Supporting Information for

Pseudo Single Lithium-Ion Conductors Enabled by Metal-Organic Framework with Biomimetic Lithium

-Ion Chains for Lithium Metal Batteries

Jian-Qiang Shen,^{a,b} Ying-Li Song,^a Chun-Ting He,^c Chen Zhang,^b Xing Lu,^b Zhikai Qi,^a Yunfeng Lu^{b,*} and Xian-Ming Zhang^{a,d,*}

^aKey Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, P. R. China.

^bDepartment of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA

^cKey Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.

^dSchool of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China

*Correspondence and requests for materials should be addressed to:

Y. L. (email: <u>luucla@ucla.edu</u>) and X.-M. Z. (email: zhangxm@dns.sxnu.edu.cn)

Supplementary Index

Figure S1. Structures and lithium-ion chains of LiClO₄·2EC.

Figure S2. The polyhedral structure and pore structure of 808, 808-O and 808-LCE.

Figure S3. Thermogravimetry curves of 808, 808-OH, 808-LCE and LCE@808.

Figure S4. VTPXRD patterns of 808-OH.

Figure S5. SEM images of 808, 808-O and LCE@808.

Figure S6. The calculated results of coordination modes of 808-LCE.

Figure S7. Nyquist plot of 808-LCE and LCE@808 at 25 °C to 80 °C.

Figure S8. SEM images (a) 808-LCE film and (b) LCE@808 film.

Figure S9. Nyquist plot of 808-LCE film and LCE@808 film at 25 °C to 80 °C.

Figure S10. Current-time profile for Li|MOF-based electrolytes|Li cell at 20 mV of polarization.

Figure S11. Electrochemical impedance spectroscopy (EIS) of LiFePO₄|Li cells for 808-LCE film and

LCE@808 film after 1 cycle and 100 cycles.

Figure S12. SEM images of solid electrolyte interface (SEI) on lithium metal of LiFePO₄|Li cells for

808-LCE film and LCE@808 film after 100 cycles.

Table S1. ICP-AES results.

Table S2. Comparison of the ionic conductivities and Li⁺ conductivities for various MOF-based solid electrolytes.

Table S3. Comparison of the ionic conductivities and Li⁺ conductivities for various single lithium-ion conductors.

5.2 Å

Figure S1. Structures and lithium ion chains of LiClO₄·2EC.

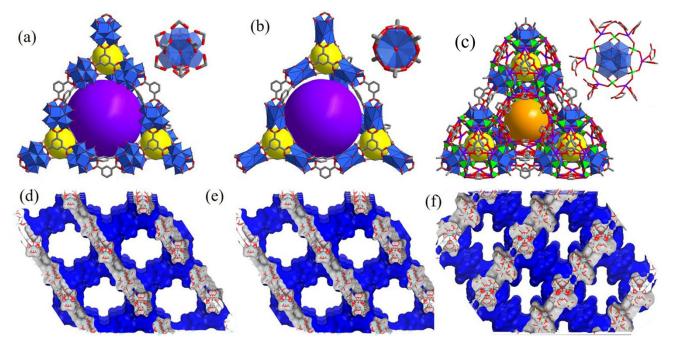


Figure S2. The polyhedral structure of (a) 808, (b) 808-O and (c) 808-LCE; the pore structure of (d)

808, (e) 808-O and (f) 808-LCE.

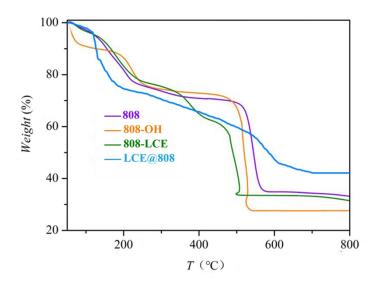


Figure S3. TG curves of 808, 808-OH, 808-LCE and LCE@808.

The TG curve of **808-LCE** indicated that **LCE** can be removed above 480°C, the content of LCE is 43.72%, close to 44.69% in theory. The TG curve of **LCE@808** indicated that **LCE** can be removed above 400°C, the content of LCE is 35.72%, close to 34.41% in theory.

