Supporting Information

In situ fabrication of fluorine-modified acrylate-based gel polymer electrolytes for lithium-metal batteries

Kun Yang¹, Zhichuan Shen¹, Junqiao Huang¹, Jiawei Zhong¹, Yuhan Lin¹, Junli Zhu¹,

Jiashun Chen¹, Yating Wang¹, Tangtang Xie^{2,3}, Jie Li^{2*}, Zhicong Shi^{1,4*}

¹ Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China

- ² Department of Energy, Politecnico di Milano, Via Lambruschini, 4, Milano, 20156, Italy
- ³ The Testing and Technology Center for Industrial Products, Shenzhen Customs, Shenzhen, Guangdong, 518067, China

⁴ Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 30007l, China

Fig. S1. Digital images of GPEs before and after thermal polymerization.

Fig. S2. XPS spectra on (a) C 1s and (b) O 1s of 0.4TGD-0.4TFM-TCGG-SiO₂NF.

Fig. S3. TG curves of 0.8TGD-TCGG-SiO₂NF, 0.6TGD-0.2TFM-TCGG-SiO₂NF, 0.4TGD-0.4TFM-TCGG-SiO₂NF, and 0.2TGD-0.6TFM-TCGG-SiO₂NF.

Fig. S4. Current and EIS curves of (a) 0.8TGD-TCGG-SiO₂NF, (b) 0.6TGD-0.2TFM-TCGG-SiO₂NF, and (c) 0.2TGD-0.6TFM-TCGG-SiO₂NF before and after polarization at 25 °C.

Fig. S5. EIS curves and fitting results of Li|0.8TGD-TCGG-SiO₂NF|Li and Li|0.4TGD-0.4TFM-TCGG-SiO₂NF|Li cells at 30 °C.

Fig. S6. Galvanostatic cycling profiles of Li|0.8TGD-TCGG-SiO₂NF|Li and Li|0.4TGD-0.4TFM-TCGG-SiO₂NF|Li cells at the current densities of 0.4 mA cm⁻² with a restricted specific capacity of 0.4 mAh cm⁻² at 30 °C.

Fig. S7. CV curves of (a) NCM811|0.8TGD-TCGG-SiO₂NF|Li and (b) NCM811|0.4TGD-0.4TFM-TCGG-SiO₂NF|Li batteries at $3.0 \sim 4.5$ V with a scan rate of 0.1 mV s⁻¹ at 30 °C.

Fig. S8. Voltage profiles of (a) NCM811|0.8TGD-TCGG-SiO₂NF|Li, (b) NCM811|0.6TGD-0.2TFM-TCGG-SiO₂NF|Li, (c) NCM811|0.4TGD-0.4TFM-

various C-rate.

Fig. S9. Cycling performance of NCM811|0.4TGD-0.4TFM-TCGG-SiO₂NF|Li battery at 3C.

Fig. S10. (a) Cycling performance and (b) voltage profiles of NCM811|0.4TGD-0.4TFM-TCGG-SiO₂NF|Li battery at 2C.

Fig. S11. R_s , R_{sf} , and R_{ct} variation of NCM811|0.8TGD-TCGG-SiO₂NF|Li and NCM811|0.4TGD-0.4TFM-TCGG-SiO₂NF|Li batteries.

Fig. S12. Pinprick testing of pouch battery.

	TGD (g)	TFM (g)	TCGG (g)	AIBN (mg)
0.8TGD-TCGG	0.8	0	4.5	8
0.6TGD-0.2TFM-TCGG	0.6	0.2	4.5	8
0.4TGD-0.4TFM-TCGG	0.4	0.4	4.5	8
0.2TGD-0.6TFM-TCGG	0.2	0.6	4.5	8

 Table. S1. Composition of different GPEs.

Table. S2. Ionic conductivities (σ) of GPEs.

