Electronic Supplementary Material

Efficient and Stable Hybrid Conjugated Polymer/Perovskite Quantum Dot Solar Cell

Hehe Huang,^[a,b] Xuliang Zhang,^[a,c] Chenyu Zhao,^[a,b] Jianyu Yuan*^[a,b]

^aInstitute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu

215123, P. R. China

^bJiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou,

215123, Jiangsu, P. R. China

^cJiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University,

Suzhou, Jiangsu 215123, P. R. China

*Corresponding author: jyyuan@suda.edu.cn

1.Materials

Cesium carbonate (Cs₂CO₃, 99.9%, Sigma), lead iodide (PbI₂, 99.9%, Adamas), 1-octandecene (ODE, 90%, J&k), oleic acid (OA, 90%, Aldrich), oleylamine (OAm, 90%, Aladdin), n-hexane (anhydrous 97.5%, J&K), n-octane (anhydrous, \geq 98%, Alfa Aesar), methyl acetate (MeOAc, anhydrous 99%, J&k), toluene (analytical reagent, 98%, Chinasun Specialty Products Co., Ltd.), PFNBr titanium tetrachloride (TiCl₄, \geq 98%, Sinopharm Chemical Reagent Co., Ltd.), tris(pentafluorophenyl)borane (95%, Acros Organics), poly(triarylamine) (PTAA) and formamidinium iodide (FAI) are all purchased from Xi'an Polymer Light Technology Crop. (China). All the materials were used directly without further purification. Glass/FTO were purchased from Advanced Election Technology Co., Ltd (China).

2. Characterization

The UV-vis absorption spectroscopy was recorded on a Perkin Elmer model Lambda 750 spectrophotometer. The PL spectra were performed by a FluoroMax-4 spectrofluorometer (HORIBA Scientific) with excitation wavelength at 410 nm. TRPL spectra were obtained using a Hamamatsu streak camera. PL data were analyzed on a Nikon 50x objective (N.A. 0.55) in a Nikon ME600 optical microscope. FTIR spectra were collected using a Bruker HYPERION FTIR spectrometer and cumulated 32 scans at a resolution of 4 cm⁻¹. The TEM images were recorded by a Tecnai G2 F20 S-Twin system operated at 200 kV. The fs-TA measurements were performed on a Helios pump-probe system (150 fs, 1 kHz) combined with an amplified femtosecond laser system (excitation wavelength at 400 nm and laser energy of 2 μ J cm⁻²). The top view and cross-section image were obtained from SEM (a Zeiss G500 with the extra high tension of 10 kV).

J-V curves of the devices carried out at a Keithley 2400 Digital Source Meter under N_2 glovebox and simulated AM 1.5G spectrum at 100 mW cm⁻² with a solar simulator (Class AAA, 94023A-U, Newport). The active area of 7.25 mm² was defined by a shadow mask. The external quantum efficiency (EQE) measurement of the solar cells was measured by a Solar Cell Scan 100 system (Zolix Instruments Co. Ltd.).

3. CsPbI₃ QDs synthesis

2 g (6.14 mmol) of Cs_2CO_3 was loaded into a 250 mL three-neck flask along with 8 mL of OA and 100 mL of ODE. After continuous stirring at 90 °C under vacuum for 1 hour, the flask was filled with N₂ and heated up to 120 °C until CsCO₃ completely reacted with OA to form the clarified Csoleate. The solution was then transferred to N₂ glovebox and preheated to 100 °C to avoid solidification before use.

Meanwhile, 1 g (2.16 mmol) PbI₂ and 50 mL ODE were added into another 250 mL three-neck flask and degassed under vacuum at 90 °C for 1 hour with continuous stirring. Then, the switch was converted to N_2 flow, followed by 5 mL of OA and 5 mL of OAm were injected into the flask. Subsequently, the mixture was vacuumed again and maintain the temperature until the PbI₂ was completely dissolved. Then, the reaction system was heated up to 160 °C under N_2 atmosphere and 4 mL preheated Cs-oleate was quickly injected. After 5 s, the reaction flask was rapidly quenched to room temperature by an ice bath.

4. CsPbI₃ QDs purification

All purification procedures were carried out under a N2 atmosphere. For the first step purification

process, the crude solution was packed into six centrifuge tubes equally and a triple volume of antisolvent MeOAc was added into it, followed by centrifugation at 8000 rpm for 5 min. Afterward, the precipitate was collected and dissolved in 3 mL hexane for each tube with the supernatant discarded. For the second step purification process, the equal volume MeOAc was added to the solution and centrifuged at 8000 rpm for 3 min. Finally, the purified precipitate was dispersed in 20 mL of hexane total and centrifuged at 4000 rpm for 5 min to remove excess PbI₂ and Cs-oleate. Before use, the supernatant was stored in the dark at 0 °C in the refrigerator to precipitate excess Cs-oleate and Pb-oleate.

Figure S1. FTIR spectra of CsPbI₃ QD, PFN-Br and PFN-Br/CsPbI₃ QD.

Figure S2. C 1s and Cs 3d XPS core level spectra of CsPbI₃ QD and PFN-Br/CsPbI₃ QD.

Figure S3. The size distributions of Control and PFN-Br/CsPbI₃ QDs.

Figure S4. The HRTEM image of CsPbI₃ QD and PFN-Br/CsPbI₃ QD.

Figure S5. The XRD patterns of $CsPbI_3$ QD and hybrid PFN-Br/CsPbI₃ QD films.

Figure S6. SEM image and the corresponding elemental mappings of the PFN-Br/CsPbI₃ QD film.

Figure S7. The corresponding GSB decay spectra from the pseudo-colour TA maps.

Figure S8. UPS plots of control CsPbI₃ QD film and the PFN-Br/CsPbI₃ QD film.

Figure S9. Tauc plots of control and the PFN-Br/CsPbI₃ QD films with the energy level diagram of

both samples.

Table S1. The detailed parameters of TRPL spectra.

Sample	A ₁	$\tau_1(\mathrm{ns})$	A ₂	$\tau_2(\mathrm{ns})$	$\tau_{\rm ave}({\rm ns})$
CsPbI ₃ QD	41.2	0.77	58.8	10.15	1.68
PFN-Br/CsPbI ₃ QD	13.4	0.98	86.6	16.31	5.31

Sample	τ_1 (ps)	$\tau_2(\mathrm{ps})$	τ_3 (ps)
CsPbI ₃ QD	106.74107	438.72	1354.45
PFN-Br/CsPbI ₃ QD	164.446	473.24	2993.08

Table S2. Tri-exponential fitting parameters of TA delay data.

Table S3. The detailed device parameters extracted from J-V curves of CsPbI₃ PQD solar cells

Condition	$V_{\rm oc}$ (V)	$J_{\rm sc}~({ m mA~cm^{-2}})$	FF	PCE (%)
CsPbI ₃ QD	1.232	14.96	0.72	13.31
PFN-Br/CsPbI ₃ QD	1.251	16.22	0.74	15.07