## **Supporting Information**

## Enhanced Lithium-Ion Storage of SiO<sub>x</sub>@C Anode Enabled by Carbon Coating Coupling with MXene as a Conductive Binder

Zhenqiang Liu, †a Yong Yang, †a Qizhen Zhu, \*a Meng Li, \*b and Bin Xu\*a,c

<sup>a</sup> State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China.

<sup>b</sup> Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 102205, China.

<sup>c</sup> Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.

E-mail: xubin@mail.buct.edu.cn; zhuqz@mail.buct.edu.cn; limengfighting@163.com

<sup>†</sup> These two authors contributed equally to this work.



**Fig. S1** SEM image of ball-milled  $SiO_x$ .



**Fig. S2** Schematic for the preparation of  $SiO_x@C$ .



**Fig. S3** Schematic for the preparation of  $Ti_3C_2T_x$  MXene.



Fig. S4 (a) SEM image and (b) XRD pattern of  $Ti_{3}AlC_{2}$  powder.



**Fig. S5** Optical image of  $Ti_3C_2T_x$  MXene dispersion.



**Fig. S6** TEM image of  $Ti_3C_2T_x$  MXene.



**Fig. S7** XRD pattern of  $Ti_3C_2T_x$  MXene.



**Fig. S8** CV curves of (a) CMC-SiO<sub>x</sub>, (b) CMC-SiO<sub>x</sub>@C and (c) MXene-SiO<sub>x</sub>@C-10% at 0.1 mV s<sup>-1</sup>.



**Fig. S9** Charge/discharge curves of (a) CMC-SiO<sub>x</sub> and (b) MXene-SiO<sub>x</sub>@C-10% at 0.1 A g<sup>-1</sup>.



Fig. S10 Cycling performance of MXene-SiO<sub>x</sub>@C-10%.



**Fig. S11** Rate capability of MXene-SiO<sub>x</sub>@C-10%.



Fig. S12 Charge/discharge curves of MXene-SiO<sub>x</sub>@C-20% at (a) 1~3 and (b)

298~300 cycles at 0.8 A g<sup>-1</sup>.



**Fig. S13** Nyquist plots of MXene-SiO<sub>x</sub>@C-10% with the equivalent circuit in the inset.



Fig. S14 Relationship between Z' and  $\omega^{-1/2}$  in the low-frequency region of EIS spectra of the electrodes.



**Fig. S15** (a) Contribution ratio of the capacitive process of MXene-SiO<sub>x</sub>@C-20% at 1.0 mV s<sup>-1</sup>; (b) Capacitive contribution of MXene-SiO<sub>x</sub>@C-20% at different scanning rates in the range of  $0.2\sim1$  mV s<sup>-1</sup>.



Fig. S16 SEM image of MXene-SiO<sub>x</sub>@C-10% after 50 cycles at 0.1 A g<sup>-1</sup>.

|                               | $R_{s}\left(\Omega ight)$ | $R_{ct}\left(\Omega ight)$ |
|-------------------------------|---------------------------|----------------------------|
| CMC-SiO <sub>x</sub>          | 0.5                       | 635.1                      |
| CMC-SiO <sub>x</sub> @C       | 1.7                       | 214.0                      |
| MXene-SiO <sub>x</sub> @C-10% | 1.9                       | 82.7                       |
| MXene-SiO <sub>x</sub> @C-20% | 2.2                       | 41.9                       |

Table S1 EIS parameters of the electrodes.