Electronic supplementary information (ESI)

Boosting charge transfer in Au-decorated B/K co-doped CN

nanosheets towards enhanced photocatalytic CO₂ reduction

Xiangli Shi^a, Qiong Zhang^a, Yimeng Zhou^b, Qianjin Ye^b, Deli Jiang^{b,*}, Dan Tian^c, and Di Li^a,*

^a School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

^b Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

^c College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

Corresponding authors: Deli Jiang, Di Li

E-mail addresses: dlj@ujs.edu.cn (D. Jiang), cfbgdd@sina.com (D. Li)

Fig. S1 Enlarged (002) diffraction peak of CN, BKCN and 1% Au/BKCN.

Fig. S2 FTIR spectra of of CN, BKCN and 1% Au/BKCN.

Fig. S3 EPR spectra of CN, BKCN and 1% Au/BKCN.

Fig. S4 High-resolution B 1s XPS spectrum of BKCN.

Fig. S5 High-resolution Au 4f XPS spectrum of 1% Au/BKCN.

Fig. S6 Mott-Schottky plot of pristine (a) CN and (b) BKCN, and (c) schematic illustration of the band structure of CN and BKCN.

Fig. S7 Mott-Schottky plot of (a) pristine BCN and (b) KCN, and (c) schematic illustration of the band structure of BCN and KCN.

Fig. S8 Photocatalytic CO₂ reduction performance of 1% Au/BKCN under different condition.

Fig. S9 XRD patterns of 1% Au/BKCN before and after 5 cycles.

Fig. S10 TEM image of 1% Au/BKCN photocatalyst after five times cycles.

Fig. S11 (a) Products yield of CN, BKCN and 1% Au/BKCN samples through a 500 nm band pass filter. (b) Proposed mechanism for the photocatalytic CO₂ reduction over Au/BKCN under 550 nm monochromatic light.

Fig. S12 Yields of O_2 in CO_2 photoreduction.

sample	Theoretical Au content (wt.%)	Actual Au content (wt.%)
CN	0	0
BCN	0	0
KCN	0	0
BKCN	0	0
1% Au/CN	1.000	0.960
1% Au/BCN	1.000	1.020
1% Au/KCN	1.000	0.930
0.5% Au/BKCN	0.500	0.550
1% Au/BKCN	1.000	0.980
3% Au/BKCN	3.000	2.970

 Table S1. ICP-OES measured Au contents in the as-prepared photocatalysts.

Sample	\mathbf{A}_{1}	\mathbf{A}_{2}	$ au_1$ (ns)	$ au_2$ (ns)	$ au_{\mathrm{ave}}\left(\mathrm{ns} ight)$
CN	36.59	46.77	1.9287	6.0092	5.190
BKCN	39.97	46.78	1.7244	5.7325	4.913
1% Au/BKCN	42.44	43.14	1.7371	5.6751	4.746

Table S2. Charge carriers lifetime parameters of CN, BKCN, and 1% Au/BKCN.

Analysis method of time-resolved PL spectra

a "biexponential" function was used to fit the decay curves as follows: Fit = $A_1 e^{(-t/\tau 1)} + A_2 e^{(-t/\tau 2)}$

Where the shorter decay lifetime (τ_1) is attributed to the non-radiative relaxation process, and the longer decay lifetime (τ_2) comes from the radiative process which is related to the direct recombination of photoinduced charge carriers. A₁ and A₂ are constants related to non-radiative and radiative relaxation processes, respectively. The average charge carrier lifetime (τ_{ave}) can be calculated from the equation as follows: $[\tau_{ave} = (A_1\tau_1^2 + A_2\tau_2^2)/(A_1\tau_1 + A_2\tau_2)].$

External Quantum Efficiency (EQE) Measurement:

