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Fig. S1 Enlarged (002) diffraction peak of CN, BKCN and 1% Au/BKCN.
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Fig. S2 FTIR spectra of of CN, BKCN and 1% Au/BKCN.
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Fig. S3 EPR spectra of CN, BKCN and 1% Au/BKCN.



184 186 188 190 192 194 196

BKCN

190.9 eV

192.2 eV

B 1s

In
te

ns
ity

 (a
.u

.)

Binding energy (eV)

Fig. S4 High-resolution B 1s XPS spectrum of BKCN.
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Fig. S5 High-resolution Au 4f XPS spectrum of 1% Au/BKCN.
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Fig. S6 Mott-Schottky plot of pristine (a) CN and (b) BKCN, and (c) schematic 

illustration of the band structure of CN and BKCN.
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Fig. S7 Mott-Schottky plot of (a) pristine BCN and (b) KCN, and (c) schematic 

illustration of the band structure of BCN and KCN.
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Fig. S8 Photocatalytic CO2 reduction performance of 1% Au/BKCN under different 

condition.
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Fig. S9 XRD patterns of 1% Au/BKCN before and after 5 cycles.



Fig. S10 TEM image of 1% Au/BKCN photocatalyst after five times cycles.



Fig. S11 (a) Products yield of CN, BKCN and 1% Au/BKCN samples through a 500 

nm band pass filter. (b) Proposed mechanism for the photocatalytic CO2 reduction 

over Au/BKCN under 550 nm monochromatic light.
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Fig. S12 Yields of O2 in CO2 photoreduction.



Table S1. ICP-OES measured Au contents in the as-prepared photocatalysts.

sample Theoretical Au content 
(wt.%)

Actual Au content
(wt.%)

CN
BCN
KCN

BKCN
1% Au/CN

0
0
0
0

1.000

0
0
0
0

0.960
1% Au/BCN 1.000 1.020
1% Au/KCN 1.000 0.930

0.5% Au/BKCN 0.500 0.550
1% Au/BKCN 1.000 0.980
3% Au/BKCN 3.000 2.970



Table S2. Charge carriers lifetime parameters of CN, BKCN, and 1% Au/BKCN.

Sample A1 A2 τ1 (ns) τ2 (ns) τave (ns)

CN 36.59 46.77 1.9287 6.0092 5.190

BKCN 39.97 46.78 1.7244 5.7325 4.913

1% Au/BKCN 42.44 43.14 1.7371 5.6751 4.746

Analysis method of time-resolved PL spectra
a “biexponential” function was used to fit the decay curves as follows:

Fit = A1e(−t/τ1) + A2e(−t/τ2)

Where the shorter decay lifetime (τ1) is attributed to the non-radiative relaxation 
process, and the longer decay lifetime (τ2) comes from the radiative process which is 
related to the direct recombination of photoinduced charge carriers. A1 and A2 are 
constants related to non-radiative and radiative relaxation processes, respectively. The 
average charge carrier lifetime (τave) can be calculated from the equation as follows: 
[τave = (A1τ1

2 + A2τ2
2)/(A1τ1 + A2τ2)].



External Quantum Efficiency (EQE) Measurement:

The external quantum efficiency for the photocatalytic CO2 reduction was 

determined at 500 nm measured using a single band pass filter by using the same 

photochemical experimental setup. An area of 38.48 cm2 was illuminated and the light 

intensity was measured with a solar power meter (SM206-SOLAR). Light intensity 

was determined to be 11.6 W·m−2. After 5 h irradiation, the CO, CH4 and H2 was 

measured to be 1.6, 0.01, and 0.005 µmol. EQE were calculated using the following 

equation:

EQE(%) = Nelectron/Nphoton

The photocatalytic electron consumption (Nelectron) is calculated using the 

equation:

Nelectron = [2N(CO) + 8N(CH4) + 2N(H2)] × NA

Where, N(CO), N(CH4), and N(H2) are the number of moles CO, CH4, H2 produced 

respectively, NA is Avogadro’s number

The photons flux (Nphoton) is calculated using the equation:

Nphoton = (t × I × λ × A)/(h × c)

Where, t is reaction time, I is intensity of light, λ is the wavelength of incident light, 

and A is the irradiated area, h is Planck constant, c is speed of light. Thus, the external 

quantum efficiency is estimated to be 0.098%.



Table S3. Comparison of photocatalytic CO2 reduction based on heteroatoms doped 
g-C3N4.

catalyst light source product reduction 
yield(μmol g-

1)

Ref.

Cl-CN UV (8 W) CO 39.9 [1]

O-CN 350 W Xe lamp (λ ≥ 
420 nm)

C2H5OH 4.4 [2]

Au/g-C3N4 UV-light (300 W) CO 16.5 [3]

12FLTC/BCN CO 14.4 [4]

AUNB/g-C3N4 AM 1.5 CO 21.95 [5]

defect g-C3N4 UV−vis (300 W Xe 
lamp)

CO 19.7 [6]

1%Au/BKCN 300 W Xe lamp CO 57.8 This 
work
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