Supporting Information

From (NH₄)₃[Zr(PO₄)₂F] to (NH₄)₃[Sn₂(PO₄)₂]CI: Rational Design of a Tin-

based Short-Wave Ultraviolet Phosphate with Large Optical Anisotropy

Zhi Fang^{a, c}, Wen-Hua Ma^b, Qiu-Yu Chen^b, Xin-Ting Zhu^a, Xin-Mei Zeng^a, Pei-Bei Li^a, Qian-Fen Zhou^a, Ting-Ting Song^b and Mei-Hong Duan^{*b}

^{a.} Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China

^{b.} College of Physics and Astronomy, China West Normal University, Nanchong 637002, China, mail: duanmeihong@126.com

^{c.} State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

CONTENTS

Table	S1	Atomic	coordinates	and	equivalent	isotronic	displacement	narameters	for
lane	U 1.	Atomic	coordinates	anu	equivalent	isotiopic	uispiacement	parameters	101

(NH ₄) ₃ Sn ₂ (PO ₄) ₂ Cl.	S2
Table S2. Anisotropic displacement parameters for $(NH_4)_3Sn_2(PO_4)_2CI$, in Å ² .	S3
Table S3. Selected bond lengths for (NH4)3Sn2(PO4)2CI.	S4
Table S4. Selected bond angles for (NH ₄) ₃ Sn ₂ (PO ₄) ₂ Cl.	S 5
Table S5. Bond valence sums (BVS) for (NH ₄) ₃ Sn ₂ (PO ₄) ₂ Cl.	S6
Figure S1. Measured and calculated PXRD patterns for $(NH_4)_3Sn_2(PO_4)_2CI$.	S7
Figure S2. Measured TG curve for (NH ₄) ₃ Sn ₂ (PO ₄) ₂ Cl.	S8
Figure S3. IR spectrum for (NH ₄) ₃ Sn ₂ (PO ₄) ₂ Cl.	S9
Figure S4. EDS map for (NH ₄) ₃ Sn ₂ (PO ₄) ₂ Cl.	S10

Atom	x/a	y/b	z/c	Ueq [Ų]	S.O.F.	Wyckoff
Sn1	0.61623(4)	0.34466(4)	0.37526(4)	0.02020(17)	1	4d
P1	0.34477(16)	0.36179(15)	0.53080(14)	0.0189(4)	1	4d
CI1	0.5	0.0386(9)	0.25	0.118(3)	0.802(13)	8d
01	0.4253(5)	0.3038(5)	0.4422(4)	0.0314(12)	1	4d
O3	0.3261(5)	0.5137(4)	0.5146(4)	0.0257(11)	1	4d
02	0.2000(4)	0.2976(4)	0.5259(4)	0.0264(11)	1	4d
O4	0.4144(6)	0.3331(5)	0.6278(4)	0.0402(14)	1	4d
N2	0.6962(7)	0.3401(7)	0.6766(5)	0.048(2)	1	4d
H2A	0.746423	0.341314	0.62118	0.058	1	4d
H2B	0.714013	0.413514	0.71205	0.058	1	4d
H2C	0.717753	0.267654	0.71205	0.058	1	4d
H2D	0.604683	0.337914	0.66075	0.058	1	4d
N1	0	0.5	0.5	0.080(5)	1	8d
H1A	-0.01353	0.51373	0.43541	0.096	0.5	4d
H1B	-0.07918	0.47475	0.52815	0.096	0.5	4d
H1C	0.02955	0.57559	0.52815	0.096	0.5	4d
H1D	0.06458	0.43449	0.50847	0.096	0.5	4d
Cl2	0.916(5)	0.571(3)	0.694(3)	0.14(2)	0.099(6)	4d

Table S1. Atomic coordinates and equivalent isotropic displacementparameters for $(NH_4)_3Sn_2(PO_4)_2CI$.

Atom	U11	U22	U33	U12	U13	U23
Sn1	0.0203(2)	0.0209(3)	0.0194(3)	0.00118(17)	0.00197(18)	-0.00050(19)
P1	0.0156(7)	0.0164(7)	0.0247(10)	-0.0016(6)	0.0008(7)	0.0006(7)
CI1	0.087(4)	0.188(8)	0.077(5)	0.00000	0.029(4)	0.00000
O1	0.018(2)	0.033(3)	0.042(3)	-0.005(2)	0.008(2)	-0.012(3)
O3	0.034(3)	0.014(2)	0.030(3)	-0.001(2)	0.001(2)	0.0009(19)
O2	0.019(2)	0.021(2)	0.039(3)	-0.0048(19)	0.003(2)	0.004(2)
O4	0.032(3)	0.056(4)	0.033(3)	0.000(3)	-0.010(2)	0.015(3)
N2	0.047(4)	0.070(5)	0.028(4)	0.023(4)	-0.007(3)	-0.001(4)
N1	0.022(5)	0.056(7)	0.161(15)	0.005(5)	0.006(7)	0.052(8)
CI2	0.24(5)	0.052(17)	0.14(4)	0.09(2)	-0.13(4)	-0.05(2)

Table S2. Anisotropic displacement parameters for $(NH_4)_3Sn_2(PO_4)_2CI$, in Å².

Atom 1,2	d 1,2 [Å]
Sn1-O1	2.093(5)
Sn1-O3	2.122(5)
Sn1-O2	2.106(5)
P1-O1	1.537(5)
P1-O3	1.540(4)
P1-O2	1.539(4)
P1-O4	1.497(6)

Table S3. Selected bond lengths for (NH4)3Sn2(PO4)2Cl.

Atom 1,2,3	Angle 1,2 ,3[°]
O1-Sn1-O3	93.41(18)
01-Sn1-02	86.32(19)
O2-Sn1-O3	84.52(18)
O1-P1-O3	108.6(3)
O1-P1-O2	105.7(3)
O2-P1-O3	107.2(3)
O4-P1-O1	112.2(3)
O4-P1-O3	111.4(3)
O4-P1-O2	111.5(3)
P1-01-Sn1	135.0(3)
P1-03-Sn1	121.6(3)
P1-02-Sn1	127.0(3)

Table S4. Selected bond angles for $(NH_4)_3Sn_2(PO_4)_2CI$.

Atom	BVS
Sn1	2.15
P1	5.07
O1	-1.99
O2	-1.95
O3	-1.92

Table S5. Bond valence sums (BVS) for $(NH_4)_3Sn_2(PO_4)_2CI$.

Figure S1. Measured and calculated PXRD patterns for (NH₄)₃Sn₂(PO₄)₂Cl.

Figure S2. Measured TG curve for (NH₄)₃Sn₂(PO₄)₂Cl.

Figure S3. IR spectrum for (NH₄)₃Sn₂(PO₄)₂Cl.

Figure S4. EDS map for (NH₄)₃Sn₂(PO₄)₂Cl.

