1	Electronic Supplementary Information
2	for
3 4 5 6	Ionic electroactive PEDOT:PSS/liquid-crystalline polymer electrolyte actuators: Photopolymerization of zwitterionic columnar liquid crystals complexed with a protic ionic liquid
7	Siyu Cao, Chengyang Liu, and Masafumi Yoshio*
8 9 10 11 12	Molecular Mechatronics Group, Research Center for Macromolecules & Biomaterials, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan *E-mail: YOSHIO.Masafumi@nims.go.jp
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1 1. Characterization of liquid crystallinity

2 Fig. S1 DSC thermograms of (a) M1/2(40), (b) M1/2(50), and (c) M1/2(60). The transition

S2

3 temperatures were taken at the peak tops.

4

5

7

8

1

Fig. S2 XRD pattern of M1/2(50) at room temperature.

2 The number of molecules (n) per cross-sectional slice of the column for M1/2(50) was estimated as 10 using the equation $n = (\sqrt{3}N_A a^2 h \rho)/2M$, where N_A is Avogadro's number 3 (6.02×10²³ mol⁻¹), ρ is density, M is molecular weight, and h is the average height of the 4 stratum; h was estimated as 4.4 Å from the position of a halo at $2\theta = 20^{\circ}$. ρ was estimated as 5 6 1.0 g cm^{-3} .

7

1 **2.** *In situ* photopolymerization of the LC mixtures

2 Fig. S3 Polarizing optical micrographs at room temperature: (a) M1/2(50) and (b) P1/2(50).

3

Fig. S4 Photograph of a free-standing polymer film of P1/2(50).

1 Fig. S5 FT-IR spectra of 2 (green line), 1 (black line), and P1/2 (50) (red line) at room

- 2 temperature.

1 **3. Ionic Conductivity**

- Fig. S6 Ionic conductivities of M1/2(x) and polymer films P1/2(x) at room temperature.
- 3

4 Fig. S7 POM images of aligned M1/2(50) between comb-shaped gold electrodes at ambient

5 conditions: (a) perpendicular orientation of the columnar axis to the direction of electrodes

6 (\perp); (b) parallel orientation of the columnar axis to the direction of electrodes (//).

Fig. S8 Nyquist plots of M1/2(50) with random orientation and uniaxially planar orientation of columns between comb-shaped gold electrodes at ambient conditions. // and ⊥ indicates that the columnar axis is parallel and perpendicular to the direction of gold electrodes, respectively.

6

1

7 **4. Actuation Performance**

9 Fig. S9 Cycle stability of the bending actuation for the P1/2(50)-based actuator under 2 V at 1 Hz.

3 Fig. S10 SEM images of the cross-section of the P1/2(50)-based actuator before and after long-term

- 4 actuation experiment.
- 5

- 6 Fig. S11 Photograph of the P1/2(50)-based actuator under an AC voltage of 2 V at 0.1 Hz.
- 7 The thickness of actuator is 68 µm.


```
2 + 2 and -2 V at scan rates of 200, 100, and 50 mV s<sup>-1</sup> under ambient condition. The electrolyte
```

thickness of P1/2(50) is 57 μ m.

Electrolyte	Electrode	IL (wt%)	$\begin{array}{c} V_{AC} \\ (V) \end{array}$	Frequency (Hz)	Bending strain (%)	$(V_{DC}$	Blocking force (mN)	Normalized force ^a (kPa)
This work		[BMIM] ⁺ [HSO ₄] ⁻						
75-µm-thick P1/2(60)	PEDOT:PSS	24.8 wt%	2	0.1	0.67	7	4.68	1170
75-µm-thick P1/2(50)	PEDOT:PSS	18.1 wt%	2	0.01	0.86	1	1.45	337
75-µm-thick P1/2(40)	PEDOT:PSS	12.8 wt%	2	0.01	0.59	1	1.24	372
columnar LC membrane [S1]	PEDOT:PSS	[EMIM] ⁺ [BF ₄] ⁻ 7.9 wt%	7	0.01	0.20	7	0.27	392
columnar LC membrane [S2]	PEDOT:PSS	[EMIM] ⁺ [BF ₄] ⁻ 5.6 wt%	7	0.01	0.81	7	1.10	204
olymer composite membrane [S3]	PEDOT:PSS	[BMIM] ⁺ [CF ₃ SO ₃] ⁻ 27.5 wt%	1	0.1	0.32	7	0.27	42
PVDF [S4]	Ni-CAT NWAs/CNF	[EMIM] ⁺ [TFSI] ⁻ 60 wt%	ŝ	0.1	0.36	$\mathfrak{Z}^{\mathfrak{h}}$	1.45	1510
Cellulose [S5]	PEDOT:PSS	[EMIM] ⁺ [BF ₄] ⁻ 70 wt%	7	0.1	0.28	7	1.01	606
t copolymer (PSS-b-PMB) [S6]	P(VdF-HFP)/SWCNTs/ [EMIM] ⁺ [BF4] ⁻	ZIms 50 mol%	7	0.5	0.87	-	0.3	516
Polyimide-Nafion [S7]	Pt		с	0.1	0.28	ŝ	5.93	272
Nafion 117 [S7]	Pt		ю	0.1	0.21	З	6.86	233
Sulfonated polyimide [S8]	Carbon composite	[EMIM] ⁺ [TFSI] ⁻ 50-75 wt%	1.5	0.05	0.19	б	0.67	268
rmoplastic polyurethane [S9]	PEDOT:PSS/IL/DMSO	[EMIM] ⁺ [TFSI] ⁻ 80 wt%	7	0.1	0.61	2^c	0.3	101
Nafion [S10]	Molybdenum-disulfide/ Graphene-oxide	[EMIM] ⁺ [BF ₄] ⁻ 37.5 wt%	1.5	0.1	1.27	7	0.28	168
ovalent organic frameworks (COF-DT-SO3Na) [S11]	PEDOT:PSS	ı	0.5	0.1	0.39	0.5 ^d	1.2	1667

