Supporting Information for

"Ir/IrO_x/WO₃ Electrocatalysts for Water Splitting"

Xiaohe Tan,^{a, b} Wangyan Gou,^b Linqing Liao,^b Yuanyuan Ma*^{a,b} and Yongquan Qu*^b

^{a.} Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, China.

^{b.} School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.

Email: yyma@nwpu.edu.cn and yyma@nwpu.edu.cn and yyma and yyma@nwpu.edu.cn and yyma and yyma and yyma and yyma and yyma</a href="mailto:yyma">yyma</a href="mailto:yyma and yyma and yyma</a href="mailto:yyma">yyma</a href="mailto:yyma">yyma</a href="mailto:yyma and yyma</a href="mailto:yyma">yyma</a href="mailto:yyma">yyma</a href="mailto:yyma">yyma</a href="mailto:yyma</a href="mailto:yyma">yyma</a href="mailto:yyma</a href="mailto:yyma">yyma</a href="mailto:yy

Fig. S1. (a) TEM image and (b) HRTEM image of $Ir/IrO_x/WO_3$ -550.

Fig. S2. Elemental X-ray mapping images of Ir/IrO_x/WO₃-350.

Fig. S3. Elemental X-ray mapping images of IrO_x/WO₃-550.

Fig. S4. The proportions of various oxidation states of Ir as-synthesized $Ir/IrO_x/WO_3$ electrocatalysts.

Fig. S5. (a) W 4f XPS spectra and (b) O1s XPS spectra of as-synthesized IrO_x/WO_{3.}

Table S1. The proportion statistics of iridium species from Ir 4f XPS spectra.

Catalyst	lr ⁰	lr ³⁺	lr ⁴⁺
lr/lrO _x /WO ₃ -350	1.77	32.34	65.89
Ir/IrO _x /WO ₃ -450	7.35	31.34	61.31
lr/lrO _x /WO ₃ -550	13.72	25.76	60.52

Table S2. The proportion statistics of tungsten species from W 4f XPS spectra.

Catalyst	W ⁶⁺	W ⁴⁺
lr/lrO _x /WO ₃ -350	94.22	5.78
Ir/IrO _x /WO ₃ -450	94.88	5.12
Ir/IrO _x /WO ₃ -550	67.08	32.92

Table S3.	The	proportion	statistics	of oxygen	species	from O	1s XPS	spectra.
-----------	-----	------------	------------	-----------	---------	--------	--------	----------

Catalyst	H ₂ O	S-O	OL	O-H	Ov
Ir/IrO _x /WO ₃ -350	13.19	20.13	24.86	25.72	16.10
Ir/IrO _x /WO ₃ -450	12.80	27.49	19.00	20.09	20.62
Ir/IrO _x /WO ₃ -550	17.52	11.66	20.61	20.53	29.69

Fig. S6. Polarization curves (current density normalized by the geometric areas of the electroactive materials) of the as-synthesized $Ir/IrO_x/WO_3$ and c-IrO₂ in (a) 0.5 M H₂SO₄; (b) 0.1 M KOH; (c) 0.05M H₂SO₄.

Catalyst	Electrolyte	Overpotential at 10 mA cm ⁻² (mV)	Stability at 10 mA cm ⁻² (h)	Ref
lr/lrO _x /WO ₃	0.5M H ₂ SO ₄ ; 1.0 M KOH	185; 232	80	This work
Ir ₁ @Co/NC	1.0 M KOH	260	5	1
Ir _{sa} -NiO	1.0 M KOH	215	10	2
Ir _{sa} -CoO _x ANSs	1.0 M KOH	152 ± 5.2	10	3
Ir–CoM LDHs (M = Ni, Fe, Mn, and Zn)	1.0 M KOH	262	60	4
IrRu@Te	0.5M H ₂ SO ₄	220	20	5
IrO ₂ @Ir/TiN	0.5M H ₂ SO ₄	265	6	6
ATO-supported Ir NDs	0.05M H ₂ SO ₄	280	15	7
Ru@IrO _x	0.05M H ₂ SO ₄	282	24	8
Ir–MnO ₂	0.5M H ₂ SO ₄	218	650	9
TiN/IrO ₂	0.5M H ₂ SO ₄	313	3	10
Ir–W@Ir–WO _{3-x}	0.5M H ₂ SO ₄	261	20	11
IrO ₂ /GCN	0.5M H ₂ SO ₄	276	5	12
AA-IrO _x	0.5M H ₂ SO ₄	370	8	13
Au@Aulr ₂	0.5M H ₂ SO ₄	-	40	14
Ir-SA@Fe@NCNT	0.5M H ₂ SO ₄	250	12	15

 Table S4.
 Summary of Ir-based catalysts as OER electrocatalysts.

