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S1 Calculation method

The DFT calculations were carried out using the Vienna Ab-initio Simulation Package 

(VASP)S1, 2 with the frozen-core all-electron projector-augment-wave (PAW)S3, 4 method. The 

Perdew-Burke-Ernzerhof (PBE)S5 of generalized gradient approximation (GGA) was adopted to 

describe the exchange and correlation potential. The cutoff energy for the plane-wave basis set was 

set to 450 eV. The 2-layer Co3O4(311) slab, 3-layer TiO2(101) slab, mono-layer HTO(101) slab were 

used. A vacuum region of 20 Å was added above these supercell models to minimize the interactions 

between neighboring systems. A Co9O12 cluster was placed on HTO(101) slab to built Co3O4/HTO 

composite. The geometry optimizations were performed until the forces on each ion was reduced 

below 0.01 eV/Å. The Gamma k-pointS6 sampling was used. The van der Waals (vdW) interactions 

have been considered by using DFT-D3 method of GrimmeS7. The resulting structures were then used 

to calculate the electronic structures.
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Fig. S1. The DFT optimized structures of PMS adsorption on (a) TiO2(101) surface and (b) 

HTO(100) surface.

Fig. S2. SEM image of TiO2/SiO2/Co3O4 fibers.
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Fig. S3. XRD spectra of TiO2/SiO2/Co3O4 fibers. 

Fig. S4. (a) TEM, (b) HR-TEM, (c) SAED image of TiO2/SiO2/Co3O4 fibers.
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Fig. S5. Effect of the (a, b) Co3O4/HTO dosage, (c, d) PMS dosage, (e, f) 2,4-DCP concentration on 

the removal of 2,4-DCP. Conditions: [2,4-DCP]: 30 mg/L, [catalyst]: 100 mg/L, [PMS]: 0.65 mM, 

initial pH 5.9, T = 25 oC, unless otherwise specified.

Fig. S6. Effect of coexisting anions on the removal of phenolic. Conditions: [phenolic]: [2,4-DCP]: 

30 mg/L, [catalyst]: 100 mg/L, [PMS]: 0.65 mM, initial pH 5.9, T = 25 oC, [ions] = 10 mM.
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Fig. S7. Effect of the cycle on the removal of phenolic. Conditions: [phenolic]: 10 mg/L, [catalyst]: 

100 mg/L, [PMS]: 0.65 mM, initial pH 5.9, T = 25 oC, t = 60 min.

Fig. S8. Effect of the types on the removal of phenolic. Conditions: [phenolic]: 50 mg/L, [catalyst]: 

100 mg/L, [PMS]: 0.65 mM, initial pH 5.9, T = 25 oC.
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Fig. S9. GC chromatogram of the reaction products during the degradation of 2,4-DCP.

Fig. S10. Mass spectra of the solution samples recorded at 1 min of 2,4-DCP degradation。
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Table S1. Degradation intermediate of 2,4-DCP detected by GC-MS.

m/z Molecular formula Chemical name Structural formula

162 C6H4Cl2O 2,4-dichlorophenol HO

Cl

Cl

5-chloro-2-hydroxybenzenesulfonate

OH
Cl

SO3-209 C6H5SClO4

3-chloro-4-hydroxybenzenesulfonate

OH
SO3-

Cl

2-chlorophenyl 4-
hydroxybenzenesulfonate

S
O

O
O

Cl

HO

4-chlorophenyl 4-
hydroxybenzenesulfonate

S
O

O
O

ClHO

2-chlorophenyl 2-
hydroxybenzenesulfonate

OH
S
O

O
O

Cl
284 C12H9SClO4

4-chlorophenyl 2-
hydroxybenzenesulfonate

OH
S
O

O
O

Cl

357 C15H13SClO6
4-((4-chlorophenoxy)sulfonyl)-2-

hydroxyphenyl propionate Cl

O S
O

O
O

O

OH

105 C3H3O2Cl (E)-3-chloroacrylic acid
ClHO

O

C2HO2Cl 2-oxoacetyl chloride
O

Cl

O

91

C2H2O6 oxalic acid O OH

HO O

77 C2H2OCl (E)-2-chloroethen-1-ol OHCl

C2H2O3 2-oxoacetic acid
O

OH

O

73

C3H6O2 (E)-prop-1-ene-1,3-diol HO OH



9

63 C2H6O2 ethane-1,2-diol HO OH

acetic acid
OH

O60 C2H4O2

(Z)-ethene-1,2-diolc HO OH
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