Supporting Information

In situ Decorated Cu₂FeSnS₄ Nanosheet Arrays for Low Voltage Hydrogen Production through Ammonia Oxidation Reaction

Yoongu Lim,^{†a} Subramani Surendran,^{†a} Won So,^b Sathyanarayanan Shanmugapriya,^a Chanmin Jo,^a Gnanaprakasam Janani,^a Hyeonuk Choi,^c Hyun Soo Han,^d Heechae Choi,^e Young-Hoon Yun,^f Tae-Hoon Kim,^g Myeong-Jin Kim,^h Kyoungsuk Jin,ⁱ Jung Kyu Kim,^{*,b} and Uk Sim,^{*,a,j,k}

^a Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeonnam 58330, Republic of Korea. E-mail: <u>usim@kentech.ac.kr</u> (U. Sim)

^b School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea. Email: <u>legkim@skku.edu</u> (J. K. Kim)

^c Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea

^d Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

^e Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China

^f Department of New & Renewable Energy, Dongshin University, Jeonnam 520-714, Republic of Korea

^g Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea

^h Department of Hydrogen & Renewable Energy, Kyungpook National University, Daegu, 41566, Republic of Korea

ⁱ Department of Chemistry, Korea University, Seoul, 02841 Republic of Korea

^j Research Institute, NEEL Sciences, INC., Naju, Republic of Korea.

^k Center for Energy Storage System, Chonnam National University, Gwangju, Republic of Korea.

[†] These authors contributed equally to this work.

Electrochemical measurements

Electrochemical characterization of the CFTS nanosheets was carried out using potentiostat equipment (Bio-Logic SP150 instrumentation) at room temperature in a three-electrode cell configuration where the synthesized active material was used as the working electrode. The platinum (Pt) wire and Hg/HgO electrode were used as counter and reference electrodes. 1 M KOH solution with and without 0.5 M NH₄OH was used as electrolytes to investigate the AOR activity. As the electrochemical data was measured with Hg/HgO reference electrode, the potential range was calibrated to the reversible hydrogen electrode (RHE) potential standard with $E^0_{(Hg/HgO)} = 118$ mV using the following equation.

$$E_{RHE} = E_{(Hg/HgO)} + E^0_{Hg/HgO} + 0.059 \times pH$$

Electrochemical impedance spectroscopy measurements were conducted, and Bode plots were obtained in the frequency range of ~0.1–105 Hz at 0 V vs. Hg/HgO. A flow-type lab-scale water electrolyzer setup was performed with 1 M KOH and 1 M KOH with 0.5 M NH₄OH electrolyte as catholyte and anolyte, respectively. The electrodes are separated using a Nafion membrane. The catholyte and anolyte are fed into the respective chambers by a separate peristaltic pump which carries the resultant product after electrolysis. The obtained H₂ gas is collected in an air-tight receptacle and measured with a gas H₂ gas detector.

The calculation of Turnover frequency (TOF)

TOF of catalyst: The number of oxygen turnovers was calculated from the current density using the following equation,

$$TOF = j * Ag / 4 * F * n$$

where j is the measured current density at 1.8, 1.9, 2.0, 2.1, and 2.2 V, respectively; Ag is the surface area of the electrode; F is the Faraday constant (96485.3 C mol⁻¹); and n is the moles of the catalyst loaded on the electrode.

The calculation of Faradaic efficiency

The electrocatalytic water splitting experiment was conducted in a two-electrode system, with EG-CFTS ($1 \text{ cm} \times 1 \text{ cm}$) as the cathode and anode.

The Faradaic efficiency is calculated by $FE(\%) = n_{exp}/n_{Theo}$,

Where n_{exp} means the total number of moles of the collected H₂ and O₂ gases and

nTheo = 3Q/(4F) (Q is the charge passing through the electrodes, and F is Faraday constant).

Fig. S1 Magnified images of (a) OER and (b) AOR LSV polarization curves depicting the overpotential at 10 mA cm⁻², respectively.

Fig. S2 Tafel plot for the prepared CFTS electrocatalysts.

Fig. S3 High-resolution XPS spectra for EG-CFTS samples before and after electrochemical tests: a) Cu 2p, b) Fe 2p, c) Sn 3d, and d) S 2p, respectively.

Fig. S4 XRD spectra before and after electrochemical tests for EG-CFTS samples.

Fig. S5 SEM images for EG-CFTS samples before and after electrochemical tests.

Fig. S6 a) Linear sweep voltammetry (LSV) analysis and b). Comparison of current density and their corresponding HER overpotentials for the prepared CFTS electrocatalysts.

Fig. S7 Cyclic Voltammograms of EG-CFTS electrocatalyst in the non-faradaic region at the scan rates from 10 to 100 mV s⁻¹.

Fig. S8 Cyclic Voltammograms of EtoOH-CFTS electrocatalyst in the non-faradaic region at the scan rates from 10 to 100 mV s⁻¹.

Fig. S9 Cyclic Voltammograms of DI-CFTS electrocatalyst in the non-faradaic region at the scan rates from 10 to 100 mV s⁻¹.

 Table S1 EIS spectra fitting parameters.