0.8TGD-TCGG-	0.6TGD-0.2TFM-	0.4TGD-0.4TFM-	0.2TGD-0.6TFM-
SiO ₂ NF	TCGG-SiO ₂ NF	TCGG-SiO ₂ NF	TCGG-SiO ₂ NF
(S cm ⁻¹)	(S cm ⁻¹)	(S cm ⁻¹)	(S cm ⁻¹)
1.67×10 ⁻⁴	2.60×10 ⁻⁴	3.56×10-4	2.15×10-4
1.97×10 ⁻⁴	2.74×10 ⁻⁴	4.21×10 ⁻⁴	2.57×10-4
2.35×10 ⁻⁴	3.02×10 ⁻⁴	4.70×10 ⁻⁴	3.24×10 ⁻⁴
2.73×10 ⁻⁴	3.10×10 ⁻⁴	4.80×10 ⁻⁴	3.58×10 ⁻⁴
3.05×10-4	3.29×10 ⁻⁴	5.00×10-4	3.79×10 ⁻⁴
3.17×10 ⁻⁴	3.53×10 ⁻⁴	5.10×10 ⁻⁴	4.10×10 ⁻⁴
	$0.8TGD-TCGG-SiO_2NF(S cm-1)1.67×10-41.97×10-42.35×10-42.73×10-43.05×10-43.17×10-4$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$0.8TGD-TCGG 0.6TGD-0.2TFM 0.4TGD-0.4TFM SiO_2NF$ $TCGG-SiO_2NF$ $TCGG-SiO_2NF$ $(S cm^{-1})$ $(S cm^{-1})$ $(S cm^{-1})$ 1.67×10^{-4} 2.60×10^{-4} 3.56×10^{-4} 1.97×10^{-4} 2.74×10^{-4} 4.21×10^{-4} 2.35×10^{-4} 3.02×10^{-4} 4.70×10^{-4} 2.73×10^{-4} 3.10×10^{-4} 4.80×10^{-4} 3.05×10^{-4} 3.29×10^{-4} 5.00×10^{-4} 3.17×10^{-4} 3.53×10^{-4} 5.10×10^{-4}

Battery	t_{Li}^+	Test conditions	Initial capacity (mAh g ⁻¹)	Cycles capacity retention	Reference
NCM811 TFEMA-VEC Li	0.44	3~4.5 V 25 °C	1C, 218	300 th , 70%	[1]
LFP PEGDMA-ETFP/Li	0.42	2.5~3.8 V 25 °C	0.5C, 142.1	100 th , 98%	[2]
NCA MA-HFMA-MMA Li	0.47	3~4.3 V 25 °C	0.5C, 162.2	200 th , 91%	[3]
LFP PEGDA-ETPTA Li	0.7	2.5~4.0 V 25 °C	1C, 124.4	200 th , 76%	[4]
LCO PVCA Li	0.57	2.5~4.3 V 50 °C	0.1C, 146.0	150 th , 82%	[5]
NCM811 0.4TGD-0.4TFM- TCGG-SiO ₂ NF Li	0.57	3~4.3 V 25 °C	2C, 178.4	300 th , 92%	This work
		3~4.5 V 25 °C	2C, 184.2	260 th , 91%	

Table. S3. The electrochemical performances of this work and reported GPEs.

References

- Wang Y, Chen S S, Li Z Y, et al. In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries[J]. Energy Storage Materials, 2022, 45: 474-483.
- [2] Li J, Huo F, Yang Y. Constructing stable lithium interfaces via coordination of fluorinated ether and liquid crystal for room-temperature solid-state lithium metal batteries[J]. Chemical engineering journal, 2022(433P2).
- [3] Ma Y, Sun Q, Wang Z, et al. Improved interfacial chemistry and enhanced high voltage-resistance capability of an in situ polymerized electrolyte for LiNi_{0.8}Co_{0.15}Al_{0.05}O₂-Li batteries[J]. Journal of Materials Chemistry A, 2021, 9(6): 3597-3604.
- [4] Shao D, Wang X, Li X, et al. Internal in situ gel polymer electrolytes for highperformance quasi-solid-state lithium ion batteries[J]. Journal of Solid State Electrochemistry, 2019, 23(10): 2785-2792.
- [5] Chai J, Liu Z, Ma J, et al. In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO₂ Lithium Batteries[J]. Advanced Science, 2017, 4(2).