 Table S1. Summary of bending strains and blocking forces between different actuators.

- 1 *a*: Normalized force ($F_{\text{Nor.}}$) is calculated using the following equation [S1] $F_{\text{Nor.}} = F_{\text{exp.}}l/wt^2$,
- 2 where $F_{exp.}$ is the measuring blocking force, w, t, and l are the width, thickness, and free
- 3 length of the actuator, respectively.
- 4 *b,c,d*: blocking force was measuring under applying AC voltage.
- 5

6 **5. References**

- 7 [S1] C.-H. Wu, W. Meng and M. Yoshio, Low-voltage-driven actuators using photo-cross-
- 8 linked ionic columnar liquid-crystalline polymer films, ACS Mater. Lett., 2022, 4, 153–158.
- 9 [S2] C.-H. Wu, W. Meng, K. Iakoubovskii and M. Yoshio, Photocured liquid-crystalline
- 10 polymer electrolytes with 3D ion transport pathways for electromechanical actuators, ACS
- 11 Appl. Mater. Interfaces, 2023, **15**, 4495–4504.
- 12 [S3] S. Cao, J. Aimi and M. Yoshio, Electroactive soft actuators based on columnar lonic
- 13 liquid crystal/polymer composite membrane electrolytes forming 3D continuous ionic
- 14 channels, ACS Appl. Mater. Interfaces, 2022, 14, 43701–43710.
- 15 [S4] Y.-X. Shi, Y. Wu, S.-Q. Wang, Y.-Y. Zhao, T. Li, X.-Q. Yang and T. Zhang, Soft
- 16 electrochemical actuators with a two-dimensional conductive metal-organic framework
- 17 nanowire array, J. Am. Chem. Soc., 2021, 143, 4017–4023.
- 18 [S5] F. Wang, Z. Jin, S. Zheng, H. Li, S. Cho, H.J. Kim, S.-J. Kim, E. Choi, J.-O. Park and
- 19 S. Park, High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial
- 20 cellulose membrane, *Sens. Actuators B*, 2017, **250**, 402–411.
- 21 [S6] O. Kim, H. Kim, U.H. Choi and M.J. Park, One-volt-driven superfast polymer actuators
- 22 based on single-ion conductors, *Nat. Commun.*, 2016, 7, 13576.
- 23 [S7] J. Nam, T. Hwang, K. J. Kim and D.-C. Lee, A new high-performance ionic polymer-
- 24 metal composite based on Nafion/polyimide blends, *Smart Mater. Struct.*, 2017, **26**, 035015.
- 25 [S8] S. Imaizumi, Y. Ohtsuki, T. Yasuda, H. Kokubo and M. Watanabe, Printable polymer
- 26 actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials, ACS Appl.
- 27 Mater. Interfaces, 2013, 5, 6307–6315.
- 28 [S9] S.Y. Kim, Y. Kim, C. Cho, H. Choi, H.W. Park, D. Lee, E. Heo, S. Park, H. Lee and
- 29 D.H. Kim, Deformable ionic polymer artificial mechanotransducer with an interpenetrating
- 30 nanofibrillar network, ACS Appl. Mater. Interfaces, 2019, 11, 29350–29359.
- 31 [S10] M.T. Manzoor, V.H. Nguyen, S. Umrao, J.H. Kim, R. Tabassian, J.E. Kim and I.K.

- 1 Oh, Mutually exclusive p-type and n-type hybrid electrode of MoS2 and graphene for 2 artificial soft touch fingers, *Adv. Funct. Mater.*, 2019, **29**, 1905454.
- 3 [S11] F. Yu, J.-H. Ciou, S. Chen, W.C. Poh, J. Chen, J. Chen, K. Haruethai, J. Lv, D. Gao
- 4 and P.S. Lee, Ionic covalent organic framework based electrolyte for fast-response ultra-low
- 5 voltage electrochemical actuators, *Nat. Commun.*, 2022, **13**, 390.
- 6