Electronic Supplementary Information (ESI) for AIE-active cyclometalated iridium(III) complexes for the highly efficient picric acid detection in aqueous media

Monosh Rabha, Deikrisha Lyngdoh Lyngkhoi, Sumit Kumar Patra, and Snehadrinarayan

Khatua*

Department of Chemistry, North-Eastern Hill University, Shillong, Meghalaya 793022, India

*Email: <u>snehadri@gmail.com</u>; <u>skhatua@nehu.ac.in</u>

	Page No.
List of compounds and Synthetic Schemes	S2
NMR spectra of Ligand L	S3
HRMS spectra of Ligand L	S 4
NMR spectra of 1[PF6]	S4-S5
HRMS spectra of 1[PF6]	S 6
NMR spectra of 2[PF6]	S6-7
HRMS spectra of 2[PF6]	S 8
NMR spectra of 3[PF6]	S8-S 9
ESI-HRMS spectra of 3[PF6	S 10
Cyclic voltammogram of [Ir(ppy) ₂ (phen)](PF ₆)	S 10
UV-vis and PL spectra of compounds and \mathbf{L} with water	S11-S12
Picric acid detection in UV-vis spectroscopy	S13-S15
Crystal data and selected bond lengths and angles	S16-S21
of complexes 1[PF6], 2[PF6], and 3[PF6]	
Detection limit, quantum yield, electrochemistry, TCSPC	S22-S30
and computational studies	
Cartesian coordinates of the complexes 1, 2 and 3	S31-S33
References	S34
	List of compounds and Synthetic Schemes NMR spectra of Ligand L HRMS spectra of Ligand L NMR spectra of 1[PF6] HRMS spectra of 1[PF6] NMR spectra of 2[PF6] HRMS spectra of 2[PF6] HRMS spectra of 3[PF6] ESI-HRMS spectra of 3[PF6 Cyclic voltammogram of [Ir(ppy) ₂ (phen)](PF6) UV-vis and PL spectra of compounds and L with water Picric acid detection in UV-vis spectroscopy Crystal data and selected bond lengths and angles of complexes 1[PF6], 2[PF6], and 3[PF6] Detection limit, quantum yield, electrochemistry, TCSPC and computational studies Cartesian coordinates of the complexes 1, 2 and 3 References

Table of Contents

Chart S1. Synthetic schemes and list of compounds.

8.85 8.84 8.84 8.87 8.27 7.63 7.63 7.63 7.61 7.51 7.52 7.75 7.70 7.70 7.00

Fig. S2. ¹³C NMR spectrum of L in CDCl₃.

Fig. S3. HRMS spectrum of L in methanol.

Fig. S4. ¹H NMR spectrum of 1[PF₆] in CD₃CN.

-168.4 154.5 154.5 154.5 154.5 154.5 135.6

Fig. S5. ¹³C NMR spectrum of 1[PF6] in CD₃CN.

Fig. S6. Partial ¹H-¹H COSY NMR spectrum of **1**[**PF**₆] in CD₃CN.

Fig. S7. HRMS spectrum of **1**[**PF**₆] in CH₃CN. *inset*: isotopic distribution of mass spectrum of **1**[**PF**₆] of experimentally obtained (black line), simulated (red line).

Fig. S8. ¹H NMR spectrum of 2[PF₆] in CD₃CN.

Fig. S9. ¹³C NMR spectrum of 2[PF6] in CD₃CN.

8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 δ(ppm)

Fig. S10. Partial ¹H-¹HCOSY NMR spectrum of 2[PF₆] in CD₃CN.

Fig. S11. HRMS spectrum of 2[PF₆] in CH₃CN. *Inset*: isotopic distribution of mass spectrum of 2[PF₆] of experimentally obtained (black line), simulated (red line).

Fig. S12.¹HNMR spectrum of **3**[**PF**₆] in CD₃CN.

Fig. S13. ¹³C NMR spectrum of 3[PF6] in CD₃CN.

Fig. S14. Partial ¹H-¹HCOSY NMR spectrum of 3[PF₆] in CD₃CN.

Fig. S15. HRMS spectrum of 3[PF₆] in CH₃CN. *Inset*: isotopic distribution of mass spectrum of 3[PF₆] of experimentally obtained (black line), simulated (red line).

Fig. S16. Cyclic voltammogram of $[Ir(ppy)_2(phen)](PF_6)$, with 0.1 M Bu₄NClO₄ in dry and degassed CH₃CN versus the Fc/Fc⁺ couple.

Fig. S17. UV-vis spectra of 1[PF6] in CH₃CN with different water (0-95%).

Fig. S18. UV-vis spectra of 2[PF6] in CH₃CN with different water (0-95%).

Fig. S19. UV-vis spectra of 3[PF₆] in CH₃CN with different water (0-95%).

Fig. S20. PL spectra of compound (a) 1 (b) 2 (c) 3 and (d) $[Ir(ppy)_2(phen)]PF_6$ in CH₃CN and 90% water-CH₃CN mixture.

Fig. S21. (a) UV-vis spectrum of L (25 μ M), and (b) PL spectrum of L in methanol with different water (0-95%).

Fig. S22. (a) UV-vis selectivity of $1[PF_6]$ (10 µM) in the presence of various NACs (10 µM) in 90% aqueous acetonitrile solution at room temperature, (b) UV-vis titration of $1[PF_6]$ (10 µM) with PA (0-1 equiv.).

Fig. S23. (a) UV-vis selectivity of $2[PF_6](10 \ \mu\text{M})$ in the presence of various NACs (10 μM) in 90% aqueous acetonitrile solution at room temperature, (b) UV-vis titration of $2[PF_6]$ (10 μM) with PA (0-1 equiv.).

Fig. S24. (a) UV-vis selectivity of $3[PF_6]$ (10 µM) in the presence of various NACs (10 µM) in 90% aqueous acetonitrile solution at room temperature, (b) UV-vis titration of $3[PF_6]$ (10 µM) with PA (0-1 equiv.).

Fig. S25. (a) A PL titration of **1**[**PF**₆] (10 μ M) with PA (0–2.2 μ M) for the calculation of the limit of detection. (b) A calibration curve over a PA concentration ranges from 0–2.2 μ M.

Fig. S26. (a) A PL titration of **2**[**PF**₆] (10 μ M) with PA (0–1.48 μ M) for the calculation of the limit of detection. (b) A calibration curve over a PA concentration ranges from 0–1.48 μ M.

Fig. S27. (a) A PL titration of **3**[**PF**₆] (10 μ M) with PA (0–0.98 μ M) for the calculation of the limit of detection. (b) A calibration curve over a PA concentration ranges from 0–0.98 μ M.

