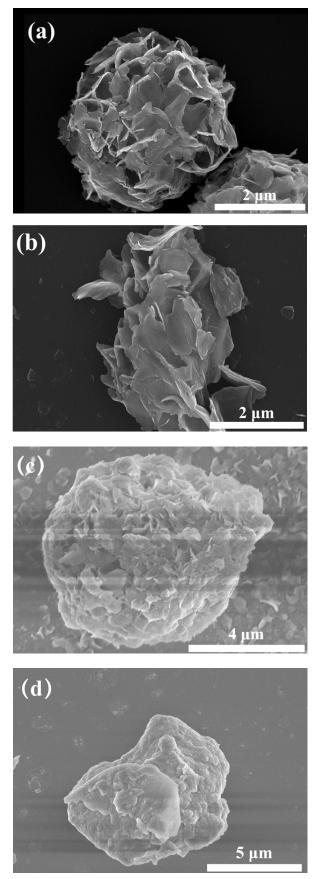


Fig. S1. SEM images of $Ni_{0.7}Co_{0.3}$ -LDH synthesized in (a) 24 h and (b) 48 h. SEM images of synthesized (c) Ni-LDH and (d) Co-LDH.

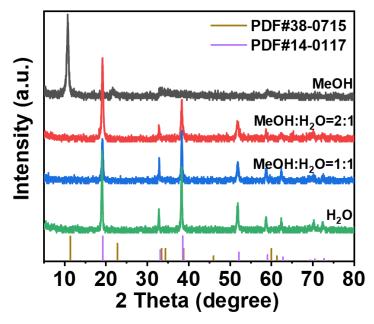


Fig. S2. XRD patterns of $Ni_{0.7}Co_{0.3}$ -LDH synthesized in different solvents.

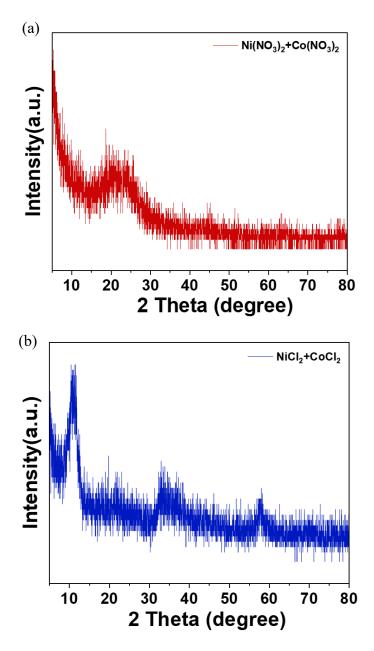


Fig. S3. XRD patterns of Ni_{0.7}Co_{0.3}-LDH synthesized by (a) nitrate and (b) chloride.

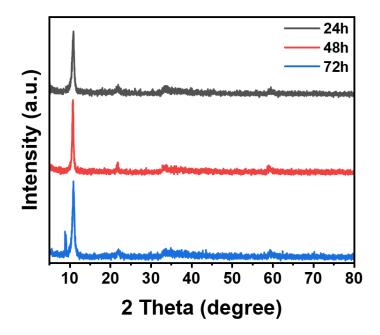


Fig. S4. XRD patterns of $Ni_{0.7}Co_{0.3}$ -LDHs synthesized in different time.

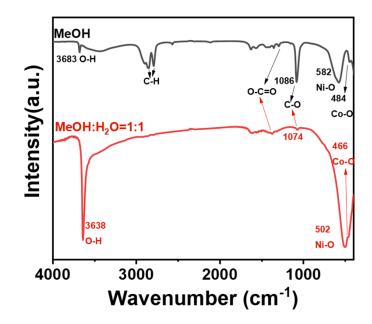


Fig. S5. FT-IR spectra of Ni_{0.7}Co_{0.3}-LDHs synthesized in different solvents.

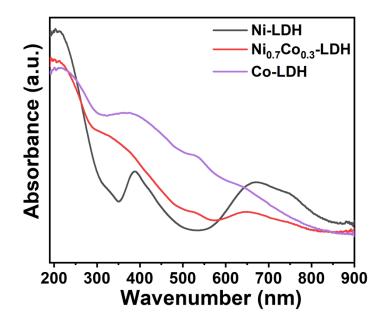


Fig. S6. UV-vis spectra of NiCo-LDHs.

