Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

A Structurally Engineered Flower Shaped Magnetic Hierarchical Sorbent for Rapid and Selective Uptake of Pb²⁺ions from Water Samples

Kanika Solanki^{ab}, Shivani Sharma^c, Pooja Rana^a, Bhawna Kaushik^a, Sneha Yadav^{ae}, Ranjana

Dixit^c, Ankush V. Birdar^d, Ashu Gupta^b and R. K. Sharma^{*a}

^aGreen Chemistry Network Centre, Department of Chemistry, University of Delhi, New Delhi-

110007, India; Tel: 011-276666250, E-mail: rksharmagreenchem@hotmail.com

^bDepartment of Chemistry, Shyamlal College, University of Delhi, New Delhi-110032, India

^cDepartment of Chemistry, Ramjas College, University of Delhi, New Delhi-110007, India

^dCSIR-CSMCRI, Bhavnagar, Gujrat, 364002, India

^eDepartment of Chemistry, Institute of Home Economics, University of Delhi- 110016, India

Table of Contents

1.	Result and Discussion		
	1.1	FT-IR analysis	S2
	1.2	XRD studies	S2
	1.3	TGA analysis	S3
	1.4	Quantitative Analysis of developed sorbent (Elemental composition)	S3
	1.5	Detailed XPS Spectra of N 1s	S4
2.	Activity of developed metal scavenger for the adsorption of Pb ²⁺ ions		
	2.1	Zeta Potential studies	S4
	2.2	Adsorption Kinetics (Contact time)	S4
	2.3	Effect of adsorbent dosage	S5

1. Results and discussion

1.1. FT-IR analysis

Fig. S1. FT-IR spectra of (a) flower shape Fe_3O_4 , (b) functionalized ferrite (CPTMS@Fe_3O_4), (c) ligand grafted ferrite (SALDETA@CPTMS@Fe_3O_4) and Pb adsorbed ligand grafted ferrite (Pb@SALDETA@CPTMS@Fe_3O_4)

1.2 X-ray diffraction studies (XRD)

Fig. S2. XRD patterns of a) 3D flower shaped Fe_3O_4 , b) CPTMS@Fe_3O_4, c) SALDETA@CPTMS@Fe_3O_4 and d) Pb²⁺@SALDETA@CPTMS@Fe_3O_4

Fig. S3. TGA curves of Fe_3O_4 (a) and $CPTMS@Fe_3O_4$ (b)

1.4 Detailed quantit	ative analysis oj	f elemental com	position of deve	eloped adsorbent
----------------------	-------------------	-----------------	------------------	------------------

		Atomic			
Element	Weight %	%	Net Int.	Error %	
СК	29.32	45.47	86.34	8.21	
NK	4.38	5.82	5.99	15.34	
ОК	31.94	37.18	149.94	9.08	
SiK	0.23	0.15	4.47	17.62	
FeK	34.13	11.38	233.84	2.18	

Fig. S4. Detailed quantitative analysis of elemental composition of developed adsorbent

1.5 Detailed XPS Spectra of N 1s of developed adsorbent

Fig. S5. Detailed XPS Spectra of N 1s of adsorbent

2. Activity of developed metal scavenger for the adsorption of Pb²⁺ ions

2.1 Zeta Potential studies

Fig. S6. Zeta potential measurements (-10.9 mV) of SALDETA@CPTMS@Fe₃O₄

2.2 Adsorption Kinetics (Contact time)

Fig. S7. Effect of contact time on the adsorption of Pb^{2+} ions by engineered 3D hierarchical structures (Conditions: initial concentration: 10 mg L⁻¹, pH: 5.5, adsorbent dosage: 1 g L⁻¹, temperature: 298 K)

2.2 Effect of adsorbent dosage

Fig. S8. Effect of adsorbent dosage on the adsorption of Pb²⁺ ions by SALDETA decorated magnetic architectures (Conditions: initial concentration: 10 mg L⁻¹, pH: 5.5, time: 8 min, temperature: 298 K)

2.3 Adsorption thermodynamics and effect of temperature

Fig. S9. Effect of temperature on the adsorption of Pb (II) by functionalized flower shape architectures (SALDETA@CPTMS@Fe₃O₄)