Fig. S28. PL titration of $[Ir(ppy)_2(phen)]PF_6 (10 \ \mu M)$ with PA (0–10 μM) $[\lambda_{ex} = 358 \ nm, \lambda_{em} = 562 \ nm].$

Fig. S29. Normalized UV–vis spectrum of PA and normalized emission spectrum of compound (a) **1** (b) **2** (c) **3** in 90% aqueous media.

Empirical formula	$C_{46}H_{32}F_6IrN_4PS_2$	
Formula weight	1042.04	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>C</i> 2/c	
Unit cell dimensions	a = 24.115(5) Å	<i>α</i> = 90°.
	b = 20.342(5) Å	β=103.492(12)°.
	c = 17.437(4) Å	$\gamma = 90^{\circ}$.
Volume	8318(3) Å ³	
Z	8	
Density (calculated)	1.664 Mg/m ³	
Absorption coefficient	3.415 mm ⁻¹	
F(000)	4112	
Crystal size	0.160 x 0.150 x 0.080 mm	1 ³
Theta range for data collection	1.325 to 28.451°.	
Index ranges	-31<=h<=32, -27<=k<=27	7, -23<=l<=23
Reflections collected	109257	
Independent reflections	10437 [<i>R</i> (int) = 0.0950]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.789 and 0.612	
Refinement method	Full-matrix least-squares of	on F^2
Data / restraints / parameters	10437 / 0 / 542	
Goodness-of-fit on F ²	1.083	
Final R indices [I>2sigma(I)] ^a	R1 = 0.0348, wR2 = 0.093	5
R indices (all data) ^a	R1 = 0.0555, wR2 = 0.115	50
Largest diff. peak and hole	0.728 and -1.397 e.Å ⁻³	

 Table S1. Crystal data and structure refinement for 1[PF6].

^a $R1 = \Sigma ||F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|; wR2 = \{\Sigma [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \Sigma w(F_{\rm o}^2)^2\}^{1/2}$

	Bon	d lengths (Å)	
C(35)-Ir(1)	2.013(4)	C(46)-Ir(1)	2.013(4)
N(1)-Ir(1)	2.155(3)	N(2)-Ir(1)	2.151(3)
N(3)-Ir(1)	2.048(3)	N(4)-Ir(1)	2.051(3)
	Boi	nd angles (°)	
C(35)-Ir(1)-C(46)	90.69(16)	C(35)-Ir(1)-N(3)	80.07(15)
C(46)-Ir(1)-N(3)	96.60(16)	C(35)-Ir(1)-N(4)	98.09(15)
C(46)-Ir(1)-N(4)	79.92(16)	N(3)-Ir(1)-N(4)	176.07(13)
C(35)-Ir(1)-N(2)	172.98(14)	C(46)-Ir(1)-N(2)	96.05(15)
N(3)-Ir(1)-N(2)	97.18(13)	N(4)-Ir(1)-N(2)	85.04(13)
C(35)-Ir(1)-N(1)	96.48(14)	C(46)-Ir(1)-N(1)	172.82(14)
N(3)-Ir(1)-N(1)	84.94(13)	N(4)-Ir(1)-N(1)	98.74(14)
N(2)-Ir(1)-N(1)	76.79(12)		

Table S2. Selected bond lengths (Å) and angles (°) around the Ir(III) in complex 1[PF₆].

Empirical formula	$C_{92}H_{56}F_{20}Ir_2N_8P_2S_4$	
Formula weight	2228.02	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 13.6273(9) Å	$\alpha = 64.763(2)^{\circ}.$
	b = 18.5596(12) Å	β= 80.330(2)°.
	c = 19.5788(11) Å	$\gamma = 80.923(2)^{\circ}.$
Volume	4394.9(5) Å ³	
Z	2	
Density (calculated)	1.684 Mg/m^3	
Absorption coefficient	3.250 mm ⁻¹	
F(000)	2184	
Crystal size	0.720 x 0.210 x 0.180	mm ³
Theta range for data collection	1.996 to 28.370°.	
Index ranges	-18<=h<=18, -24<=k<	=24, -26<=l<=26
Reflections collected	165890	
Independent reflections	21908 [R(int) = 0.0608]	8]
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from e	equivalents
Max. and min. transmission	0.592 and 0.203	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	21908 / 0 / 1153	
Goodness-of-fit on F ²	1.133	
Final R indices [I>2sigma(I)] ^a	R1 = 0.0436, wR2 = 0.	0933
R indices (all data) ^a	R1 = 0.0618, wR2 = 0.	1056
Largest diff. peak and hole	2.295 and -1.117 e.Å ⁻³	

Table S3. Crystal data and structure refinement for complex 2[PF6].

^a $R1 = \Sigma ||F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|; wR2 = \{\Sigma [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \Sigma w(F_{\rm o}^2)^2\}^{1/2}$

	Bond lengths	(Å)	
C(35)-Ir(1)	2.004(6)	C(46)-Ir(1)	1.998(6)
N(1)-Ir(1)	2.135(4)	N(2)-Ir(1)	2.140(4)
N(3)-Ir(1)	2.043(4)	N(4)-Ir(1)	2.044(4)
C(81)-Ir(2)	2.012(4)	C(92)-Ir(2)	2.009(4)
N(5)-Ir(2)	2.137(3)	N(6)-Ir(2)	2.136(4)
N(7)-Ir(2)	2.035(4)	N(8)-Ir(2)	2.047(4)
	Bond angles	(°)	
C(46)-Ir(1)-C(35)	93.3(2)	C(46)-Ir(1)-N(3)	96.7(2)
C(35)-Ir(1)-N(3)	80.5(2)	C(46)-Ir(1)-N(4)	80.3(2)
C(35)-Ir(1)-N(4)	93.3(2)	N(3)-Ir(1)-N(4)	172.96(17)
C(46)-Ir(1)-N(1)	171.3(2)	C(35)-Ir(1)-N(1)	95.22(19)
N(3)-Ir(1)-N(1)	86.47(15)	N(4)-Ir(1)-N(1)	97.40(16)
C(46)-Ir(1)-N(2)	94.1(2)	C(35)-Ir(1)-N(2)	172.3(2)
N(3)-Ir(1)-N(2)	96.64(17)	N(4)-Ir(1)-N(2)	89.96(17)
N(1)-Ir(1)-N(2)	77.43(15)	C(92)-Ir(2)-C(81)	89.19(16)
C(92)-Ir(2)-N(7)	93.01(18)	C(81)-Ir(2)-N(7)	80.54(18)
C(92)-Ir(2)-N(8)	80.36(19)	C(81)-Ir(2)-N(8)	95.11(19)
N(7)-Ir(2)-N(8)	172.17(15)	C(92)-Ir(2)-N(6)	97.33(15)
C(81)-Ir(2)-N(6)	173.31(15)	N(7)-Ir(2)-N(6)	97.57(15)
N(8)-Ir(2)-N(6)	87.47(16)	C(92)-Ir(2)-N(5)	174.29(15)
C(81)-Ir(2)-N(5)	96.42(15)	N(7)-Ir(2)-N(5)	88.93(15)
N(8)-Ir(2)-N(5)	98.06(16)	N(6)-Ir(2)-N(5)	77.08(13)

Table S4. Selected bond lengths (Å) and angles (°) around the Ir(III) in complex 2[PF₆].