Fig. S7. Tafel plots of as-synthesized $Ir/IrO_x/WO_3$ and c-IrO₂ in 0.5 M H₂SO₄.

Fig. S8. Galvanostatic stability of the OER at the current density of 10 mA/cm² over assynthesized $Ir/IrO_x/WO_3$ and c-IrO₂ in 0.5 M H₂SO₄.

Fig. S9. Galvanostatic stability of the OER at the current density of 10 mA/cm^2 over d assynthesized Ir/IrO_x/WO₃ and c-IrO₂ in 1.0 M KOH.

Fig. S10. CV curves of (a) $Ir/IrO_x/WO_3 - 350$; (b) $Ir/IrO_x/WO_3 - 450$; (c) $Ir/IrO_x/WO_3 - 550$; (d) c- IrO_2 collected at various scan rates (10, 20, 30, 40, 50 and 60 mV s⁻¹); (e) The double layer capacitance (C_{DL}) of as-synthesized $Ir/IrO_x/WO_3 - 350$, $Ir/IrO_x/WO_3 - 450$, $Ir/IrO_x/WO_3 - 550$ and c- IrO_2 ; (f) Polarization curves (current normalized by ECSA) of as-synthesized $Ir/IrO_x/WO_3 - 350$, $Ir/IrO_x/WO_3 - 450$, $Ir/IrO_x/WO_3 - 350$, $Ir/IrO_x/WO_3 - 450$, Ir/IrO_x

Fig. S11. pH dependence of the OER activities (a) $Ir/IrO_x/WO_3$ -350; (b) $Ir/IrO_x/WO_3$ -450; (c) $Ir/IrO_x/WO_3$ -550 in KOH.

Fig. S12. pH dependence of the OER activities (a) $Ir/IrO_x/WO_3$ -350; (b) $Ir/IrO_x/WO_3$ -450; (c) $Ir/IrO_x/WO_3$ -550 in H₂SO₄; (d) Current densities of $Ir/IrOx/WO_3$ -350, $Ir/IrOx/WO_3$ -450 and $Ir/IrOx/WO_3$ -550 at 1.55 V versus RHE as a function of the pH values of acidic electrolytes (H₂SO₄).

Fig. S13. OER mechanisms of LOM. The empty circle represents the oxygen vacancy. The gray, red and white balls represent Ir, O and H, respectively.

Fig. S14. CV curves of (a) $Ir/IrO_x/WO_3$ -350; (b) $Ir/IrO_x/WO_3$ -450; (c) $Ir/IrO_x/WO_3$ -550 and (d) c-IrO₂ at a scanning rate of 10 mV/s before and after adding methanol in 0.5 M H₂SO₄.

Fig. S15. Polarization curves of the as-synthesized $Ir/IrO_x/WO_3$ -350, $Ir/IrO_x/WO_3$ -450, $Ir/IrO_x/WO_3$ -550, Ir/C and Pt/C in (a) 1.0 M KOH; (b) 0.1 M KOH; (c) 0.05 M H₂SO₄.

Fig. S16. Galvanostatic stability of the HER at the current density of 10 mA/cm^2 over assynthesized Ir/IrO_x/WO₃ and Ir/C in 0.5 M H₂SO₄.

Fig. S17. Galvanostatic stability of the HER at the current density of 10 mA/cm² over assynthesized $Ir/IrO_x/WO_3$ and Ir/C in 1.0 M KOH.

Fig. S18. Tafel slopes of $Ir/IrO_x/WO_3$ and Ir/C in (a) acid electrolyte and (b) alkaline electrolyte.

Fig. S19. (a) $Ir/IrO_x/WO_3$ -450; and (b) Ir/C electrodes Nyquist graphs in 1.0 M KOH at various HER overpotentials. The dispersed symbols depict the experimental data, while the solid lines depict the simulated fitted outcomes. The similar circuit utilized in the simulation is shown in the top inset. (c) Tafel graphs in 1.0 M KOH produced from R_2 for $Ir/IrO_x/WO_3$ -450 and Ir/C.

lr/C	R _s	CPE ₂	n ₂	R ₂	C_{ads}
0	2.657	0.0012643	0.81215	341.5	0.000338
-0.01	3.146	0.001292	0.79992	406.7	0.000325
-0.02	3.1	0.0011776	0.81875	358.4	0.000339
-0.03	3.06	0.0012097	0.80505	351	0.000311
-0.04	3.075	0.001138	0.81613	310.1	0.000318
-0.05	3.066	0.0011242	0.81416	281.4	0.000307
-0.06	3.058	0.0011148	0.811183	247	0.000296
-0.07	3.071	0.0012129	0.78553	222.6	0.000262
-0.08	3.057	0.0012158	0.77946	183.9	0.000249
-0.09	3.074	0.0012024	0.7767	148	0.000239
-0.1	3.07	0.0012131	0.76782	122.2	0.000222

Table S5. The fitted parameters of the EIS data of the Ir/C electrode for HER.