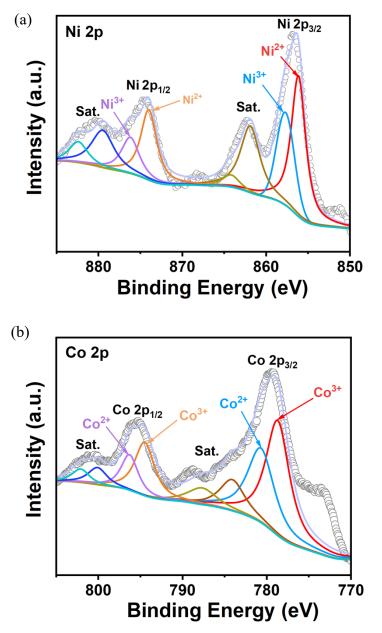


Fig. S7. XPS profiles of (a) Ni 2p for Ni-LDH and (b) Co 2p for Co-LDH.

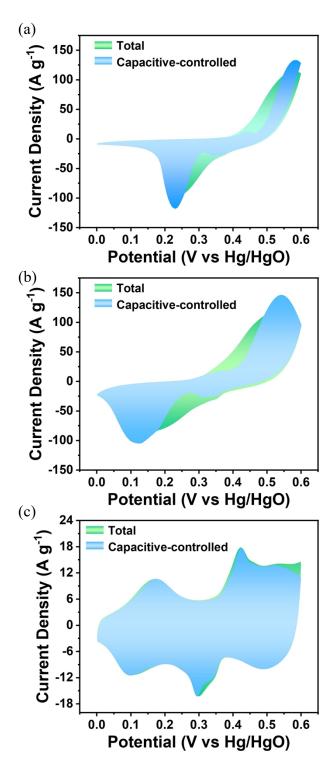


Fig. S8. CV separation of capacitive-controlled capacitance for (a) Ni-LDH, (b) $Ni_{0.7}Co_{0.3}$ -LDH, and (c) Co-LDH at 30 mV s⁻¹.

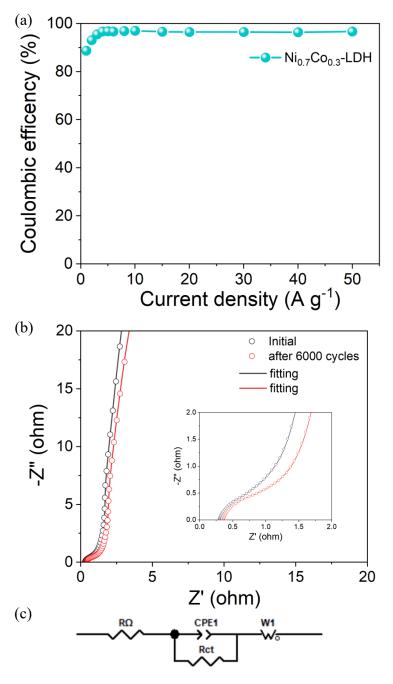


Fig. S9. (a) Coulombic efficiency of $Ni_{0.7}Co_{0.3}$ -LDH at various current densities. (b) EIS plots of $Ni_{0.7}Co_{0.3}$ -LDH electrode at initial state and after 6000 cycles. (c) Equivalent circuit of EIS fitting.

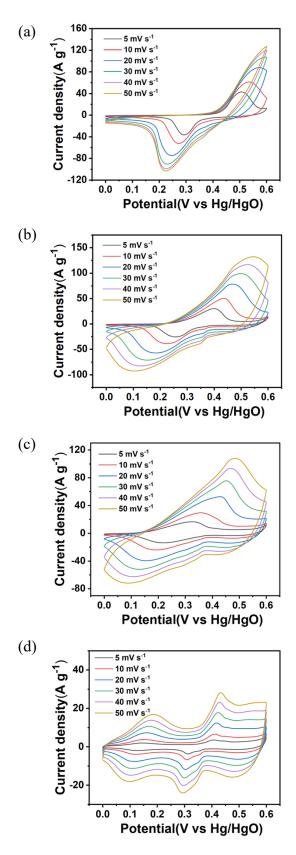


Fig. S10. CV curves of (a) Ni-LDH, (b) $Ni_{0.5}Co_{0.5}$ -LDH, (c) $Ni_{0.3}Co_{0.7}$ -LDH, and (d) Co-LDH from scan rates of 5 to 50 mV s⁻¹.