Empirical formula	$C_{55}H_{38}Cl_2F_6IrN_4PS_2$	
Formula weight	1227.08	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 21/n	
Unit cell dimensions	a = 11.5156(6) Å	<i>α</i> = 90°.
	<i>b</i> = 15.6986(8) Å	β=100.737(2)°.
	c = 27.5367(13) Å	$\gamma = 90^{\circ}$.
Volume	4890.9(4) Å ³	
Z	4	
Density (calculated)	1.666 Mg/m ³	
Absorption coefficient	3.024 mm ⁻¹	
F(000)	2432	
Crystal size	0.180 x 0.120 x 0.100 mm	n^3
Theta range for data collection	1.500 to 28.522°.	
Index ranges	-15<=h<=15, -20<=k<=20	0, -36<=l<=36
Reflections collected	50197	
Independent reflections	12252 [<i>R</i> (int) = 0.0680]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equi	valents
Max. and min. transmission	0.746 and 0.343	
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	12252 / 0 / 640	
Goodness-of-fit on F ²	1.064	
Final R indices [<i>I</i> >2sigma(<i>I</i>)] ^a	R1 = 0.0433, wR2 = 0.102	30
R indices (all data) ^a	R1 = 0.0743, wR2 = 0.124	40
Largest diff. peak and hole	0.892 and -0.931 e.Å $^{\text{-3}}$	

Table S5. Crystal data and structure refinement for complex 3[PF6] • CH2Cl2.

^a $R1 = \Sigma ||F_{\rm o}| - |F_{\rm c}|| / \Sigma |F_{\rm o}|; wR2 = \{\Sigma [w(F_{\rm o}^2 - F_{\rm c}^2)^2] / \Sigma w(F_{\rm o}^2)^2\}^{1/2}.$

	Bone	d lengths (Å)	
C(39)-Ir(1)	2.002(5)	C(54)-Ir(1)	1.996(5)
N(1)-Ir(1)	2.154(4)	N(2)-Ir(1)	2.206(4)
N(3)-Ir(1)	2.087(4)	N(4)-Ir(1)	2.084(4)
	Bor	nd angles (°)	
C(54)-Ir(1)-C(39)	91.8(2)	C(54)-Ir(1)-N(4)	79.91(18)
C(39)-Ir(1)-N(4)	94.16(18)	C(54)-Ir(1)-N(3)	94.36(18)
C(39)-Ir(1)-N(3)	79.90(19)	N(4)-Ir(1)-N(3)	171.68(14)
C(54)-Ir(1)-N(1)	170.71(16)	C(39)-Ir(1)-N(1)	97.32(17)
N(4)-Ir(1)-N(1)	100.85(15)	N(3)-Ir(1)-N(1)	85.78(14)
C(54)-Ir(1)-N(2)	96.18(17)	C(39)-Ir(1)-N(2)	167.99(18)
N(4)-Ir(1)-N(2)	78.52(14)	N(3)-Ir(1)-N(2)	108.28(14)
N(1)-Ir(1)-N(2)	75.02(14)		

Table S6. Selected bond lengths (Å) and angles (°) around the Ir(III) in complex $3[PF_6] \cdot CH_2Cl_2$.

Calculation of Limit of Detection

The detection limit was calculated based on PL titration data. To determine the S/N ratio, the standard deviation of the blank solution was calculated with ten replicate data of the complexes in PL spectroscopy. Finally, the limit of detection (LOD) of **1[PF6]**, **2[PF6]**, and **3[PF6]** for picric acid was determined from the following equation.

$$LOD = 3\sigma/K$$

Here σ is the standard deviation of the blank solution, and K is the slope obtained from the plot of the calibration curve.

Calculation of Quantum Yield

The quantum yields of **1**[**PF**₆], **2**[**PF**₆], and **3**[**PF**₆] were determined in dry and deaerated CH₃CN. [Ru(bpy)₃](PF₆)₂ ($\Phi_R = 0.062$ in acetonitrile) for **1**[**PF**₆] and **3**[**PF**₆]; Quinine sulfate ($\Phi_R = 0.60$ in 0.5 M H₂SO₄) for **2**[**PF**₆] were used as a references.¹ The quantum yield is calculated according to the following equation:

$$\Phi_{\rm S} = \Phi_{\rm R} \times \frac{1 - 10^{-A_{\rm R}}}{1 - 10^{-A_{\rm S}}} \times \frac{I_{\rm S}}{I_{\rm R}} \times \frac{{\eta_{\rm S}}^2}{{\eta_{\rm R}}^2}$$

Where S and R indicate the unknown and standard solutions, respectively, Φ is the quantum yield, I is the integrated area under the emission spectra, A is the absorbance, and η is the refractive index of the solvent.

Electrochemistry

A three electrodes cell system was taken for electrochemical analysis. The setup contains a Pt working electrode, a Pt wire auxiliary electrode, and an Ag wire as a pseudo-reference electrode. Experiments were performed on 1.0 mM dry and degassed (N₂) acetonitrile solution of **1**[**PF**₆], **2**[**PF**₆], and **3**[**PF**₆] in the presence of supporting electrolyte tetra-n-butylammonium

perchlorate (0.10 M). To compare the oxidation potential of these complexes, the cyclic voltammetry data of $[Ir(ppy)_2phen]^+$ was also collected under the same experimental conditions. The electrochemical potential window was calibrated using ferrocene (as the internal standard) after each experiment. The standard redox potential of the ferrocene/ferrocenium (Fc/Fc⁺) couple was taken as +0.400 V vs. Ag wire electrode.² A scan rate of 100 mV s⁻¹ was fixed for all the measurements.

Calculation of Excited States Lifetimes

The luminescence lifetimes of **1**[**PF**₆], **2**[**PF**₆] and **3**[**PF**₆] (10 μ M) in the absence and presence of PA (1 equiv.) in acetonitrile and 90% aqueous media, were measured using TCSPC based fluorescence lifetime detection unit (PM-3) supplied by PTI. The sample was excited by 374 nm laser diode supplied by PTI. The fluorescence decays were monitored at the corresponding emission maxima as observed in the steady-state fluorescence measurement. The collected fluorescence decay traces from the sample were analyzed by non-linear least square analysis based on the Levenberg–Marquardt algorithm with reference to the instrument response function (IRF), collected at the excitation wavelength using a scattering solution. Validity of the fitting analysis was investigated by various statistical parameters like the Durbin-Watson (DW) and reduced chi-squared (χ^2) parameter values and visually observing the distribution of weighted residuals. The fluorescence decay was found to be both single exponential and double exponential fitting model to adequately describe the obtained decay traces. Average lifetimes (<t>) were calculated using the following decay equation

$$<\tau> = \sum \alpha_{\iota} \tau_{\iota}$$

Whereas, α_i is the amplitude of the ith decay component ($\alpha_i = \alpha_i / \Sigma \alpha_i$) and τ_i is the excited state luminescence lifetime of the ith component.

