Engineering raspberry-like CuCo₂S₄@ZnS hollow particles encapsulated by reduced graphene oxide for hybrid supercapacitor

Bahareh Ameri, Akbar Mohammadi Zardkhoshoui*, and Saied Saeed Hosseiny Davarani*

Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.

Corresponding authors: *Tel: +98 21 22431661; Fax: +98 21 22431661; E-mail: <u>ss-hosseiny@sbu.ac.ir</u> (S.S.H. Davarani); and mohammadi.bahadoran@gmail.com (A. Mohammadi

Zardkhoshoui)

Supporting Information

Fig S1 (a, b) FE-SEM images of the CC-GSSs. (c) TEM image of the CC-GSSs. (d) EDX pattern of the CC-GSSs.

Fig S2 (a-c) FE-SEM images of the CCS-HSs.

Fig S3 EDX pattern of the CCS-HSs.

Fig S4 FE-SEM mapping images of the CCS-HSs.

Fig S5 TEM image of the CCS-HSs.

Fig S6 (a, b) FE-SEM images of the ZIF-8.

Fig S7 (a, b) FE-SEM images of the ZnS.

Fig S8 EDX pattern of the ZnS.

Fig S9 FE-SEM mapping images of the ZnS.

Fig S10 TEM image of the ZnS.

Fig S11 EDX pattern of the CC-G@ZIF-8.

Fig S12 EDX pattern of the RCCS-ZSH8 sample.

Fig S13 FE-SEM mapping images of the RCCS-ZSH8 sample.

Fig S14 (a) FE-SEM images of the RCCS-ZSH8-rGO1 sample. (b) FE-SEM images of the RCCS-ZSH8-rGO3 sample.

Fig S15 EDX pattern of the RCCS-ZSH8-rGO2 sample.

The EDX analysis of the RCCS-ZSH8-rGO2 reveals the weight percentage of Cu, Co, Zn, S, C, and O elements in the RCCS-ZSH8-rGO2 are about 6.86%, 14.12%, 6.55%, 44.45%, 20.15%, and 7.87%. Accordingly, the contents of CuCo₂S₄, ZnS, and rGO in the RCCS-ZSH8-rGO2 are estimated to be 56.54 wt%, 15.44 wt%, and 28.02 wt%, respectively. Based on the weight of Cu (6.86%), Co (14.12%), and S (44.45%) elements, the content of the CuCo₂S₄ in the RCCS-ZSH8-rGO2 is calculated as about 56.54 wt% [$6.86\% + 14.12\% + (44.45/5\%) \times 4\%$], the content of the ZnS in the RCCS-ZSH8-rGO2 is calculated as about 15.44 wt% [(6.55% + (44.45/5%))], and content of the rGO in the RCCS-ZSH8-rGO2 is calculated as about 15.44 wt% [(6.55% + (44.45/5%))], and content of the rGO in the RCCS-ZSH8-rGO2 is calculated as about 28.02 wt% [100% - (56.54% + 15.44%)]. Hence, the weight ratio of CuCo₂S₄, ZnS, and rGO in the RCCS-ZSH-rGO2 can be calculated, as approximately 1.83:0.50:0.90.

Fig S16 FE-SEM mapping images of the RCCS-ZSH8-rGO2 sample.

Fig S17 (a) XRD pattern of the CC-GSSs. (b) XRD pattern of the CC-G@ZIF-8.

Fig S18 (a) XRD pattern of the CCS-HSs. (b) XRD pattern of the ZnS.

Fig S19 XPS survey of the RCCS-ZSH8-rGO2 sample.

Fig S20 (a) BET plots of the RCCS-ZSH8-rGO2, RCCS-ZSH8, CCS-HS, and ZnS samples. (b) BJH curves of the RCCS-ZSH8-rGO2, RCCS-ZSH8, CCS-HS, and ZnS samples.

Fig S21 (a) CV curves of the CCG-ZIF, RCCS-ZSH4, RCCS-ZSH6, RCCS-ZSH8, and RCCS-ZSH10 electrodes at 40 mV s⁻¹. (b) Discharge curves of the CCG-ZIF, RCCS-ZSH4, RCCS-ZSH6, RCCS-ZSH8, and RCCS-ZSH10 electrodes at 1 A g⁻¹. (c) Specific capacities of the CCG-ZIF, RCCS-ZSH4, RCCS-ZSH6, RCCS-ZSH6,

Fig S22 (a) CV curves of the RCCS-ZSH8-rGO1, RCCS-ZSH8-rGO2, and RCCS-ZSH8-rGO3 electrodes at 40 mV s⁻¹. (b) Discharge curves of the RCCS-ZSH8-rGO1, RCCS-ZSH8-rGO2, and RCCS-ZSH8-rGO3 electrodes at 1 A g⁻¹. (c) Specific capacities of the RCCS-ZSH8-rGO1, RCCS-ZSH8-rGO2, and RCCS-ZSH8-rGO3 electrodes at 1 A g⁻¹.