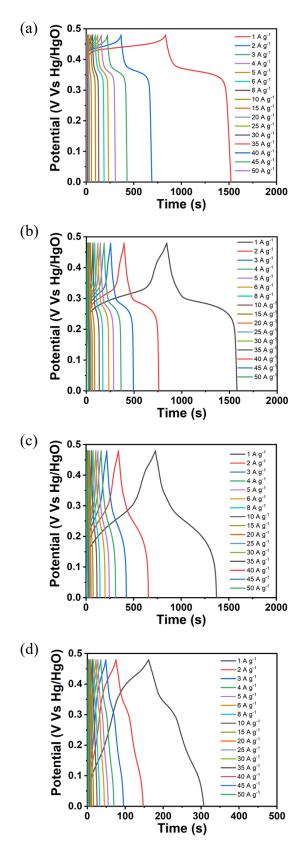


Fig. S11. GCD curves of (a) Ni-LDH, (b) $Ni_{0.5}Co_{0.5}$ -LDH, (c) $Ni_{0.3}Co_{0.7}$ -LDH, and (d) Co-LDH from current densities of 1 to 50 A g⁻¹.

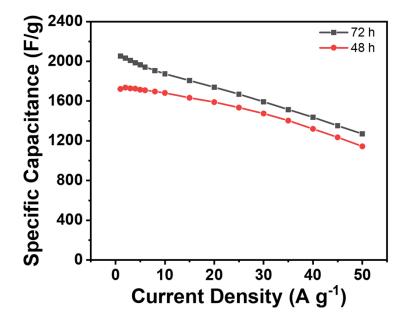


Fig. S12. Rate performances of $Ni_{0.7}Co_{0.3}$ -LDHs synthesized in different time.

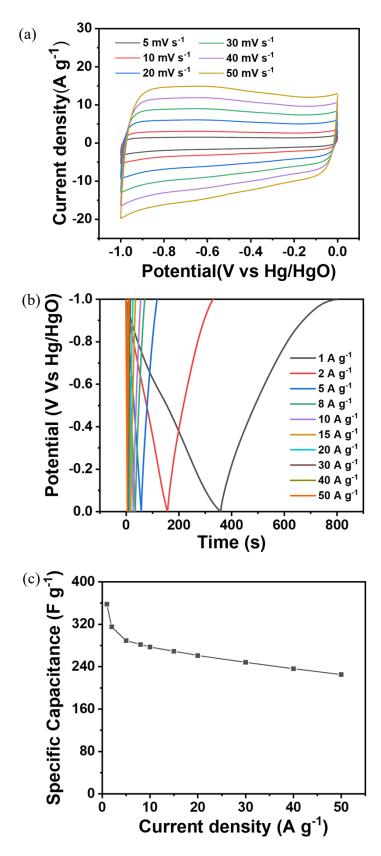


Fig. S13. (a) CV curves from 5 to 50 mV s⁻¹, (b) GCD profiles from 1 to 50 A g^{-1,} and (c) rate performance of AC.

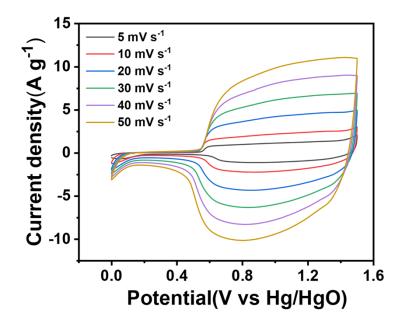


Fig. S14. CV curves of $Ni_{0.7}Co_{0.3}$ -LDH//AC ASC.

Table S1. Relative elements ratio of Ni^{2+}/Ni^{3+} and Co^{2+}/Co^{3+} for Ni-LDH, $Ni_{0.7}Co_{0.3}$ -LDH and Co-LDH.

Ni-	L	DI	H:
T . T			

element	Ni 2p 3/2	Ni 2p 1/2	Co 2p 3/2	Co 2p 1/2
+2	63.0%	63.8%	-	-
+3	37.0%	36.2%	-	-

$Ni_{0.7}Co_{0.3}$ -LDH:

valence	Ni 2p 3/2	Ni 2p 1/2	Co 2p 3/2	Co 2p 1/2
+2	77.6%	77.9%	38.6%	39.8%
+3	22.4%	22.1%	61.4%	60.2%

Co-LDH:

valence	Ni 2p 3/2	Ni 2p 1/2	Co 2p 3/2	Co 2p 1/2
+2	-	-	42.3%	42.6%
+3	-	-	57.7%	57.4%

	Internal resistance (R_{Ω}, Ω)	Contact resistance (R_{ct}, Ω)
Ni _{0.7} Co _{0.3} -LDH	0.3014	0.0908
Ni-LDH	0.3503	0.1557
Ni _{0.5} Co _{0.5} -LDH	0.3431	0.1335
Ni _{0.3} Co _{0.7} -LDH	0.3653	0.1215
Co-LDH	0.3453	0.1351

Table S2. Internal resistance and contact resistance of NiCo-LDHs.

Table S3. Comparison of specific capacitance and cyclic performance of $Ni_{0.7}Co_{0.3}$ -LDH and other reported nickel-based materials.