Compound	τ1	τ2	α1	α2	Tav
1[PF6]	112	0	100	0	112 ns
(single exponential)					
1[PF6] +PA	56.81	7.026	63.47	36.53	53.5 ns
2[PF6] (single exponential)	138	0	100	0	138 ns
2[PF6] +PA	0.33	11.6	99.76	0.24	1.21 ns
3[PF6] (single exponential)	140	0	100	0	140 ns
3[PF6] +PA	51.52	5.925	64.94	35.06	48.85 ns

Table S7: TCSPS Data for the fluorescene lifetime calculation

Computational Studies

The geometry optimization of complex **1**, **2**, **3** and Picric acid (singlet) was performed with the Gaussian 09 and Gaussian 16 program packages using density functional theory (DFT). The B3LYP/6-31G(d,p)³ basis set was used for C, H, N, F, and S, together with the LANL2DZ⁴ for iridium. Time-dependent density functional theory (TDDFT) calculations at the ground-state geometry in acetonitrile were performed in conjunction with the conductor-like polarizable continuum model (CPCM)⁵ for acetonitrile with a spin-restricted formalism to examine low-energy excitations at the same level of calculation. The triplet states TDDFT calculations were performed using the optimized ground state geometries at the same level as used in singlet state optimizations, along with CPCM for acetonitrile. A spin-unrestricted formalism was employed for singlet-triplet transitions in triplet states TDDFT calculations to study the nature of the non-emissive and emissive states of complex **1**, **2**, and **3**, respectively.

Fig. S30: Frontiers orbitals (HOMO and LUMO) of compounds 1, 2, 3 and PA for PET demonstration from compounds LUMO to the LUMO of PA.

Table S8: Excited states, their energies and oscillator strengths of compound 1[PF6], 2[PF6] and 3[PF6]

1[PF₆]

Excited State 21: 1 177B ->192B 183B ->192B	3.015-A 0.10752 0.99290	1.8250 eV 679.36 nm f=0.0000 <s**2>=2.022</s**2>
Excited State 22: 181B ->192B 182B ->192B	3.015-A 0.98489 -0.10838	1.9029 eV 651.54 nm f=0.0002 <s**2>=2.023</s**2>
Excited State 23: 180B ->192B 181B ->192B 182B ->192B	3.015-A -0.11979 0.10835 0.98582	1.9035 eV 651.35 nm f=0.0000 <s**2>=2.023</s**2>
Excited State 24: 193A ->202A 193A ->205A	3.012-A -0.45237 0.88971	1.9407 eV 638.85 nm f=0.0003 <s**2>=2.018</s**2>
Excited State 25: 193A ->208A 178B ->192B 184B ->192B	3.014-A 0.13471 0.90260 0.32515	1.9536 eV 634.64 nm f=0.0208 <s**2>=2.021</s**2>
Excited State 26: 193A ->204A	3.018-A 0.99810	2.0357 eV 609.05 nm f=0.0018 <s**2>=2.026</s**2>
Excited State 27:	3.017-A	2.0705 eV 598.80 nm f=0.0005 <s**2>=2.026</s**2>
193A ->203A 193A ->206A	0.46320 0.88464	HOMO→LUMO+9 HOMO→LUMO+12
193A ->203A 193A ->206A Excited State 28: 174B ->192B 176B ->192B 177B ->192B 183B ->192B	0.46320 0.88464 3.013-A 0.22304 0.30048 0.89983 -0.11480	HOMO→LUMO+9 HOMO→LUMO+12 2.1451 eV 577.98 nm f=0.0040 <s**2>=2.020</s**2>
193A ->203A 193A ->206A Excited State 28: 174B ->192B 176B ->192B 177B ->192B 183B ->192B Excited State 29: 193A ->208A 193A ->209A 178B ->192B 191B ->195B	0.46320 0.88464 3.013-A 0.22304 0.30048 0.89983 -0.11480 3.023-A 0.87151 0.40236 -0.15447 -0.14351	HOMO→LUMO+9 HOMO→LUMO+12 2.1451 eV 577.98 nm f=0.0040 <s**2>=2.020 2.1586 eV 574.37 nm f=0.1781 <s**2>=2.034</s**2></s**2>
193A ->203A 193A ->206A Excited State 28: 174B ->192B 176B ->192B 177B ->192B 183B ->192B Excited State 29: 193A ->208A 193A ->209A 178B ->192B 191B ->195B Excited State 30: 193A ->201A 193A ->201A	0.46320 0.88464 3.013-A 0.22304 0.30048 0.89983 -0.11480 3.023-A 0.87151 0.40236 -0.15447 -0.14351 3.014-A -0.23286 0.96447	HOMO \rightarrow LUMO+9 HOMO \rightarrow LUMO+12 2.1451 eV 577.98 nm f=0.0040 <s**2>=2.020 2.1586 eV 574.37 nm f=0.1781 <s**2>=2.034 2.2659 eV 547.19 nm f=0.0003 <s**2>=2.021</s**2></s**2></s**2>
193A ->203A 193A ->206A Excited State 28: 174B ->192B 176B ->192B 177B ->192B 183B ->192B Excited State 29: 193A ->208A 193A ->209A 178B ->192B 191B ->195B Excited State 30: 193A ->201A 193A ->201A 193A ->207A Excited State 31: 174B ->192B 176B ->192B 177B ->192B	0.46320 0.88464 3.013-A 0.22304 0.30048 0.89983 -0.11480 3.023-A 0.87151 0.40236 -0.15447 -0.14351 3.014-A -0.23286 0.96447 3.017-A 0.33173 0.83430 -0.36990	HOMO \rightarrow LUMO+9 HOMO \rightarrow LUMO+12 2.1451 eV 577.98 nm f=0.0040 <s**2>=2.020 2.1586 eV 574.37 nm f=0.1781 <s**2>=2.034 2.2659 eV 547.19 nm f=0.0003 <s**2>=2.021 2.4262 eV 511.03 nm f=0.0327 <s**2>=2.026</s**2></s**2></s**2></s**2>

