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Electrochemical measurements

Electrochemical characterization of the CFTS nanosheets was carried out using
potentiostat equipment (Bio-Logic SP150 instrumentation) at room temperature in a three-
electrode cell configuration where the synthesized active material was used as the working
electrode. The platinum (Pt) wire and Hg/HgO electrode were used as counter and reference
electrodes. 1 M KOH solution with and without 0.5 M NH,;OH was used as electrolytes to
investigate the AOR activity. As the electrochemical data was measured with Hg/HgO
reference electrode, the potential range was calibrated to the reversible hydrogen electrode

(RHE) potential standard with E®ygme0) = 118 mV using the following equation.
Erue= Egiigo) + E ngmgo + 0.059 x pH

Electrochemical impedance spectroscopy measurements were conducted, and Bode
plots were obtained in the frequency range of ~0.1-105 Hz at 0 V vs. Hg/HgO. A flow-type
lab-scale water electrolyzer setup was performed with 1 M KOH and 1 M KOH with 0.5 M
NH4OH electrolyte as catholyte and anolyte, respectively. The electrodes are separated using
a Nafion membrane. The catholyte and anolyte are fed into the respective chambers by a
separate peristaltic pump which carries the resultant product after electrolysis. The obtained H,

gas is collected in an air-tight receptacle and measured with a gas H, gas detector.



The calculation of Turnover frequency (TOF)

TOF of catalyst: The number of oxygen turnovers was calculated from the current density using

the following equation,

TOF =j *Ag/4* F*n

where j is the measured current density at 1.8, 1.9, 2.0, 2.1, and 2.2 V, respectively; Ag is the
surface area of the electrode; F is the Faraday constant (96485.3 C mol!); and n is the moles

of the catalyst loaded on the electrode.

The calculation of Faradaic efficiency

The electrocatalytic water splitting experiment was conducted in a two-electrode system, with

EG-CFTS (1 cm x lcm) as the cathode and anode.

The Faradaic efficiency is calculated by FE(%) = M.,/ theo

Where 7.,, means the total number of moles of the collected H, and O, gases and

nTheo = 3Q/(4F) (Q is the charge passing through the electrodes, and F is Faraday constant).
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Fig. S1 Magnified images of (a) OER and (b) AOR LSV polarization curves depicting the

overpotential at 10 mA cm2, respectively.
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Fig. S2 Tafel plot for the prepared CFTS electrocatalysts.
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Fig. S3 High-resolution XPS spectra for EG-CFTS samples before and after electrochemical
tests: a) Cu 2p, b) Fe 2p, ¢) Sn 3d, and d) S 2p, respectively.
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Fig. S4 XRD spectra before and after electrochemical tests for EG-CFTS samples.



Fig. S5 SEM images for EG-CFTS samples before and after electrochemical tests.
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Fig. S6 a) Linear sweep voltammetry (LSV) analysis and b). Comparison of current density

and their corresponding HER overpotentials for the prepared CFTS electrocatalysts.
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Fig. S7 Cyclic Voltammograms of EG-CFTS electrocatalyst in the non-faradaic region at the
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Fig. S8 Cyclic Voltammograms of EtoOH-CFTS electrocatalyst in the non-faradaic region at

the scan rates from 10 to 100 mV s
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Fig. S9 Cyclic Voltammograms of DI-CFTS electrocatalyst in the non-faradaic region at the

scan rates from 10 to 100 mV s!.



Table S1 EIS spectra fitting parameters.

R1 R2 S4
Electrocatalysts
(9)) Q) (Qs717)
EG-CFTS 1.169 0.384 364.5
EtOH-CFTS 1.322 0.413 377.7
DI-CFTS 1.317 0.496 622.1




Table S2 Comparison of previously reported Cu-based electrocatalysts and their AOR

performances.
AOR Onset Area of
Electrolyte/ Current density
Catalyst potential Potential electrode Ref.
Solution (mA/cm?)
(4% (cm?)
1.38 V vs. 1MKOH+0.5 1.6 V vs. This
EG-CFTS 152.4 mA cm? 1x1
RHE M NH,OH RHE work
1.42 V vs. 1M KOH +0.5 1.6 V vs. This
EtOH-CFTS 96.1 mA cm? 1x1
RHE M NH,OH RHE work
1.51 V vs. 1MKOH+0.5 1.6 Vvs. This
DI-CFTS 57.3 mA cm?? 1x1
RHE M NH,OH RHE work
0.47 V vs. 0.5 M NaOH + 0.7 V vs.
NiCu/CP 52 mA cm™ 2 S1
Ag/AgCl 55 mM NH,4C1 Ag/AgCl
NiCu layered ~0.43 V vs. 0.5 M NaOH + 0.55 V vs.
35 mA cm™? 1x3 S2
hydroxides (LHs) Ag/AgCl 55 mM NH,C1 Ag/AgCl
Defect engineered 0.29 V vs. IMKOH+ 1M 0.6 Vvs.
200 mA cm? 2x1 S3
CuO Hg/HgO NH; Hg/HgO
Ni-(OH),- 0.47 V vs IMKOH+ 1M 0.6 Vvs.
60 mA cm? 3x5 S4
Cu,0O@CuO Hg/HgO NH; Hg/HgO
0.39 V vs. 1 M KOH 0.65V
NiCu/C/CP 110.4 mA cm? Ix1 S5
Hg/HgO +0.5 M NH; vs. Hg/HgO
0.85 V vs. 0.5 M K;,SO, + 1.23 Vvs.
CuSn(OH); 0.85 mA cm2 1x0.5 S6
Hg/HgO 10 mM NH; Hg/HgO
0.196
0.35 Vvs. 0.1 MNH; + 1 0.65 V vs.
PtlrCu HCOND RHE M KOH RHE 31.8 A gpy, ! (Glassy S7
carbon)
La()lssrlei().gCll(“O_ ~0.4V vs. 0.5 M KOH + 0.53 V vs.
13.4 mA cm™ - S8
s-Ar Ag/AgCl 55 mM NH,CI Ag/AgCl
0.42 V vs. 0.5 M KOH + 0.5V vs.
LNCOS5-Ar 14.4 mA cm™ 25x25 S9
Ag/AgCl 55 mM NH,4C1 Ag/AgCl
0.53 Vvs. 0.5 M NaOH + 0.6 V vs.
NiCu/MnO, 8.2 mA cm™? 1x1 S10
Hg/HgO 55 mM NH,4C1 Hg/HgO
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