Sample	Specific capacitance	Rate performance	Cyclic performance (electrode)	Cyclic performance (device)	Reference
Ni _{0.7} Co _{0.3} -LDH	2052 F g^{-1} at 1 A g^{-1}	1256 F g^{-1} at 50 A g^{-1}	72% after 6000 cycles	90.8% after 5000 cycles	This article
Ni ₃ Si ₂ /NiOOH/G	1193 F g ⁻¹ at 1 A g ⁻¹	$350 \text{ F g}^{-1} \text{ at}$ 50 A g^{-1}	-	90.7% after 6000 cycles	Nano-Micro Lett., 2021, 13, 2
Ni _x B/Graphene	1822 F g^{-1} at 1 A g^{-1}	1179 F g^{-1} at 20 A g $^{-1}$	97.5% after 2000 cycles	96% after 2000 cycles	ACS Nano, 2019, 13, 9376-9385
NiCo ₂ S ₄ -G	1036 F g^{-1} at 1 A g^{-1}	705 F g^{-1} at 20 A g^{-1}	87.0% after 2000 cycles	80% after 10000 cycles	Nat. Commun., 2015, 6, 6694
CoNi ₂ S ₄ -G-MoSe ₂	1141 F g ⁻¹ at 1 A g ⁻¹	$580 \text{ F g}^{-1} \text{ at}$ 20 A g ⁻¹	108% after 2000 cycles	_	Adv. Energy Mater., 2016, 6, 1600341
CoP/NiCoP	1106 F g ⁻¹ at 1 A g ⁻¹	600 F g ⁻¹ at 100 A g ⁻¹	100% after 1000 cycles	95% after 2000 cycles	Adv. Energy Mater., 2019, 9, 1901213
Ni-Co-Al-LDH	748 F g ⁻¹ at 1 A g ⁻¹	570 F g^{-1} at 20 A g^{-1}	80% after 5000 cycles	97.8% after 10000 cycles	ACS Energy Lett., 2018, 3, 132–140
NiO-Co ₃ O ₄ -GQDs	1361 F g ⁻¹ at 1 A g ⁻¹	753 F g^{-1} at 30 A g^{-1}	76.4% after 3000 cycles	-	J. Mater. Chem. A, 2019, 7, 7800
CoNi- Pyrophosphates	1259 F g ⁻¹ at 1.5 A g ⁻¹	656 F g^{-1} at 30 A g^{-1}	88.9% after 1000 cycles	80% after 2000 cycles	ACS Appl. Mater., Interfaces, 2016, 8, 23114-

					23121
Ni-nCPs	$1066.9 F g^{-1} at 1 A g^{-1}$	842.7 F g^{-1} at 10 A g_{-1}	58.6% after 3500 cycles	46.4% after 4000 cycles	Nanoscale, 2021, 13, 11112– 11119

Sample	Method	synthesis condition	Reference
Acetate ions- intercalated Ni _{0.7} Co _{0.3} .LDH	Solvothermal	120°C, 72h in 20 mL methanol	This work
P, Se-NiCo LDH	Hydrothermal	120°C, 3h in 35 mL DI water	Mater. Res. Lett. 2022, 10, 9, 593– 601
Ni-Co-Al-LDH	Hydrothermal	150°C, 48h in 50 mL DI water	ACS Energy Lett., 2018, 3, 132–140
Mo-doped	Microwave	150°C, 1 h in 30 ml	Small, 2023,
NiCo-LDH	method	DI water	2306382
Mn-doped Ni(OH) ₂	Hydrothermal	100°C, 2h in 60 mL DI water	Journal of Energy Chemistry, 2021, 61, 497–506
NiCo- DH@OAC	Hydrothermal	180°C, 12h in 20 mL DI water and 20 mL ethanol	Chemical Engineering Journal, 2023, 454, 140280
NiCo-LDH	Solvothermal	180°C, 12h in 4 mL DI water and 32 mL ethanol	Journal of Colloid and Interface Science, 2022, 1120–1127
NiCo LDH/Co(OH) ₂	Hydrothermal	90°C, 6h in 70 mL DI water	Chemical Engineering Journal, 2021, 403, 126325

Table S4. Comparison of synthesis methods between $Ni_{0.7}Co_{0.3}$ -LDH and other reported nickel-based materials.

			Journal of
	Hydrothermal	160°C, 6h in 60 mL	Hazardous
NiFeAl LDHs		DI water	Materials, 2021,
			404, 124113
			Chemical
NiCo-OOH	Hydrothermal	60°C, 12h in 100	Engineering
		mL DI water	Journal, 2023, 476,
			146638