Ir/IrO _x /WO ₃ -450	CPE ₂	CPE ₂	n ₂	R ₂	C_{ads}
0	3.009	0.0061876	0.76181	966.2	0.001779
-0.01	2.986	0.0059692	0.78386	710.9	0.001964
-0.02	2.936	0.0059603	0.78498	615.7	0.001965
-0.03	2.94	0.0059975	0.78155	457.9	0.001937
-0.04	2.943	0.0060444	0.76509	350.4	0.00175
-0.05	2.946	0.0060523	0.7565	229.9	0.001649
-0.06	2.97	0.0062793	0.72787	152.7	0.001407
-0.07	2.977	0.0063507	0.708	96.83	0.001221
-0.08	2.987	0.0071879	0.68781	59.28	0.00123
-0.09	2.979	0.0073367	0.65845	40.45	0.000973
-0.1	2.978	0.0079897	0.633114	28.1	0.000864

Table S6. The fitted parameters of the EIS data of the $Ir/IrO_x/WO_3$ -450 electrode for HER.

Fig. S20. (a) The polarization curves of $Ir/IrO_x/WO_3$ -450 and Ir/C electrodes measured in H₂O or D₂O solution with 1.0 M KOH; (b) the ratio of the current density of electrocatalysts in H₂O to that in D₂O.

Fig. S21. Galvanostatic stability of the overall water splitting using $Ir/IrO_x/WO_3$ -350 II $Ir/IrO_x/WO_3$ -450 and c-IrO₂ II Pt/C catalyst operated at 10 mA/cm² in 1.0 M KOH.

Fig. S22. Galvanostatic stability of the overall water splitting using $Ir/IrO_x/WO_3$ -350ll $Ir/IrO_x/WO_3$ -450 and c-IrO₂ II Pt/C catalyst operated at 10 mA/cm² in 0.5 M H₂SO₄.

Catalyst	Electrolyte	Cell voltage (V)	Stability at 10 mA cm ⁻² (h)	Ref
Ir/IrO _x /WO ₃	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.481; 1.481	100	This work
IrW ND	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.480; 1.548	8	16
IrW nanobranches	0.1 M HClO₄; 1.0 M KOH	1.580; 1.600	17	17
Ir VG	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.580; 1.570	-	18
Li-IrSe2	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.440; 1.480	1.47 V@24 h 1.52 V@24 h	19
Ir-NSs	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.586; 1.575	5 mA cm ⁻² @10 h	20
Ir-NR/C	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.550; 1.570	12	21
Ir-NSG	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.420; 1.450	24	22
P-IrOx@DG	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.480; 1.530	-	23
Ru@MoO(S)₃	0.5M H ₂ SO ₄ ; 1.0 M KOH	1. 522; 1.526	24	24
RuCu NSs/C	0.5M H ₂ SO ₄ ; 1.0 M KOH	1.490; 1.490	15	25

Table. S7. Summary of Ir-based and Ru-based catalysts for water splitting.

References

- W.-H. Lai, L.-F. Zhang, W.-B. Hua, S. Indris, Z.-C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y.-X. Wang, J.-Z. Wang, Z. Hu, H.-K. Liu, S.-L. Chou and S.-X. Dou, General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting, *Angew. Chem. Int. Ed.*, 2019, **58**, 11868-11873.
- 2 Q. Wang, X. Huang, Z. L. Zhao, M. Wang, B. Xiang, J. Li, Z. Feng, H. Xu and M. Gu, Ultrahighloading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction, *J. Am. Chem. Soc.*, 2020, **142**, 7425-7433.
- 3 C. Cai, M. Wang, S. Han, Q. Wang, Q. Zhang, Y. Zhu, X. Yang, D. Wu, X. Zu, G. E. Sterbinsky, Z. Feng and M. Gu, Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoO_x nanosheets, *ACS Catal.*, 2021, **11**, 123-130.
- 4 Z. Li, D. Liu, X. Lu, M. Du, Z. Chen, J. Teng, R. Sha and L. Tian, Boosting oxygen evolution of layered double hydroxide through electronic coupling with ultralow noble metal doping, *Dalton Trans.*, 2022, **51**, 1527-1532.