Electrocatalysts	R1	R2	S4
	(Ω)	(Ω)	$(\Omega.s^{-1/2})$
EG-CFTS	1.169	0.384	364.5
EtOH-CFTS	1.322	0.413	377.7
DI-CFTS	1.317	0.496	622.1

Catalyst	AOR Onset potential (V)	Electrolyte/ Solution	Potential	Current density (mA/cm²)	Area of electrode (cm ²)	Ref.
EG-CFTS	1.38 V vs. RHE	1 M KOH + 0.5 M NH4OH	1.6 V vs. RHE	152.4 mA cm ⁻²	1 x 1	This work
EtOH-CFTS	1.42 V vs. RHE	1 M KOH + 0.5 M NH₄OH	1.6 V vs. RHE	96.1 mA cm ⁻²	1 x 1	This work
DI-CFTS	1.51 V vs. RHE	1 M KOH + 0.5 M NH₄OH	1.6 V vs. RHE	57.3 mA cm ⁻²	1 x 1	This work
NiCu/CP	0.47 V vs. Ag/AgCl	0.5 M NaOH + 55 mM NH ₄ Cl	0.7 V vs. Ag/AgCl	52 mA cm^{-2}	2	S1
NiCu layered hydroxides (LHs)	~0.43 V vs. Ag/AgCl	0.5 M NaOH + 55 mM NH4Cl	0.55 V vs. Ag/AgCl	35 mA cm^{-2}	1 x 3	S2
Defect engineered CuO	0.29 V vs. Hg/HgO	1 M KOH + 1 M NH ₃	0.6 V vs. Hg/HgO	200 mA cm ⁻²	2 x 1	S3
Ni-(OH) ₂ - Cu ₂ O@CuO	0.47 V vs Hg/HgO	1 M KOH + 1 M NH ₃	0.6 V vs. Hg/HgO	60 mA cm ⁻²	3 x 5	S4
NiCu/C/CP	0.39 V vs. Hg/HgO	1 M KOH + 0.5 M NH ₃	0.65 V vs. Hg/HgO	110.4 mA cm ⁻²	1 x 1	S5
CuSn(OH) ₆	0.85 V vs. Hg/HgO	0.5 M K ₂ SO ₄ + 10 mM NH ₃	1.23 V vs. Hg/HgO	0.85 mA cm^{-2}	1 x 0.5	S6
PtIrCu HCOND	0.35 V vs. RHE	0.1 M NH ₃ + 1 M KOH	0.65 V vs. RHE	$31.8 \text{ A g}_{Ptlr}^{-1}$	0.196 (Glassy carbon)	S7
$La_{0.5}Sr_{1.5}Ni_{0.9}Cu_{0.1}O_{-}$ $_{\delta}-Ar$	~0.4 V vs. Ag/AgCl	0.5 M KOH + 55 mM NH4Cl	0.53 V vs. Ag/AgCl	13.4 mA cm ⁻²		S8
LNCO55-Ar	0.42 V vs. Ag/AgCl	0.5 M KOH + 55 mM NH4Cl	0.5 V vs. Ag/AgCl	14.4 mA cm ⁻²	2.5 x 2.5	S9
NiCu/MnO ₂	0.53 V vs. Hg/HgO	0.5 M NaOH + 55 mM NH₄Cl	0.6 V vs. Hg/HgO	8.2 mA cm ⁻²	1 x 1	S10

 Table S2 Comparison of previously reported Cu-based electrocatalysts and their AOR performances.

References

[S1] W. Xu, D. Du, R. Lan, J. Humphreys, D. N. Miller, M. Walker, Z. Wu, J. T. S. Irvine and S. Tao, Applied Catalysis B: Environmental, 2018, 237, 1101-1109. [S2] W. Xu, R. Lan, D. Du, J. Humphreys, M. Walker, Z. Wu, H. Wang and S. Tao, Applied Catalysis B: Environmental, 2017, 218, 470-479.

[S3] J. Huang, Z. Chen, J. Cai, Y. Jin, T. Wang and Jianhui Wang, Nano Res., 2022, 15, 5987– 5994.

[S4] J. Huang, J. Cai, and J. Wang, ACS Appl. Energy Mater., 2020, 3, 4108–4113.

[S5] H. Zhang, Y. Wang, Z. Wu, D. Y. C. Leung, Energy Procedia, 2017, 142, 1539-1544.

[S6] J. Hou, Y. Cheng, H. Pan and P. Kang, ChemElectroChem 2022, 9, e202101301.

[S7] X. Lin, X. Zhang, Z. Wang, X. Zhu, J. Zhu, P. Chen, T. Lyu, C. Li, Z. Q. Tian, P. K. Shen, Journal of Colloid and Interface Science, 2021, 601, 1–11.

[S8] M. Zhang, P. Zou, G. Jeerh, B. Sun, M. Walker and S. Tao, Adv. Funct. Mater. 2022, 32, 2204881.

[S9] M. Zhang, H. Li, X. Duan, P. Zou, G. Jeerh, B. Sun, S. Chen, J. Humphreys, M. Walker,K. Xie and S. Tao, Adv. Sci. 2021, 8, 2101299

[S10] K. Nagita, Y. Yuhara, K. Fujii, Y. Katayama and M. Nakayama, ACS Appl. Mater. Interfaces 2021, 13, 28098–28107.