Electronic Supplementary Information

Activating photocatalytic hydrogen evolution by constructing Ni-based organical layers and tailoring its crystal facets

Zao Wang,^{a,b} Man Wang,^c Jiajia Song,^{a,c}* Jishan Wu,^{a,b}* Zhen Li^{a,c,d}*

^aJoint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.

^bDepartment of Chemistry, National University of Singapore, Singapore 117543, Singapore. E-mail: chmwuj@nus.edu.sg

^cTianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China. E-mail: jjsong@tju.edu.cn ^dHubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University,

Wuhan 430072, China. E-mail: lizhen@whu.edu.cn

Figure S1. The samples of bulky Ni-MOF, Ni-MOL-100 and Ni-MOL-010 from left to right, respectively.

Figure S2. Fourier Transform infrared spectroscopy (FT-IR) spectra of bulky Ni-MOF, Ni-MOL-100 and Ni-MOL-010, respectively.

Figure S3. TEM images of (a) bulky Ni-MOF, (b) Ni-MOL-100 and (c) Ni-MOL-010, respectively. HRTEM images of (d) bulky Ni-MOF, (e) Ni-MOL-100 and (f) Ni-MOL-010.

Figure S4. AFM results of (a) bulky Ni-MOF, (b) Ni-MOL-100 and (c)Ni-MOL-010. The one on the far right is the ruler bar of the AFM. The thickness of (d) bulky Ni-MOF, (e) Ni-MOL-100 and (f) Ni-MOL-010.

Figure S5. Plots of the linear region for the Brunauer-Emmett-Teller (BET) of (a) bulky Ni-MOF, (b) Ni-MOL-100 and (c) Ni-MOL-010. Nitrogen adsorption-desorption isotherms of (d) bulky Ni-MOF, (e) Ni-MOL-100 and (f) Ni-MOL-010. Corresponding non-local density functional theory (NLDFT) pore size distributions (PSD) of (g) bulky Ni-MOF, (h) Ni-MOL-100 and (i) Ni-MOL-010.

Figure S6. Thermal gravimetric analysis (TGA) curves of (a) bulky Ni-MOF, (b) Ni-MOL-100 and (c) Ni-MOL-010 under air atmosphere, respectively.

Figure S7. (a) Cyclic voltammetry (CV) reduction and oxidation curves of Ni-MOL-100, Ni-MOL-010 and bulky Ni-MOF, respectively. Ultraviolet photoelectron spectroscopy (UPS) spectra showing the Fermi levels of the (b) TiO₂, (c) bulky Ni-MOF, (d) Ni-MOL-100 and (e) Ni-MOL-010, respectively.

Figure S8. Transient absorption spectra of (a) bulky Ni-MOF, (b) Ni-MOL-100, and (c) Ni-MOL-010, respectively. Transient absorption decay profiles of (d) bulky Ni-MOF, (e) Ni-MOL-100 and (f) Ni-MOL-010, respectively.

Figure S9. The fluorescence of (a) TiO_2 , mixed TiO_2 -bulky Ni-MOF, mixed TiO_2 -Ni-MOL-100 and mixed TiO_2 -Ni-MOL-010, respectively. Fluorescence decay profiles of (b) mixed TiO_2 -bulky Ni-MOF, (c) mixed TiO_2 -Ni-MOL-100 and (d) mixed TiO_2 -Ni-MOL-010, respectively.

Figure S10. The photograph of the reactor setup for hydrogen evolution experiments. Left is under off light; right is under irradiation by 300 W Xenon light (AM 1.5G) under stirring. The photos show excellent dispersibility of Ni-MOLs in water/MeOH mixture.

Figure S11. (a) Hydrogen evolution arrays using 30 mg TiO₂ and 5 wt% of Ni-MOL-100 with different sacrificial agents (diethylamine-DEA; triethylamine-TEA; triethanolamine-TEOA). (b) Hydrogen evolution arrays using 30 mg TiO₂ and 5 wt% of Ni-MOL-100 with different pH values.

Figure S12. The hydrogen evolution arrays in 80 mL H₂O and 20 mL MeOH mixture using 30 mg TiO₂ and different x wt% of cocatalysts (Ni-MOL-100 and Ni-MOL-010) (x = 3, 5, 10).

Evolved H ₂	Light	Sacrificial	µmol g ⁻¹ h ⁻¹	Reference
	source	agent		
TiO ₂ -Ni-MOL-100	AM 1.5G	MeOH	343.6	This work
TiO ₂ -Ni-MOL-010	AM 1.5G	MeOH	25.6	This work
TiO ₂ -Ni-MOF	AM 1.5G	MeOH	0	This work
NH ₂ -MIL-125-Ti	>380	TEOA	17	1
NH ₂ -MIL-125-Ti	>420	TEOA	0	2
RuN₃/ZIF-67	>405	TEOA	4.85	3
CdS/MCM-41	>420	TEOA	55.5	4
NH₂-UiO-66(Zr)	>420	Na ₂ S	0	5
Pt/NH ₂ -UiO-66(Zr)	>380	TEOA	50.26	6
NH2-MIL-125(Ti)(T110)	>400	TEOA	60.8	7

Table S1. Comparison of recent reports on MOF-based photocatalysts.

Figure S13. Wavelength-dependent AQY of photocatalytic hydrogen evolution by mixed TiO_2 with Ni-MOL-100.

Figure S14. (a) PXRD, (b) SEM images, (c) TEM image, (d) FT-IR spectrum, and (e) TGA curve of Ni-MOL-100 as-synthesized after photocatalytic hydrogen evolution.

	Bader	∆GH*
	charge	
TiO ₂ -Ni-MOL-100	1.406	-0.1512
TiO ₂ -Ni-MOL-100-2	1.220	0.2568
TiO ₂ -Ni-MOL-010	0.9781	1.207

Table. S2. The Bader charge and free energy of H atom adsorbing on different Ni sites of cocatalysts.

References

- 1. Z. Li, J.-D. Xiao and H.-L. Jiang, Encapsulating a Co (II) molecular photocatalyst in metal-organic framework for visible-light-driven H₂ production: Boosting catalytic efficiency via spatial charge separation, *ACS Catal.*, 2016, **6**, 5359-5365.
- D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang and Z. Li, Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125 (Ti)(M= Pt and Au), *Chem. Eur., J.* 2014, **20**, 4780-4788.
- Y. Su, Z. Zhang, H. Liu and Y. Wang, Cd_{0.2}Zn_{0.8}S@UiO-66-NH₂ nanocomposites as efficient and stable visible-light-driven photocatalyst for H₂ evolution and CO₂ reduction, *Appl. Catal. B: Environ.*, 2017, **200**, 448-457.
- 4. J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu and Y. Sun, Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks, *Chem. Commun.*, 2013, **49**, 6761-6763.

- 5. S. Yang, B. Pattengale, E.-L. Kovrigin and J. Huang, Photoactive zeolitic imidazolate framework as intrinsic heterogeneous catalysts for light-driven hydrogen generation, *ACS Energy Lett.*, 2017, **2**, 75-80.
- 6. J.-D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S.-H. Yu and H.-L. Jiang, Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: The platinum location matters, *Angew. Chem. Int. Ed.*, 2016, **55**, 9389-9393.
- F. Guo, J.-H. Guo, P. Wang, Y.-S. Kang, Y. Liu, J. Zhao and W.-Y. Sun, Facet-dependent photocatalytic hydrogen production of metal-organic framework NH₂-MIL-125 (Ti), *Chem. Sci.*, 2019, **10**, 4834-4838.