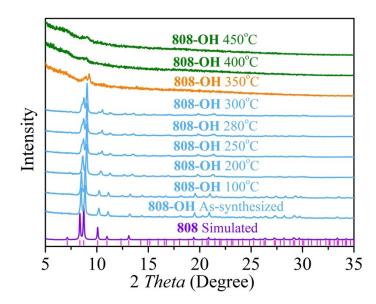


Figure S4. PXRD patterns of 808-OH after heated at different temperatures under N_2 for 30 min.

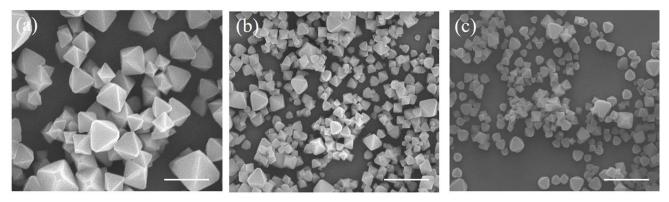


Figure S5. SEM images of (a) 808, (b) 808-O and (c) LCE@808 (scale bar 2 um).

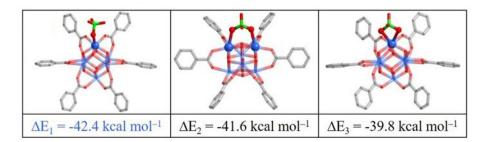


Figure S6. The calculated results of coordination modes of 808-LCE.

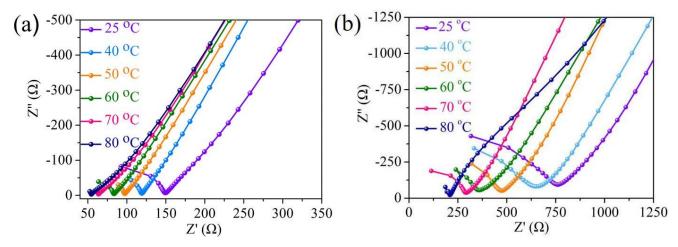


Figure S7. Nyquist plot of (a) 808-LCE and (b) LCE@808 at 25 °C to 80 °C.

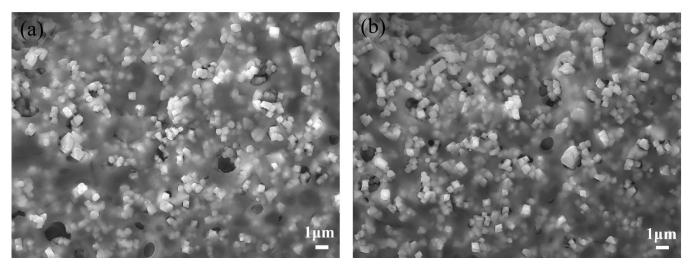


Figure S8. SEM images (a) 808-LCE film and (b) LCE@808 film.

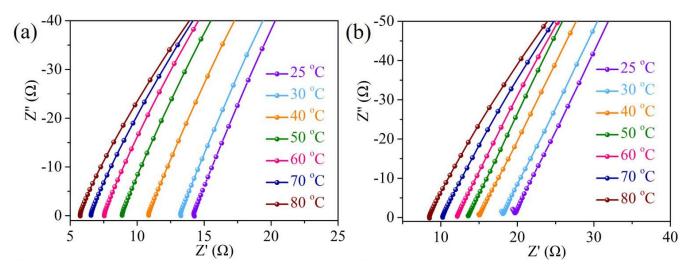


Figure S9. Nyquist plot of (a) 808-LCE film and (b) LCE@808 film between 25 °C to 80 °C.