Excited State 33: 193A ->210A 174B ->192B	3.014-A 0.97899 -0.15400	2.7023 eV	458.80 nm	f=0.0008	< S **2>=2.021
Excited State 34: 193A ->210A 174B ->192B 176B ->192B	3.032-A 0.17029 0.87598 -0.40389	2.7365 eV	453.08 nm	f=0.0311	<s**2>=2.048</s**2>
Excited State 35: 173B ->192B 175B ->192B	3.039-A -0.20236 0.96155	2.7622 eV	448.85 nm	f=0.0137	<s**2>=2.059</s**2>

2[PF6]

Excited State 18: 209A ->213A 209A ->214A 209A ->216A 209A ->221A	3.012-A 0.52645 0.35021 0.74158 -0.11320	1.8332 eV 676.32 nm f=0.0149 <s**2>=2.018</s**2>
Excited State 19: 209A ->215A	3.010-A 0.98512	1.8412 eV 673.40 nm f=0.0001 <s**2>=2.014</s**2>
Excited State 20: 209A ->213A 209A ->214A 209A ->216A	3.011-A -0.19629 0.93500 -0.28052	1.8641 eV 665.10 nm f=0.0016 <s**2>=2.016</s**2>
Excited State 21: 190B ->208B 192B ->208B 194B ->208B	3.009-A -0.13340 0.10464 0.95999	1.9572 eV 633.47 nm f=0.0050 <s**2>=2.014</s**2>
Excited State 22: 209A ->217A	3.013-A 0.99553	2.1431 eV 578.54 nm f=0.0000 <s**2>=2.019</s**2>
Excited State 23:	3.031-A	2.2952 eV 540.19 nm f=0.2024 <s**2>=2.047</s**2>
209A ->216A	0.12257	HOMO→LUMO+6
	0.16128	HOMO→LUMO+8
209A ->218A		
209A ->218A 209A ->219A	-0.18640	
209A ->218A 209A ->219A 209A ->221A	-0.18640 0.85494	HOMO→LUMO+11
209A ->218A 209A ->219A 209A ->221A 209A ->222A	-0.18640 0.85494 0.15586	HOMO→LUMO+11 HOMO→LUMO+12
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B	-0.18640 0.85494 0.15586 0.10080	HOMO→LUMO+11 HOMO→LUMO+12
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018	HOMO→LUMO+11 HOMO→LUMO+12
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 189B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899	HOMO→LUMO+11 HOMO→LUMO+12
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 189B ->208B 195B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537	HOMO→LUMO+11 HOMO→LUMO+12
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 189B ->208B 195B ->208B 201B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345	HOMO→LUMO+11 HOMO→LUMO+12
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 189B ->208B 195B ->208B 201B ->208B 201B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035	HOMO→LUMO+11 HOMO→LUMO+12
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 195B ->208B 201B ->208B 201B ->208B 205B ->208B Excited State 24:	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017</s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 189B ->208B 195B ->208B 201B ->208B 205B ->208B Excited State 24: 190B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017</s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 189B ->208B 195B ->208B 201B ->208B 205B ->208B Excited State 24: 190B ->208B 192B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395 0.62812	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017</s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 189B ->208B 195B ->208B 201B ->208B 205B ->208B 205B ->208B Excited State 24: 190B ->208B 192B ->208B 193B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395 0.62812 0.69466	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017</s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 195B ->208B 201B ->208B 201B ->208B 205B ->208B 205B ->208B Excited State 24: 190B ->208B 192B ->208B 193B ->208B 194B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395 0.62812 0.69466 -0.10490	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017</s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 195B ->208B 201B ->208B 205B ->208B 205B ->208B 192B ->208B 192B ->208B 193B ->208B 193B ->208B 194B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395 0.62812 0.69466 -0.10490 3.012-A	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017 2.3478 eV 528.08 nm f=0.0005 <s**2>=2.018</s**2></s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 195B ->208B 201B ->208B 205B ->208B 205B ->208B 192B ->208B 192B ->208B 193B ->208B 194B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395 0.62812 0.69466 -0.10490 3.012-A 0.56340	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017 2.3478 eV 528.08 nm f=0.0005 <s**2>=2.018</s**2></s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 195B ->208B 201B ->208B 205B ->208B 205B ->208B 192B ->208B 193B ->208B 193B ->208B 194B ->208B 194B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395 0.62812 0.69466 -0.10490 3.012-A 0.56340 -0.45346	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017 2.3478 eV 528.08 nm f=0.0005 <s**2>=2.018</s**2></s**2>
209A ->218A 209A ->219A 209A ->221A 209A ->221A 209A ->222A 185B ->208B 187B ->208B 195B ->208B 201B ->208B 205B ->208B 205B ->208B 192B ->208B 193B ->208B 194B ->208B 194B ->208B 192B ->208B 192B ->208B 192B ->208B	-0.18640 0.85494 0.15586 0.10080 -0.15018 0.14899 -0.12537 -0.12345 0.10035 3.011-A -0.29395 0.62812 0.69466 -0.10490 3.012-A 0.56340 -0.45346 0.66452	HOMO→LUMO+11 HOMO→LUMO+12 2.3061 eV 537.63 nm f=0.0024 <s**2>=2.017 2.3478 eV 528.08 nm f=0.0005 <s**2>=2.018</s**2></s**2>