Fig S23 (a) CV curves of the RCCS-ZSH8-rGO1 electrode at various scan rates from 10 to 100 mV s⁻¹. (b) CV curves of the RCCS-ZSH8-rGO3 electrode at various scan rates from 10 to 100 mV s⁻¹. (c) CV curves of the RCCS-ZSH8 electrode at various scan rates from 10 to 100 mV s⁻¹. (d) CV curves of the CCS-HS electrode at various scan rates from 10 to 100 mV s⁻¹. (e) CV curves of the ZS electrode at various scan rates from 10 to 100 mV s⁻¹. (f) CV curves of the CC-G@ZIF electrode at various scan rates from 10 to 100 mV s⁻¹. (g) CV curves of the RCCS-ZSH4 electrode at various scan rates from 10 to 100 mV s⁻¹. (h) CV curves of the RCCS-ZSH6 electrode at various scan rates from 10 to 100 mV s⁻¹. (i) CV curves of the RCCS-ZSH6 electrode at various scan rates from 10 to 100 mV s⁻¹. (i) CV curves of the RCCS-ZSH10 electrode at various scan rates from 10 to 100 mV s⁻¹.

Fig S24 (a) Linear relation between the plot of the Logarithm (i) versus Logarithm (v) of the CCS-HS electrode. (b) Linear relation between the plot of the Logarithm (i) versus Logarithm (v) of the ZS electrode.

Fig S25 (a) Diffusion and capacitive contributions of the RCCS-ZSH8-rGO2 electrode at different scan rates. (b) Diffusion and capacitive contributions of the RCCS-ZSH8 electrode at different scan rates

Fig S26 (a) GCD curves of the RCCS-ZSH8-rGO1 electrode at various current densities from 1 to 32 A g⁻¹. (b) GCD curves of the RCCS-ZSH8-rGO3 electrode at various current densities from 1 to 32 A g⁻¹. (c) GCD curves of the RCCS-ZSH8 electrode at various current densities from 1 to 32 A g⁻¹. (d) GCD curves of the CCS-HS electrode at various current densities from 1 to 32 A g⁻¹. (e) GCD curves of the ZS electrode at various current densities from 1 to 32 A g⁻¹. (e) GCD curves of the ZS electrode at various current densities from 1 to 32 A g⁻¹. (f) GCD curves of the CCG-ZIF electrode at various current densities from 1 to 32 A g⁻¹. (g) GCD curves of the RCCS-ZSH4 electrode at various current densities from 1 to 32 A g⁻¹. (h) GCD curves of the RCCS-ZSH6 electrode at various current densities from 1 to 32 A g⁻¹. (i) GCD curves of the RCCS-ZSH10 electrode at various current densities from 1 to 32 A g⁻¹.

Fig S27 (a) Rate capability of the RCCS-ZSHS8-rGO1 and RCCS-ZSH8-rGO3. (b) Rate capability of the CCG-ZIF, RCCS-ZSH4, RCCS-ZSH6, RCCS-ZSH8, and RCCS-ZSH10.

Fig S28 Longevity of the RCCS-ZSH8-rGO1, RCCS-ZSH8-rGO3, RCCS-ZSH8, RCCS-ZSH10, RCCS-ZSH6, RCCS-ZSH4, CCS-SH, CCG-ZIF, ZS electrodes at 8 A g⁻¹.

Fig S29 Nyquist plots of the RCCS-ZSH8-rGO2 before and after 10000 cycles.

Fig S30 XRD pattern of the RCCS-ZSH8-rGO2 sample before and after 10000 cycles.

Fig S31 (a) FE-SEM image of the RCCS-ZSH8-rGO2 sample after 10000 cycles. (b, c) TEM images of the RCCS-ZSH8-rGO sample after 10000 cycles.

Fig S32 (a) CV plots of the AC at various scan rates from 10 to 100 mV s⁻¹. (b) GCD plots of the AC at various current densities from 1 to 32 A g⁻¹. (c) Rate capability of the AC electrode.

