Supporting information for:

Design of fluorescent polymeric thermometers based on anthrapyrazolone functionalized oligo(ethylene glycol) methacrylates

S. Saravanan,^{#a} Anashwara Babu,^{#a} Ronald Merckx,^b Zifu Zhong,^c Mageshwari Anandan,^a Venkatramaiah Nutalapati,^a Bruno G. De Geest,^c Richard Hoogenboom,^{*b} Valentin Victor Jerca,^{*d} Samarendra Maji,^{*a}

^aDepartment of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Kanchipuram, Tamil Nadu, India **E-mail:** <u>samarenr@srmist.edu.in</u>

^bSupramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, Ghent, Belgium **E-mail:** <u>richard.hoogenboom@ugent.be</u>

^cFaculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium

^dSmart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, Spl. Independentei 202B, Bucharest, Romania **E-mail:** <u>victor.jerca@ccocdn.ro</u>

Figure S1. ¹H NMR spectrum of 7-chloro-2-(2-hydroxyethyl)dibenzo[cd,g]indazol-6(2H)-one

Figure S2. ¹³C NMR spectrum of 7-chloro-2-(2-hydroxyethyl)dibenzo[cd,g]indazol-6(2H)-one

Figure S3. ¹H NMR spectrum of RAFT-Dye ester (powder) measured in CDCl₃. Ethyl acetate (EA) is present as impurity.

Figure S4. LC MS of RAFT CTA

Figure S5. ¹H NMR spectra was recorded in CDCl₃ during the RAFT homo-polymerization of $OEGMA_{300}$ at 70 °C.

Figure S6. SEC trace of the final sample of POEGMA₃₀₀ measured in DMAc containing 50 ×10⁻³ M of LiCl at 50 °C at a flow rate of 0.500 mL/min.

Figure S7. ¹H NMR spectra was recorded in CDCl₃ during the RAFT homo-polymerization of OEGMA₅₀₀ at 70 °C.

Figure S8. Overlay of SEC traces of POEGMA₅₀₀ measured in DMAc containing 50×10^{-3} M of LiCl at 50 °C at a flow rate of 0.500 mL/min.

Figure S9. DLS results in water as a function of temperature for P(MEO₂MA). The polymer concentration was top (left) 0.5 and (right) 1 mg/mL; bottom (left) 2 and (right) 3 mg/mL respectively.

Figure S10. Fluorescence Lifetime decay of Cl-Dye-OH in a) methanol and b) ethylene glycol.

Figure S11. Absorption spectra of CI-Dye-OH (0.99 μ mol) in a) Methanol and b) ethylene glycol as a function of temperature.

Figure S12. Fluorescence spectra of Cl-Dye-OH (0.1 μmol) in a) Methanol and b) in ethylene glycol and the emission at different excitation wavelength (350-450 nm).

Figure S13. Fluorescence spectra (excitation wavelength 415 nm) of CI-Dye-OH (0.1 μ mol) in a) Methanol and b) ethylene glycol as a function of temperature.

Figure S14. Fluorescence spectra in DW as a function of temperature for MEO_2MA . The polymer concentration was a) 0.5 mg/mL; b) 1 mg/mL; c) 2 and d) 3 mg/mL and the excitation wavelength were 415 nm, respectively.

Figure S15. The I/I_0 ratio of emission intensities as function of temperature for P(MEO₂MA) at different polymer concentrations.

Figure S16. Fluorescence spectra (excitation wavelength 415 nm) of CI-Dye-OH in a) Methanol and b) ethylene glycol at different concentration.