209A ->218A 209A ->219A 209A ->219A 209A ->221A	3.011-A 0.93758 -0.25275 -0.21385	2.4704 eV 501.87 nm f=0.0005 <s**2>=2.016</s**2>
Excited State 27: 190B ->208B 191B ->208B 192B ->208B 193B ->208B	3.013-A 0.56223 0.63464 0.47899 -0.17255	2.5695 eV 482.52 nm f=0.0007 <s**2>=2.019</s**2>
Excited State 28: 190B ->208B 191B ->208B 192B ->208B 193B ->208B	3.012-A -0.48498 0.76380 -0.37489 0.16613	2.5969 eV 477.42 nm f=0.0020 <s**2>=2.018</s**2>
Excited State 29: 209A ->220A 209A ->222A 209A ->223A 209A ->224A	3.011-A 0.90735 0.34826 0.11164 -0.15463	2.6145 eV 474.22 nm f=0.0004 <s**2>=2.016</s**2>
Excited State 30: 209A ->216A 209A ->218A 209A ->219A 209A ->221A	3.016-A 0.11811 0.28529 0.92336 0.13973	2.6792 eV 462.76 nm f=0.0037 <s**2>=2.024</s**2>
Excited State 31:	3.014-A	2.6936 eV 460.29 nm f=0.0009 <s**2>=2.020</s**2>
209A ->220A 209A ->221A 209A ->222A 209A ->223A	-0.34368 -0.17415 0.77038 0.48822	
209A ->220A 209A ->221A 209A ->222A 209A ->223A	-0.34368 -0.17415 0.77038 0.48822	3[PF 6]
209A ->220A 209A ->221A 209A ->222A 209A ->223A	-0.34368 -0.17415 0.77038 0.48822	3[PF 6]
209A ->220A 209A ->221A 209A ->222A 209A ->223A Excited State 22: 219A -> 229A 206B -> 218B 207B -> 218B 208B -> 218B	-0.34368 -0.17415 0.77038 0.48822 3.012-A -0.57348 0.59782 0.34945 0.40695	3[PF6] 2.0487 eV 605.18 nm f=0.0020 <s**2>=2.018</s**2>
209A ->220A 209A ->221A 209A ->222A 209A ->223A Excited State 22: 219A -> 229A 206B -> 218B 207B -> 218B 208B -> 218B Excited State 23: 219A -> 229A 206B -> 218B 207B -> 218B 207B -> 218B 207B -> 218B 208B -> 218B	-0.34368 -0.17415 0.77038 0.48822 3.012-A -0.57348 0.59782 0.34945 0.40695 3.012-A 0.79317 0.42571 0.26573 0.28995	3[PF6] 2.0487 eV 605.18 nm f=0.0020 <s**2>=2.018 2.0496 eV 604.93 nm f=0.0032 <s**2>=2.018</s**2></s**2>
209A ->220A 209A ->221A 209A ->222A 209A ->223A Excited State 22: 219A -> 229A 206B -> 218B 207B -> 218B 208B -> 218B 208B -> 218B 208B -> 218B 207B -> 218B 208B -> 218B 206B -> 218B 206B -> 218B 207B -> 218B	-0.34368 -0.17415 0.77038 0.48822 3.012-A -0.57348 0.59782 0.34945 0.40695 3.012-A 0.79317 0.42571 0.26573 0.28995 3.012-A -0.15131 -0.49317 0.85383	3[PF6] 2.0487 eV 605.18 nm f=0.0020 <s**2>=2.018 2.0496 eV 604.93 nm f=0.0032 <s**2>=2.018 2.0663 eV 600.02 nm f=0.0001 <s**2>=2.017</s**2></s**2></s**2>

21/11 > 251/11	0.10070
219A -> 232A	-0.17681
219A -> 234A	-0.15116
202B -> 218B	0.79284

203B -> 218B 204B -> 218B	$0.38249 \\ 0.16806$		
Excited State 26:	3.015-A	2.1350 eV 5	80.73 nm f=0.0065 <s**2>=2.022</s**2>
219A -> 229A	0.11560		
219A -> 230A	0.59146		
219A -> 231A	-0.54280		
219A -> 232A	-0.40473		
219A -> 233A	-0.10025		
219A -> 235A	-0.20423		
202B -> 218B	-0.26891		
203B -> 218B	-0.14600		
Excited State 27	: 3.016-A	2.1686 eV	571.73 nm f=0.0159 <s**2>=2.024</s**2>
219A -> 229A	0.10817		$HOMO \rightarrow LUMO + 10$
$219A \rightarrow 230A$	0.31841		HOMO→LUMO+I0
219A -> 231A	-0.13024		
$219A \rightarrow 232A$	0.79190		HOMO→LUMO+12
219A -> 234A 210A > 235A	-0.27219		
219R -> 235R 200B -> 218B	0.11751		
Excited State 28.	3 011 A	2 2142 N 5	50.06 nm f-0.0045 < S**2>-2.016
$210\Lambda > 232\Lambda$	0.12525	2.2142 CV 3	59.90 IIII 1=0.0045 <5* 2>=2.010
219A -> 232A 219A -> 234A	0.11034		
$199R \rightarrow 218R$	-0 12541		
$200B \rightarrow 218B$	0.12341		
200B > 210B 201B -> 218B	0.15641		
$202B \rightarrow 218B$	0.28573		
203B -> 218B	-0.54929		
205B -> 218B	-0.16810		
Excited State 29:	3.015-A	2.2997 eV 5	39.13 nm f=0.0186 <s**2>=2.023</s**2>
219A -> 232A	-0.10725		
219A -> 233A	0.77504		
219A -> 234A	-0.42667		
219A -> 235A	0.15700		
200B -> 218B	0.12185		
201B -> 218B	-0.31116		
202B -> 218B	-0.10153		
203B -> 218B	-0.10255		
Excited State 30:	3.018-A	2.3478 eV 5	28.09 nm f=0.0257 <s**2>=2.027</s**2>
219A -> 233A	0.27426		
219A -> 234A	-0.13596		
219A -> 236A	-0.13469		
19/B -> 218B	-0.10005		
1990 -> 218B 200B < 219D	0.1/302		
200B -> 218B 201B -> 218B	-0.22903		
$203B \rightarrow 218B$ $203B \rightarrow 218B$	-0.17222		
Excited State 31.	3 011-4	2.3765 eV 5	21 71 nm f=0 0088 <\$**>>-2 017
219A -> 234A	0.11832	2.3,0304 3	
$197B \rightarrow 218B$	0.25943		
198B -> 218B	-0.23809		
199B -> 218B	0.86934		
201B -> 218B	-0.14037		
202B -> 218B	0.10478		
203B -> 218B	-0.12902		

Excited State 32:	3.010-A	2.3866 eV	519.50 nm	f=0.0010	<s**2>=2.016</s**2>
219A -> 230A	0.64148				
219A -> 231A	0.74418				
Excited State 33.	3 01/- 4	2/10/3 eV	515 67 nm	f-0.0096	~\$**2\-2 021
$210\Delta \rightarrow 230\Delta$	0 15231	2.4043 C V	515.07 IIII	1-0.0070	5 2/=2.021
$210A \rightarrow 230A$ $210A \rightarrow 231A$	-0.1/167				
219A -> 231A 210A -> 232A	-0.14107				
219A -> 232A 210A -> 233A	0.20003				
210A = 233A 210A = 234A	0.78134				
$210A \rightarrow 234A$ $210A \rightarrow 235A$	0.12581				
$107B \rightarrow 213R$	-0 10396				
$203B \rightarrow 218B$	0 14052				
2030 > 2100	0.14052				
Excited State 34:	3.016-A	2.4444 eV	507.21 nm	f=0.0060	<s**2>=2.024</s**2>
219A -> 230A	0.20211				
219A -> 231A	-0.20689				
219A -> 232A	0.20562				
219A -> 233A	-0.26392				
219A -> 234A	-0.10913				
219A -> 235A	0.87310				
Excited State 35.	3 012 A	2/618 oV	503 64 nm	f-0.0063	~\$**2\-2.018
$210\Lambda > 231\Lambda$	0.11745	2.4018 C V	505.04 IIII	1-0.0005	\$ 22-2.010
219A -> 234A 210A -> 236A	-0.16750				
108R -> 210R	-0.14852				
$200B \rightarrow 218B$	0.60206				
200B -> 218B 201B -> 218B	0.00200				
$201B \rightarrow 210B$ $202B \rightarrow 218B$	-0.31064				
202B > 210B $203B \rightarrow 218B$	0.59939				
205B -> 218B	0.14386				
Excited State 36:	3.015-A	2.5309 eV	489.88 nm	f=0.0174	<s**2>=2.023</s**2>
219A -> 228A	-0.12150				
219A -> 233A	0.14512				
219A -> 236A	0.93639				
197B -> 218B	0.10330				
200B -> 218B	0.10140				
201B -> 218B	0.16281				
Excited State 37.	3.924-A	2.6400 eV	469.64 nm	f=0.0116	<s**2>=3.600</s**2>
213A -> 220A	-0.25526	2.0.000		1 010110	
$213A \rightarrow 221A$	0.17200				
213A -> 223A	0.12702				
214A -> 220A	0.20045				
214A -> 221A	-0.12492				
215A -> 220A	-0.37933				
215A -> 221A	0.21936				
217A -> 220A	0.20564				
217A -> 221A	-0.10832				

