Supporting Information

Post-Synthetically Modified Porous Organic Polymer for Photocatalytic Water Purification

Minhyeok Choi,[†] Nem Singh,[†] Subin Son, Ji Hyeon Kim, Minjung Kang, Su Hong Park, Dong Hoon

Choi,* Chang Seop Hong* and Jong Seung Kim*

Department of Chemistry, Korea University, Seoul 02841, Korea

*E-mail: dhchoi8803@korea.ac.kr, cshong@korea.ac.kr and jongskim@korea.ac.kr

[†] These authors contributed equally to this work.

Table of Contents

S.N.	Contents	Page
1.	¹ H NMR, enlarged synthesis scheme of PNP , IR data of CHO-TPP, NPDH,	S3-S4
	and PNP and solid-state ¹³ C NMR spectra of PNP	
2.	TGA analysis of PNP and Pt@PNP and EDS elemental mapping of Pt@PNP	S5
	without black dot	
3.	Area EDS spectra of Pt@PNP without black dot and SEM images of PNP and	S6
	Pt@PNP for checking the stability	
4.	XPS analysis of PNP, Solid-state UV-vis spectra of PNP and Pt@PNP, and	S7
	the optical band gap of PNP from ssUV-vis reflectance spectra	
5.	Cyclic voltammetry data of ferrocene as a reference, PNP, and Pt@PNP to	S 8
	measure the energy level of polymers.	
6.	The reaction scheme of ABDA with singlet oxygen and ROS generation	S9
	experiment using ABDA indicator	
7.	The reaction scheme of DHR123 and superoxide radical generation experiment	S10
8.	The reaction scheme of RNO and hydroxyl radical generation experiment, and	S11
	the reaction scheme of TEMP and DMPO, as spin trapping-agent, after reacting	
	with each ROS	
9.	The methyl orange degradation experiment; Time-dependent UV-Vis	S12
	absorption spectra of MO in aqueous solution upon white LED lamp irradiation	
	without/with PNP and Pt@PNP	
10.	The rhodamine B degradation experiment; time-dependent UV-Vis absorption	S13
	spectra of Rh B in aqueous solution upon white LED lamp irradiation	
	without/with PNP and Pt@PNP	

Fig. S1 ¹H NMR (DMSO, 500 MHz) spectrum of NPDH

Fig. S2 ¹H NMR (CDCl₃, 500 MHz) spectrum of CHO-TPP

Fig. S3 Systematic representation of synthesis of PNP (top) and IR spectra of CHO-TPP, NPDH, and PNP.

Fig. S4 Solid-state ¹³C NMR spectra of PNP.

Fig. S5 TGA analysis of PNP and Pt@PNP.

Fig. S6 EDS elemental mapping of Pt@PNP without black dot.

Fig. S7Area EDS spectra of Pt@PNP without black dot.

Fig. S8 SEM images of PNP and Pt@PNP for checking stability under light irradiation for 2 h

and in water for 3 days.

Fig. S9 XPS analysis of PNP.

Fig. S10 Solid-state UV-vis spectra of PNP and Pt@PNP.

Fig. S11 The optical band gap of PNP from ssUV-vis reflectance spectra.

Fig. S12 Cyclic voltammetry data of ferrocene as a reference, PNP, and Pt@PNP to measure the energy level of polymers. Before the measurement of the energy level of polymers, the experiment was conducted using ferrocene as a reference in anhydrous acetonitrile with tetrabutylammonium hexafluorophosphate (0.1 M). The working electrode was prepared by drop-casting water/isopropyl alcohol suspension of POP with 5 wt% Nafion.

Fig. S13 (a) The reaction scheme of ABDA with singlet oxygen. Time-dependent UV-Vis absorption spectra of ABDA (100 μM) in 1% DMSO/water solution upon white LED lamp irradiation (50 mW/cm²) (b) without/with (c) PNP and (d) Pt@PNP (0.1 mg/mL).

Fig. S14 (a) The reaction scheme of DHR123 with superoxide radical. Time-dependent UV-Vis absorption spectra of DHR123 (100 μM) in 1% DMSO/water solution upon white LED lamp irradiation (50 mW/cm²) (b) without/with (c) PNP and (d) Pt@PNP (0.1 mg/mL).

Fig. S15 (a) The reaction scheme of RNO with hydroxyl radical. Time-dependent UV-Vis absorption spectra of RNO (50 μM) in MeOH solution upon white LED lamp irradiation (50 mW/cm²) (b) without/with (c) PNP and (d) Pt@PNP (0.1 mg/mL).

Fig. S16 The reaction scheme of TEMP and DMPO, as spin trapping-agent, after reacting with each ROS.

Fig. S17 (a) The structure scheme of methyl orange. Time-dependent UV-Vis absorption spectra of MO (10 ppm) in aqueous solution upon white LED lamp irradiation (50 mW/cm²) (b) without/with (c) **PNP** and (d) **Pt@PNP** (0.1 mg/mL).

Fig. S18 (a) The structure scheme of rhodamine B. Time-dependent UV-Vis absorption spectra of Rh B (10 ppm) in aqueous solution upon white LED lamp irradiation (50 mW/cm²) (b) without/with (c) **PNP** and (d) **Pt@PNP** (0.1 mg/mL).