The external quantum efficiency for the photocatalytic CO_2 reduction was determined at 500 nm measured using a single band pass filter by using the same photochemical experimental setup. An area of 38.48 cm² was illuminated and the light intensity was measured with a solar power meter (SM206-SOLAR). Light intensity was determined to be 11.6 W·m⁻². After 5 h irradiation, the CO, CH₄ and H₂ was measured to be 1.6, 0.01, and 0.005 µmol. EQE were calculated using the following equation:

$$EQE(\%) = N_{electron}/N_{photon}$$

The photocatalytic electron consumption $(N_{electron})$ is calculated using the equation:

$$N_{electron} = [2N(CO) + 8N(CH_4) + 2N(H_2)] \times N_A$$

Where, N(CO), $N(CH_4)$, and $N(H_2)$ are the number of moles CO, CH₄, H₂ produced respectively, N_A is Avogadro's number

The photons flux (N_{photon}) is calculated using the equation:

$$N_{photon} = (t \times I \times \lambda \times A)/(h \times c)$$

Where, t is reaction time, I is intensity of light, λ is the wavelength of incident light, and A is the irradiated area, h is Planck constant, c is speed of light. Thus, the external quantum efficiency is estimated to be 0.098%.

catalyst	light source	product	reduction yield(µmol g ⁻ ¹)	Ref.
Cl-CN	UV (8 W)	СО	39.9	[1]
O-CN	350 W Xe lamp (λ≥ 420 nm)	C ₂ H ₅ OH	4.4	[2]
$Au/g-C_3N_4$	UV-light (300 W)	СО	16.5	[3]
12FLTC/BCN		СО	14.4	[4]
AUNB/g-C ₃ N ₄	AM 1.5	СО	21.95	[5]
defect g-C ₃ N ₄	UV–vis (300 W Xe lamp)	СО	19.7	[6]
1%Au/BKCN	300 W Xe lamp	CO	57.8	This work

Table S3. Comparison of photocatalytic CO_2 reduction based on heteroatoms doped g- C_3N_4 .

References

- Y. Wang, X. Tang, P. Huo, Y. Yan, Z. Zhu, J. Dai, Z. Liu, Z. Li and H. Xi, Insight into the effect of the Cl 3p orbital on g-C₃N₄ mimicking photosynthesis under CO₂ reduction, *J. Phys. Chem. C*, 2021, **125**, 9646-9656.
- 2 J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You and J. Yu, Hierarchical porous O-doped g-C₃N₄ with enhanced photocatalytic CO₂ reduction activity, *Small*, 2017, 13, 1603938.
- 3 X. Li, C. Liu, D. Wu, J. Li, P. Huo and H. Wang, Improved charge transfer by size-dependent plasmonic Au on C₃N₄ for efficient photocatalytic oxidation of RhB and CO₂ reduction, *Chinese J. Catal.*, 2019, 40, 928-939.
- 4 H. Wang, Q. Tang and Z. Wu, Construction of few-layer Ti₃C₂ MXene and boron-doped g-C₃N₄ for enhanced photocatalytic CO₂ reduction, ACS Sustainable Chem. Eng., 2021, 9, 8425-8434.
- 5 M. K. Hussien, A. Sabbah, M. Qorbani, M. H. Elsayed, P. Raghunath, T.-Y. Lin,
 S. Quadir, H.-Y. Wang, H.-L. Wu, D.-L. M. Tzou, M.-C. Lin, P.-W Chung, H.-H.
 Chou, L.-C. Chen and K.-H. Chen, Metal-free four-in-one modification of g-C₃N₄
 for superior photocatalytic CO₂ reduction and H₂ evolution, *Chem. Eng. J.*, 2022,
 430, 132853.
- 6 W. Ma, N. Wang, Y. Guo, L. Yang, M. Lv, X. Tang and S. Li, Enhanced photoreduction CO₂ activity on g-C₃N₄: by synergistic effect of nitrogen defective-enriched and porous structure, and mechanism insights, *Chem. Eng. J.*, 2020, **388**, 124288.