	Х	Y Z			Х	Y	Ζ
С	4.6061	-0.3749	10.5217	Η	2.0002	3.0571	6.4326
Н	3.8181	-0.4959	11.2795	С	0.675	2.1433	7.9771
С	5.1515	-1.5585	9.8443	Н	-0.1927	2.0267	7.3073
Н	4.7038	-2.5445	10.0453	С	0.5938	1.723	9.3756
С	6.242	-1.427	8.8647	Н	-0.3396	1.289	9.7662
С	6.707	-0.0761	8.5217	С	1.7678	1.892	10.2333
С	7.7627	0.2257	7.5422	С	1.8217	1.537	11.6492
Н	8.2538	-0.5869	6.9842	С	0.7413	0.9512	12.4414
С	8.1788	1.6173	7.2931	Η	-0.247	0.7563	11.9971
Н	8.9673	1.8146	6.5501	С	0.9884	0.6184	13.8475
С	7.5507	2.7285	8.0249	Η	0.1827	0.1771	14.4569
С	7.8938	4.1468	7.8536	С	2.3049	0.8646	14.4455
С	7.1113	5.1451	8.5999	Η	2.4864	0.6033	15.5009
Н	7.2511	6.2193	8.4006	С	3.3814	1.4528	13.644
С	6.0883	4.7248	9.5664	Η	4.3728	1.6205	14.0906
Η	5.5082	5.4848	10.1103	С	3.1239	1.8008	12.2484
С	6.0961	1.041	9.2259	С	6.8825	1.8409	12.5675
С	6.519	2.4026	8.9976	Η	6.8828	0.9139	11.9759
С	6.7965	-4.5595	8.7662	С	7.9154	2.0443	13.5857
С	6.5441	-4.755	10.1977	Η	8.6979	1.2836	13.7409
Η	6.5045	-3.8908	10.8796	С	7.8994	3.2599	14.3992
С	6.4031	-6.1071	10.7418	Η	8.6713	3.428	15.168
Η	6.1919	-6.2496	11.8144	С	6.8408	4.2458	14.1835
С	6.5606	-7.2699	9.8671	Η	6.8097	5.1617	14.7935
Н	6.4537	-8.2876	10.2771	С	5.8355	3.9882	13.1512
C	6.8757	-7.0795	8.4507	С	4.7099	4.8686	12.8485
Н	7.0135	-7.9547	7.7946	С	4.3993	6.14	13.5006
С	7.0036	-5.7274	7.9035	Η	5.0209	6.5215	14.3254
Н	7.2398	-5.5922	6.8352	C	3.2415	6.9126	13.0407
C	9.9947	6.2926	6.8001	Н	2.995	7.8722	13.524
С	10.7195	6.8097	5.6347	C	2.4129	6.4168	11.9367
Н	10.7717	6.2167	4.7068	Н	1.5489	7.0074	11.5902
C	11.3588	8.1259	5.6891	C	2.7318	5.1416	11.2892
Н	11.8865	8.5191	4.8047	Н	2.1198	4.7818	10.4488
C	11.2936	8.9219	6.9155	C	3.8758	4.3663	11.764
Н	11.7657	9.9174	6.9534	Ν	5.0881	0.9057	10.1887
С	10.6141	8.3875	8.0965	Ν	5.8365	3.3537	9.7668
Н	10.587	8.9749	9.0289	Ν	2.9718	2.439	9.7272
С	9.9861	7.0657	8.0464	Ν	5.8854	2.8179	12.356
H	9.5486	6.6398	8.9633	S	6.9365	-2.8958	8.0595
С	3.0638	2.8706	8.3863	S	9.1907	4.6707	6.6997
Н	3.9925	3.3281	8.0153	Ir	4.4804	2.6038	10.9875
C	1.9217	2.7257	7.4809				

Table S9. The x,y,z Cartesian coordinates of the complex **1** calculated using Gaussian09 at B3LYP/6-31G(d,p) level and LANL2DZ for iridium in the ground state.

	Х	Y Z			Х	Y	Z
С	5.759	4.881	13.271	Н	4.827	9.529	10.769
Н	5.014	4.96	13.824	С	5.237	10.951	12.07
С	5.801	3.836	12.353	Н	4.912	11.655	11.555
Н	5.089	3.239	12.31	С	5.771	11.188	13.326
С	6.87	3.669	11.511	Η	5.814	12.059	13.65
С	7.937	4.599	11.628	С	6.262	10.105	14.137
С	9.103	4.581	10.81	С	6.839	10.158	15.483
Н	9.2	3.916	10.168	С	7.033	11.302	16.29
С	10.071	5.515	10.949	С	7.573	11.267	17.557
Н	10.8	5.495	10.372	Н	7.701	12.041	18.058
С	10.014	6.528	11.95	С	7.907	10.054	18.032
С	11.029	7.517	12.167	С	7.739	8.877	17.329
С	10.835	8.421	13.176	Η	7.988	8.065	17.707
Η	11.464	9.088	13.332	С	7.193	8.922	16.05
С	9.719	8.341	13.952	С	8.7	5.612	16.45
Н	9.641	8.947	14.653	Η	9.359	5.936	15.879
С	7.824	5.609	12.584	С	9.088	4.769	17.456
С	8.89	6.574	12.764	Η	9.981	4.531	17.562
С	5.471	1.546	10.392	С	8.144	4.29	18.29
С	4.351	2.138	9.89	Η	8.375	3.709	18.979
Η	4.374	3.027	9.616	С	6.813	4.677	18.106
С	3.168	1.402	9.791	Н	6.161	4.354	18.685
Н	2.395	1.816	9.479	С	6.441	5.542	17.067
С	3.133	0.111	10.142	С	5.134	6.086	16.75
Н	2.348	-0.381	10.048	С	3.906	5.786	17.359
С	4.269	-0.481	10.641	С	2.722	6.324	17.035
Н	4.246	-1.377	10.894	Η	1.935	6.087	17.471
C	5.422	0.222	10.773	C	2.744	7.246	16.013
Н	6.18	-0.19	11.119	C	3.851	7.591	15.345
С	13.32	8.935	11.626	Η	3.797	8.202	14.645
С	13.173	10.13	10.998	C	5.094	7.035	15.694
Н	12.57	10.222	10.297	Ν	6.73	5.76	13.388
C	13.924	11.2	11.413	Ν	8.739	7.472	13.788
Н	13.815	12.027	11.002	Ν	6.19	8.852	13.615
C	14.772	11.07	12.359	N	7.439	6.005	16.23
Н	15.272	11.805	12.636	F	6.692	12.516	15.749
C	14.944	9.906	12.944	F	8.437	9.965	19.262
H	15.611	9.817	13.586	F	3.926	4.833	18.38
C	14.185	8.845	12.641	F	1.572	7.792	15.701
H	14.259	8.057	13.129	S	7.044	2.366	10.381
C	5.68	8.709	12.368	S	12.397	7.508	11.078
Н	5.666	7.851	12.009	Ir	6.874	7.349	14.822
С	5.19	9.708	11.606				