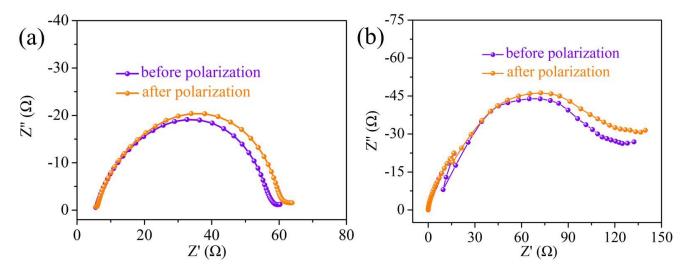
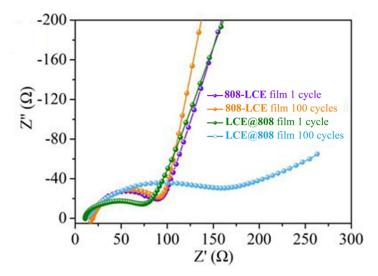
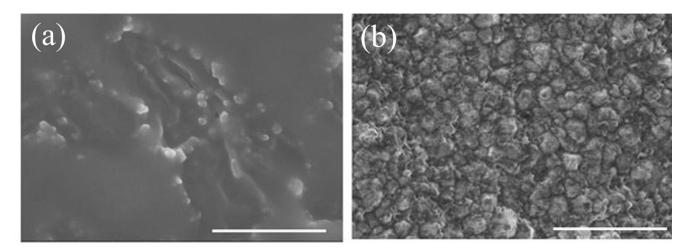




Figure S10 Impedance spectra at initial and steady states of (a) 808-LCE and (b) LCE@808 for Li|MOF-SEs|Li cell at 20 mV of polarization.

Figure S11. Electrochemical impedance spectroscopy (EIS) of LiFePO₄|Li cells for **808-LCE** film and **LCE@808** film after 1 cycle and100 cycles.

Figure S12. SEM images of solid electrolyte interface (SEI) on lithium metal of LiFePO₄|Li cells for **808-LCE** film and **LCE@808** film after 100 cycles.

 Table S1. ICP-AES results.

Sample	$W_{\rm Zr}$ (mg L ⁻¹)	$W_{\rm Li} ({ m mg}{ m L}^{-1})$	$n_{\mathrm{Zr}} (\mu\mathrm{mol} \mathrm{L}^{-1})$	$n_{\mathrm{Li}} (\mu\mathrm{mol} \mathrm{L}^{-1})$	Zr:Li
808-LCE	1.50	0.113	16.42	16.29	1.0:0.99
LCE@808	1.67	0.131	18.31	18.97	1.00:1.04
blank	<0.01	<0.01	<0.01	<0.01	/

Table S2. Comparison of the ionic conductivities and Li⁺ conductivities for various MOF-based solid electrolytes. The parameters better than that of **808-LCE** were highlighted in blue.

Compound	Mobile ion	Guests	σ (mS cm ⁻¹)	T (°C)	t+	$\sigma_{Li^+} (mS \\ cm^{-1})$	$E_{\rm a}({\rm eV})$	Ref.	
808-LCE	Li ⁺	EC/DMC	0.55	25	0.64	0.35	0.19		
LCE@808	Li ⁺ , ClO ₄ ⁻	EC/DMC	0.48	25	0.27	0.13	0.23	This Work	
MIT-20-LiBF ₄	Li ⁺ , BF ₄ ⁻	PC	0.48	25	/	/	0.16	J. Am. Chem. Soc.	
MIT-20-LiCl	Li ⁺	PC	0.013	25	0.66	0.01	0.32	2017 , <i>139</i> , 13260.	
Li-CON-TFSI	Li⁺, TFSI⁻	EtOH	0.057	30	/	/	0.34	J. Am. Chem. Soc. 2018 , 140, 896.	
LiPF ₆ @CD- COF-Li	Li+, PF ₆ -	EC DMC	2.7	30	/	/	0.26	Angew. Chem. Int. Ed. 2017 , 56, 16313.	
IL@MOF- 525(Cu)	Li⁺, TFSI-	[EMIM][T FSI]	3.0	25	0.36	/	/	<i>Adv. Mater.</i> 2018 , 30, 1704436.	
LiClO ₄ @COF- 5	Li ⁺ , ClO ₄ -	THF	0.26		/	/	0.037	J. Am. Chem. Soc. 2016 , 138, 9767.	
ICOF-2	Li+	РС	0.031	25	0.80	0.025	0.24	Angew. Chem. Int. Ed. 2016 , 55, 1737.	
EHU1(Sc,Li)·(LiBF ₄)	Li+, BF ₄ -	/	0.042	25	/	/	/	<i>Chem.</i> <i>Mater.</i> 2016 , 28, 2519.	
IL@ZIF-8	Li⁺, TFSA-	[EMIM][T FSI]	/	/	/	/	/	<i>Chem.</i> <i>Mater.</i> 2015 , 27, 7355.	
Mg ₂ (dobdc)·0.0 6LiO ⁱ Pr	Li ⁺	EC/DEC	0.012	25	/	/	0.15	J. Am.	
$\begin{array}{c} Mg_2(dobdc) \cdot 0.3 \\ 5LiO^i Pr \cdot 0.25Li \\ BF_4 \end{array}$	Li ⁺ , BF ₄ ⁻	EC/DEC	0.31	25	/	/	0.15	<i>Chem. Soc.</i> 2011 , <i>133</i> , 14522.	

