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Figure S1.XRD of VO2/NVO1, VO2/NVO2, VO2/NVO3 and VO2/NVO4.
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Figure S2. SEM and corresponding EDS mapping for VO2/NVO3.

Figure S3. SEM images of (a) NH4V4O10, (b) VO2/NVO1, (c) VO2/NVO2 and

(d) VO2/NVO4.



Figure S4. Raman spectrum of NH4V4O10 and VO2/NVO3.

Figure S5. (a-c) TG curves of VO2/NVO1, VO2/NVO2 and VO2/NVO4 materials.



Figure S6. (a) XPS spectrum and (b) N 1s high-resolution of NH4V4O10, VO2/NVO1, 

VO2/NVO2, VO2/NVO3 and VO2/NVO4 materials.

Figure S7. The first five CV curves of NH4V4O10 electrodes at 0.1 mV s-1.



Figure S8. Rate performance of NH4V4O10, VO2/NVO1, VO2/NVO2, VO2/NVO3 and 

VO2/NVO4 electrodes.

Figure S9. Cycle performance of NH4V4O10 and VO2/NVO3 electrodes at 0.2 A g-1.



Figure S10. (a) Rate performance at various current density and (b) cycle performance 

at 5 Ag-1 of the VO2/NVO3 electrode with high loading mass of 6 mg cm-2.

Figure S11. EIS curves of NH4V4O10, VO2/NVO1, VO2/NVO2, VO2/NVO3 and 

VO2/NVO4 electrodes.

GITT: The battery was discharged or charged for 10 min at the current density of 

0.1A g-1, followed by relaxation for 60 min to back to equilibrium. And the Zn2+ 



diffusion coefficient ( ) was calculated by the galvanostatic and intermittent 
𝐷
𝑍𝑛2 +

titration technique (GITT), which was based on the following equation:
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Where  represents current pulse time, mB is the mass of the active material. MB is 

the molecular weight (g mol-1), VM is the molar volume (cm3 mol-1) and S delegates the 

surface area of electrode. The ΔE and ΔEs correspond to the voltage change of 

constant current pulse and the steady-state voltage change of the current pulse, 

respectively.

Figure S12. (a) Schematic illustration of partial enlarged GITT curve and (b) the 

linear relationship between E and τ1/2 for VO2/NVO3 electrode.



Figure S13. The TEM image of VO2/NVO3 after 3 cycles



Figure S14. XRD pattern of VO2/NVO3 electrode at 0.2 V after suffering 6 cycles.

Figure S15. SEM image of VO2/NVO3 electrode at 0.2 V after suffering 6 cycles.



Figure S16. (a-d) SEM image of VO2/NVO3 electrode at various charge/discharge 

state after different cycles.

Figure S17. (a) XRD patteren and (b )SEM images of VO2/NVO3 electrode after 

1000 cycles at the current density of 5 A g-1.



Figure S18. SEM image of VO2/NVO3/CG electrode.

Figure S19. (a) Rate performance and (b) cycle performance at 0.1A g-1 of 

VO2/NVO3/CNT, VO2/NVO3/CG and VO2/NVO3/GN membrane electrodes.



Figure S20. GITT curves and evaluated Zn2+ diffusion coefficient of VO2/NVO3/CG 

electrode.



Table S1. The electrochemical property comparison of VO2/NVO3 and reported 

vanadium based materials.

Cathode materrials
Specific 

capacity

Rate 

performance

Power 

density

Energy 

density
Ref.

NH4V4O10-x/rGO
391 mAh g-1 at 

1.0 A g-1

187 mAh g-1 

at 20 A g-1

657.2 W 

kg-1

260 Wh 

kg-1
1

V2O5⋅nH2O/PPy
383 mAh g-1 at 

0.1 A g-1

281 mAh g-1 

at 2 A g-1

95 W kg-

1

358 Wh 

kg-1
2

V2O5⋅nH2O/rGO
465 mAh g-1 at 

0.1 A g-1

230 mAh g-1 

at 15 A g-1

67 W kg-

1

312 Wh 

kg-1
3

H11Al2V6O23.2

416.3 mAh g-1 

at 0.3 A g-1

138.9 mAh 

g-1 at 5 A g-1

220.1 W 

kg-1

307.4 

Wh kg-1
4

K0.43(NH4)0.12V2O5–δ

373.7 mAh g-1 

at 0.5 A g-1

216.8 mAh 

g-1 at 10 A 

g-1

71.1 W 

kg-1

269 Wh 

kg-1
5

NH4V4O10-300 334 mAh g-1 at 
0.5 A g-1

210 mAh g-1 

at 10 A g-1

209 W 

kg-1

245 Wh 
kg-1 6

Cs0.24V2O5⋅0.19H2O
400 mAh g-1 at 

0.2 A g-1

224 mAh g-1 

at 20 A g-1

147 W 

kg-1

294 Wh 

kg-1
7

NH4V4O10/C3N4
391.6 mAh g-1 
at 1.0 A g-1

194.7 mAh 

g-1 at 20 A 

g-1

348.6 W 

kg-1

289.3 
Wh kg-1 8

Od-VO2·xH2O/PPy 346.5 mAh g-1 
at 0.1 A g-1

206 mAh g-1 

at 10 A g-1

67.6 W 

kg-1

223 Wh 

kg-1
9

VO2/NVO3
493.98 mAh g-

1 at 0.1 A g-1

258.60 mAh 

g-1 at 10 A 

g−1

72.10, 

5938.85 

W kg-1

356.34, 

155.40 

Wh kg-1

This 

work



Table S2 The comparison of Zn2+ diffusion coefficient of VO2/NVO3 and previous 

reported V-based cathode materials.

V-based cathode materials Zn2+ diffusion coefficient (cm2 s-1) References

NVO-300/CC 10–12 ~ 10–10 10

Ti-NVO 10–11 ~ 10–10 11

KNVO/CC 10–13 ~ 10–11 12

Na-NVO 10–9.2 ~ 10–10 13

V2O5·nH2O 10–8 ~ 10–9 14

PANI0.22·V2O5·0.88H2O 10–8 ~ 10–10 15

Ca0.24V2O5 10–8 ~ 10–10 16

VO2/NVO3 10–10.1 ~ 10–9.6 This work

VO2/NVO3/CG 10–9.8 ~ 10–9.4 This work
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