Fig S33 (a) CV plots of the RCCS-ZSH8//AC device at various scan rates from 10 to 100 mV s⁻¹. (b) GCD plots of the RCCS-ZSH8//AC device at various current densities from 1 to 32 A g⁻¹. (c) Durability and coulombic efficiency of the RCCS-ZSH8//AC at 8 A g⁻¹

Composition	Capacity (C/g)	Cycles, retention	Rate capability	ED (Wh kg ⁻¹)	Reference
FSNCS	559.3 at 1 A g ⁻¹	50000, 88.9%	68.6% at 20 A g ⁻¹	28.8	1
NiCoMn-S-1.5	657.7 at 1 A g ⁻¹	50000, 90%	51.61% at 50 A g ⁻¹	36.3	2
Ni-Co-sulfide	603 at 1 A g ⁻¹	8000, 91.3%	67.4% at 15 A g ⁻¹	45.35	3
Co ₃ S ₄ @PPy	723 at 1 A g ⁻¹	1000, 98.6%	41.77% at 10 A g ⁻¹	30.2	4
Co ₃ S ₄ /g-C ₃ N ₄ -10	415 at 0.5 A g ⁻¹	5000, 75.6%	54.5% at 10 A g ⁻¹	37.7	5
NiCoMn-S	661 at 1 A g ⁻¹	1000, 86.45%	66.56% at 50 A g ⁻¹	42.1	6
Ni–Co–S-0.5/NC	543.9 at 1 A g ⁻¹	5000, 90.5%	67.3% at 20 A g ⁻¹	39.6	7
NiCo2S4/NGF	558 at 1 A g ⁻¹	6000, 92.6%	55.5% at 20 A g ⁻¹	36.8	8
RCCS-ZSH8-rGO	1346 at 1 A g ⁻¹	10000, 95.4 (3 E)	86.6% at 32 A g ⁻¹	66.6	This study

Table S1 Comparison of the performance of the RCCS-ZSH8-rGO2 with other previously reported

materials.

References

1 J. Wang, J. Wang, G. Zhu, H. Xu, X. Zhang, Y. Zhao, J. Zhang, K. Jiang and A. Yu, Simple controllable foam structure NiCo₂S₄ for high-performance hybrid supercapacitors, *J Energy Storage* 2022, **46**, 103907.

2 J. Zhang, C. Li, M. Fan, T. Ma, H. Chen and H. Wang, Two-dimensional nanosheets constituted trimetal Ni-Co-Mn sulfide nanoflower-like structure for high-performance hybrid supercapacitors, *Appl. Surf. Sci.* 2021, **565**, 150482.

3 Y. Deng, X. Wang, Z. Wang, X. Wang, Z. Li, L. Wang, C. Zhou, D. Chen and Y. Luo, Yolk– Shell Structured Nickel Cobalt Sulfide and Carbon Nanotube Composite for High-Performance Hybrid Supercapacitors, *Energy Fuels* 2021, **35**, 5342–5351.

4 W. Huo, X. Zhang, X. Liu, H. Liu, Y. Zhu, Y. Zhang, J. Ji, F. Dong and Y. Zhang, Construction of advanced 3D Co₃S₄@PPy nanowire anchored on nickel foam for high-performance electrochemical energy storage, *Electrochim. Acta* 2020, **334**, 135635.

5 W. Li, Y. Li, C. Yang, Q. Ma, K. Tao and L. Han, Fabrication of 2D/2D nanosheet heterostructures of ZIF-derived Co_3S_4 and $g-C_3N_4$ for asymmetric supercapacitors with superior cycling stability, *Dalton Trans* 2020, **49**, 14017-14029.

6 J. Cao, Y. Hu, Y. Zhu, H. Cao, M. Fan, C. Huang, K. Shu, M. He and H. C. Chen, Synthesis of mesoporous nickel-cobalt-manganese sulfides as electroactive materials for hybrid supercapacitors, *Chem. Eng. J* 2021, **405**, 126928.

7 M. Yi, C. Zhang, C. Cao, C. Xu, B. Sa, D. Cai and H. Zhan, MOF-Derived Hybrid Hollow Submicrospheres of Nitrogen-Doped Carbon-Encapsulated Bimetallic Ni–Co–S Nanoparticles for Supercapacitors and Lithium Ion Batteries, *Inorg. Chem.* 2019, **58**, 3916–3924.

8 Y. Chen, T. Liu, L. Zhang and J. Y, NiCo₂S₄ Nanotubes Anchored 3D Nitrogen-Doped Graphene Framework as Electrode Material with Enhanced Performance for Asymmetric Supercapacitors,

ACS Sustainable Chem. Eng. 2019, 7, 11157–11165.