Table S10. The x,y,z Cartesian coordinates of the complex **2** calculated using Gaussian09 at B3LYP/6-31G(d,p) level and LANL2DZ for iridium in the ground state.

Table S11. The x,y,z Cartesian coordinates of the complex **3** calculated using Gaussian09 at B3LYP/6-31G(d,p) level and LANL2DZ for iridium in the ground state.

	Х	Y	Z		Х	Y	Z
С	-0.06074	2.29018	-0.61628	Η	1.0011	0.87997	6.55638
Н	0.8751	2.66408	-1.02004	С	1.02038	-0.17898	4.66206
С	-1.18329	3.12036	-0.55041	Η	0.55655	-1.07217	5.07093
Н	-1.10381	4.1428	-0.89913	С	1.35703	-0.14483	3.32339
С	-2.3835	2.6231	-0.05593	Η	1.18033	-1.00231	2.69537
С	-2.41018	1.264	0.39242	С	1.97709	0.99437	2.75922
С	-3.57751	0.62975	0.92706	С	3.47634	1.977	-0.44316
Н	-4.49497	1.20111	1.01769	С	4.31018	2.92376	-1.07105
С	-3.56692	-0.67531	1.32239	Η	4.65585	3.80468	-0.53843
Η	-4.47104	-1.12496	1.71117	С	4.71816	2.72897	-2.38357
С	-2.37698	-1.46758	1.24789	Η	5.36642	3.45398	-2.86633
С	-2.30072	-2.83678	1.65086	С	4.29794	1.58416	-3.07224
С	-1.06219	-3.4643	1.60284	Η	4.62577	1.42096	-4.09589
Η	-0.96203	-4.50447	1.89327	С	3.46772	0.64705	-2.45672
С	0.06843	-2.75853	1.17388	Η	3.16334	-0.23068	-3.01722
Η	1.04428	-3.23315	1.15	С	3.02637	0.82478	-1.13543
С	-1.21307	0.51093	0.30376	С	2.20462	-2.84769	-1.58419
С	-1.18572	-0.85259	0.77648	С	2.02841	-3.95764	-2.45515
С	-3.39658	5.19738	-0.54881	Η	2.62348	-4.84861	-2.30068
С	-3.57845	5.52313	-1.89938	С	1.11346	-3.90384	-3.4682
Н	-3.9597	4.7773	-2.59	Η	0.96219	-4.75386	-4.12832
С	-3.2766	6.81145	-2.34384	С	0.37253	-2.71468	-3.6823
Η	-3.41972	7.06717	-3.38963	С	-0.53981	-2.5835	-4.75808
С	-2.80151	7.76984	-1.44547	Η	-0.69138	-3.43639	-5.41439
Η	-2.57381	8.77298	-1.79402	С	-1.20293	-1.39685	-4.97999
С	-2.62824	7.44417	-0.09794	Η	-1.89431	-1.29918	-5.81125
Н	-2.26816	8.19213	0.60242	С	-0.95657	-0.29751	-4.12946
С	-2.92842	6.15922	0.35644	Η	-1.45102	0.65053	-4.32162
Н	-2.80968	5.90362	1.40482	C	-0.08695	-0.40141	-3.06209
C	-4.99109	-3.60511	1.15591	H	0.11539	0.45228	-2.43618
C	-6.27831	-3.37242	1.65617	C	0.5874	-1.61487	-2.79144
H	-6.42969	-3.22766	2.72201	C	3.18964	-2.83279	-0.508/2
C	-7.36388	-3.33005	0.77853	C	4.10246	-3.87996	-0.27103
H	-8.3621	-3.15612	1.16977	H	4.09104	-4.7805	-0.87768
C	-/.16634	-3.49935	-0.5927	C	5.04672	-3./6264	0./3969
н	-8.01138	-3.45916	-1.2/359	Н	5.75508	-4.56553	0.91991
	-5.87923	-3.12139	-1.08/02	C II	5.0848	-2.59623	1.51408
П	-5.72228	-3.80957	-2.15259	н С	5.83091	-2.49487	2.2983
	-4.79118	-3./9034	-0.21/04		4.17850	-1.50022	1.28080
П	-3./90/4	-4.00222	-0.00151	н С	4.23098	-0.00905	1.90201
	3.04900	2.07510	0.94657		5.20247	-1.03021	0.28197
	3.30U83 2.0462	3.1/303	1./8303		-0.03982 0.02016	1.01/83	-0.21/8
	3.7403 2 08277	3.77737 3.1060	1.30803	IN N	0.02010	-1.49029	0.77021
	2.20211	J.1707 1 01216	3.09007	N	2.310/4	1.03329	1.41030
	5.22025 7.78118	4.04240 2.00042	3.73003	R I	3 87575	-1.72303	-1.72002
	2.20110	2.07043	J.02001 1 00271	2	-3.67373	3.37701	0.04003 2 24109
н	2 1/0/6	2.03407	+.27371 5 67067	Ir	1 7/186	-0.33721	2.34170 _0 11052
C	1.27912	0.92108	5.50786		1.77100	0.55721	0.11752

References

- 1. A. M. Brouwer, Pure Appl. Chem. 2011, 83, 2213–2228.
- 2. V. V. Pavlishchuk and A. W. Addison, Inorg. Chim. Acta 2000, 298, 97-102.
- 3. A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
- 4. P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 270–283.
- 5. M. Cossi and V. J. Barone, Chem. Phys. 2001, 115, 4708–4717.