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Figure S1. (a) Attenuated total reflectance Fourier-transform infrared (FTIR) spectrum 

of powder FeTPyP and (b) UV-Vis absorption spectrum of FeTPyP dissolved in N,N-

dimethylformamide. The FT-IR spectrum of FeTPyP exhibits typical vibration peaks 

attributable to the Fe(III)-modified 5,10,15,20-tetrakis(4-pyridyl)porphyrin, and the 

UV-Vis spectrum of FeTPyP shows the typical absorption peaks of the Fe(III)-modified 

5,10,15,20-tetrakis(4-pyridyl)porphyrin at 435 nm (a B band) and 620 nm (a Q band), 

as reported previously.1 

 

 

 Figure S2. SEM images of (a,b) ZIF-8 and (c,d) ZIF-8/FeTPyP. 



 

Figure S3. SEM images of (a,b) Fe2-N-C-900, (c,d) ZIF-8/FeTPP-900, and (e,f) N-C-900. 

 

Figure S4. X-ray diffraction patterns of ZIF-8 and ZIF-8/FeTPyP. The XRD patterns show 

that the modification of ZIF-8 with FeTPyP results in no distinct change in the XRD 

pattern of ZIF-8. In other words, the modification of ZIF-8 with FeTPyP does not change 

the crystal structure of ZIF-8. 



 

Figure S5. (a) XPS survey spectrum of Fe2-N-C-900 and (b,c) high-resolution XPS 

spectra of N 1s of ZIF-8/FeTPP-900 and N-C-900, respectively. 

 

 

Figure S6. Fourier transform (FT) profiles of Fe K-edge EXAFS oscillations of planar-like 

Fe2N6 structure. Those for Fe foil and FePc are also obtained and included for reference. 

  



 

Figure S7. (a) CV curves of Fe2-N-C-900 and commercial Pt/C in O2- and N2-saturated 

alkaline electrolyte (0.1 M KOH) at 100 mV s-1. (b) LSV curves of Fe2-N-C-900 and Pt/C 

in O2-saturated KOH solution (0.1 M) before and after addition of KSCN into the 

solution, respectively. 

 

 

Figure S8. (a) The XRD pattern, (b) TEM image, (c) high resolution TEM image, and (d) 

SAED image of Fe2-N-C-900 after the stability test for ORR.  



 

Figure S9. (a) LEDs powered by two Fe2-N-C-900-based ZABs connected in series are 

displayed. (b) Photographs of a ZAB displaying its measured open-circuit voltage of 

1.567 V. (c) V Galvanostatic discharge voltage versus time curves of ZABs containing 

Fe2-N-C-900 as electrocatalyst at the cathode at current densities of 2, 10, and 20 mA 

cm−2. 

  



Table S1. Comparison of the porosity of the different materials synthesized and 

studied. 

Materials/Catalysts SSA (m2 g−1) Pore volume (cm3 g−1) 

Fe2-N-C-900 697 2.483 

ZIF-8/FeTPP-900 413 1.724 

N-C-900 493 0.374 

 

Table S2. Relative amounts of the elements present on the surfaces of the materials, 

as determined by XPS analysis. 

Materials/Catalysts Fe C N O 

Fe2-N-C-900 0.53 90.7 5.06 3.31 

ZIF-8/FeTPP-900 0.57 90.07 3.55 5.2 

N-C-900 -- 92.82 2.05 3.86 

 

Table S3. The types and amounts of surface N species on the materials, as determined 

by XPS. 

Materials/Catalysts N (at. %) Pyridinic  

N (at. %) 

Metal-N 

(at. %) 

Pyrrolic N 

(at. %) 

Graphitic N 

(at. %) 

Fe2-N-C-900 5.06 23.07 24.66 19.19 33.08 

ZIF-8/FeTPP-900 3.55 22.33 21.20 23.81 32.66 

N-C-900 2.05 25.53 -- 31.10 43.37 

 

Table S4. EXAFS fitting parameters at the Fe K-edge for various materials (Ѕ0
2 = 0.719). 