Table S3. Comparison of the ionic conductivities and Li⁺ conductivities for various single lithium-ion conductors.

Compound	Type of electrlyt es	Mobi le ion	Guests	σ (mS cm ⁻¹)	T (°C)	t ⁺	$\sigma_{Li^+} (mS \\ cm^{-1})$	$E_{\rm a}({\rm eV})$	Ref.
808-LCE	MOF	Li ⁺	EC/DMC	0.55	25	0.64	0.35	0.19	This Work
MIT-20-LiCl	MOF	Li ⁺	PC	0.013	25	0.66	0.01	0.32	J. Am. Chem. Soc. 2017 , 139, 13260.
ICOF-2	MOF	Li ⁺	PC	0.031	25	0.80	0.025	0.24	Angew. Chem. Int. Ed. 2016 , 55, 1737.
[Mg ₂ (dobdc)]·0.06LiO ⁱ Pr	MOF	Li ⁺	EC/DEC	0.012	25	/	/	0.15	J. Am. Chem. Soc. 2011 , 133, 14522.
-COCF(CF ₃)O (CF ₂) ₂ SO ₂ N ⁽⁻⁾	Blend polymer	Li+	NA	<i>Ca.</i> 0.01	30	0.71 (25 °C)	0.007	/	Electrochim. Acta, 2013 , 93, 254.
-SO ₂ N ⁽⁻⁾ SO ₂ CF ₃	Blend polymer	Li+	NA	<i>Ca.</i> 10 ⁻³	60	0.92	9.2×10 ⁻³	/	Electrochim. Acta, 2001 , 46, 1487.
-SO ₂ N ⁽⁻⁾ SO ₂ CF ₃	Random copoly mer	Li ⁺	NA	0.1	60	0.93	0.093	/	
-SO ₂ N ⁽⁻⁾ SO (=NSO ₂ CF ₃)CF ₃	Blend polymer	Li+	NA	0.01	60	0.91	0.009	/	Angew. Chem. Int. Ed. 2016 , 55, 2521.
-SO ₂ N ⁽⁻⁾ SO ₂ CF ₃	Blend polymer	Li+	NA	0.01	60	0.90	0.009	/	RSC Adv. 2016 , 6, 32454.
-SO ₂ N ⁽⁻⁾ SO ₂ CF ₃	Tribloc k polymer	Li ⁺	NA	0.013	60	0.85 (90 °C)	0.011	/	Nat. Mater. 2013, 12, 452.
-SO ₂ N ⁽⁻⁾ SO ₂ CF ₃	Block polymer	Li ⁺	NA	0.01	70	0.83	8.3×10 ⁻³	/	ACS Appl. Mater. Interfaces 2016, 8, 10350.