Materials Shell CNa R(Å)b σ2(Å2)c ΔE0(eV)d R factor 

Fe foil Fe-Fe 8* 2.47±0.01 0.0042±0.0007 7.2 0.0016 

Fe-Fe 6* 2.86±0.01 0.0055±0.0012 

FePc Fe-N 3.8±0.7 2.00±0.01 0.0113±0.0021 6.2 0.0086 

Fe-C 6.0±1.1 3.00±0.01 0.0063±0.0014 

Fe2-N-C-

900 

Fe-N 4.3±0.9 1.98±0.02 0.0101±0.0043 3.5 0.0192 

 



Table S5. Electrocatalytic activities for ORR over the different materials in 0.1 M KOH 

electrolyte. 

Materials/Catalysts Eoneset (V) E1/2 (V) jL [mA cm−2] 

Fe2-N-C-900 0.990 0.869 -6.67 

ZIF-8/FeTPP-900 0.958 0.851 -5.33 

N-C-900 

Pt/C 

0.932 

1.001 

0.805 

0.850 

-5.18 

-5.65 

 

Table S6. Comparison of Eonset and E1/2 required by ORR in 0.1 M KOH solution over Fe-

N-C-900 versus those of various non-noble metal catalysts recently reported in the 

literature. 

Materials/Catalysts Eonset (V) E1/2 (V) Electrolytes References 

FeN4SAs/NPC 0.972 0.885 1 M KOH 2 

Fe/N-G-SAC 0.988 0.890 1 M KOH 3 

Fe-N-C HNSs 

Fe-N-C/N-OMC 

Fe-IICSAC 

Fe-N/C-1/30  

FeN2/NOMC 

FeN3OS 

OAC 

FeNC-F3 

L-FeNC 

3DOM Fe-N-C 

Fe SAs/N-C 

Fe-N-C/Rgo 

Fe-SA/Micro-C 

Fe-NCNWs 

Fe/NSCN (1N) 

meso-Fe-N-C 

ISG Fe-N-C 

Fe-N/GNs 

1.06 

1.08 

1.01 

1.04 

0.98 

1.01 

0.98 

0.988 

0.99 

0.997 

1.01 

0.99 

1.05 

1.02 

1.14 

0.998 

1.02 

1.01 

0.87 

0.93 

0.908 

0.895 

0.89 

0.874 

0.854 

0.858 

0.89 

0.875 

0.91 

0.90 

0.926 

0.91 

0.87 

0.846 

0.91 

0.903 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

0.1 M KOH 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

Fe2-N-C-900 0.990 0.869 0.1 M KOH This work 



Table S7. The values of Cdl and Rct of different catalysts obtained from the equivalent 

circuit model with electrochemical impedance spectroscopy (EIS). 

Materials/Catalysts Cdl (mF cm−2) Rct (Ω) 

Fe2-N-C-900 14.52 307 

ZIF-8/FeTPP-900 10.19 480 

N-C-900 7.88 991 

Pt/C 13.49 477 

 

Table S8. Comparison of the performances of ZAB assembled using the synthesized 

catalyst reported herein (Fe2-N-C-900) in this work as the air cathode with respect to 

ZABs containing other single-atom catalysts recently reported in the literature. 

Catalysts Electrolyte OCV 

(V) 

PPD 

(mW cm−2) 

References 

Fe/NCNF 6 M KOH 1.54 146 22 

Fe1/NC 6 M KOH 1.45 164 23 

3D SAFe 

ISG Fe-N-C 

Fe-SASCs 

FeSA/ N-PSCS 

FePc-c–NG-10 

3DOM Fe-N-C-900 

Fe-SA/NCS 

FeSA/NSC 

CPANI-TA-Fe-SA-NC 

Fe-N-C 

SAC-FeN-WPC 

Fe/Z8-E-C 

Fe-N-C/RGO 

Fe-N-C-700 

Fe/N-G-800 

Fe2-N-C-900 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

6 M KOH 

1.47 

1.45 

1.47 

1.45 

1.45 

1.47 

1.53 

1.501 

1.44 

1.453 

1.32 

1.58 

1.52 

1.425 

1.56 

1.567 

156 

155 

78 

164.5 

141 

175.9 

141.6 

159 

136 

131 

70.2 

157.8 

107.12 

70 

136 

166.3 

24 
20 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

This work 
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