- 5 J. Xu, Z. Lian, B. Wei, Y. Li, O. Bondarchuk, N. Zhang, Z. Yu, A. Araujo, I. Amorim, Z. Wang, B. Li and L. Liu, Acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media, *ACS Catal.*, 2020, **10**, 3571-3579.
- 6 G. Li, K. Li, L. Yang, J. Chang, R. Ma, Z. Wu, J. Ge, C. Liu and W. Xing, Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction, ACS Appl. Mater. Interfaces, 2018, 10, 38117-38124.
- 7 H.-S. Oh, H. N. Nong, T. Reier, M. Gliech and P. Strasser, Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers, *Chem. Sci.*, 2015, **6**, 3321-3328.
- 8 J. Shan, C. Guo, Y. Zhu, S. Chen, L. Song, M. Jaroniec, Y. Zheng and S.-Z. Qiao, Chargeredistribution-enhanced nanocrystalline Ru@IrO_x electrocatalysts for oxygen evolution in acidic media, *Chem*, 2019, 5, 445-459.
- 9 Z. Shi, Y. Wang, J. Li, X. Wang, Y. Wang, Y. Li, W. Xu, Z. Jiang, C. Liu, W. Xing and J. Ge, Confined Ir single sites with triggered lattice oxygen redox: Toward boosted and sustained water oxidation catalysis, *Joule*, 2021, 5, 2164-2176.
- 10 K. Zhang, W. Mai, J. Li, H. Wang, G. Li and W. Hu, Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media, *J. Mater. Sci.*, 2020, **55**, 3507-3520.
- 11 Z. Lu, C. Wei, X. Liu, Y. Fang, X. Hao, Y. Zang, Z. Pei, J. Cai, Y. Wu, D. Niu, A. Mosallanezhad, D. Sun, J. Ye, S. Niu and G. Wang, Regulating the adsorption behavior of intermediates on Ir–W@Ir–WO_{3-x} boosts acidic water oxidation electrocatalysis, *Mater. Chem. Front.*, 2021, 5, 6092-6100.
- 12 J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang, H. Pan, S. X. Dou and W. Sun, Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution, *Angew. Chem., Int. Ed.*, 2019, **58**, 12540-12544.
- 13 G. Wu, X. Zheng, P. Cui, H. Jiang, X. Wang, Y. Qu, W. Chen, Y. Lin, H. Li, X. Han, Y. Hu, P. Liu, Q. Zhang, J. Ge, Y. Yao, R. Sun, Y. Wu, L. Gu, X. Hong and Y. Li, A general synthesis approach for amorphous noble metal nanosheets, *Nat. Commun.*, 2019, **10**, 4855.
- 14 H. Wang, Z.-n. Chen, D. Wu, M. Cao, F. Sun, H. Zhang, H. You, W. Zhuang and R. Cao, Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core–shell alloy structure, *J. Am. Chem. Soc.*, 2021, **143**, 4639-4645.
- 15 F. Luo, H. Hu, X. Zhao, Z. Yang, Q. Zhang, J. Xu, T. Kaneko, Y. Yoshida, C. Zhu and W. Cai, Robust and stable acidic overall water splitting on Ir single atoms, *Nano Lett.*, 2020, **20**, 2120-2128.
- 16 F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang, J. Zhou, C. Yang, M. Luo, Y. Yang, Y. Li, P. Gao and S. Guo, Iridium–tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts, ACS Cent. Sci., 2018, 4, 1244-1252.
- 17 L. Fu, X. Hu, Y. Li, G. Cheng and W. Luo, IrW nanobranches as an advanced electrocatalyst for pH-universal overall water splitting, *Nanoscale*, 2019, **11**, 8898-8905.
- 18 S. B. Roy, K. Akbar, J. H. Jeon, S.-K. Jerng, L. Truong, K. Kim, Y. Yi and S.-H. Chun, Iridium on vertical graphene as an all-round catalyst for robust water splitting reactions, *J. Mater. Chem. A*, 2019, **7**, 20590-20596.
- 19 T. Zheng, C. Shang, Z. He, X. Wang, C. Cao, H. Li, R. Si, B. Pan, S. Zhou and J. Zeng, Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting, *Angew. Chem. Int. Ed.,* 2019, **58**, 14764-14769.
- 20 Z. Cheng, B. Huang, Y. Pi, L. Li, Q. Shao and X. Huang, Partially hydroxylated ultrathin iridium

nanosheets as efficient electrocatalysts for water splitting, Natl. Sci. Rev., 2020, 7, 1340-1348.

- 21 F. Luo, L. Guo, Y. Xie, J. Xu, K. Qu and Z. Yang, Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting, *Appl. Catal. B*, 2020, **279**, 119394.
- 22 Q. Wang, C.-Q. Xu, W. Liu, S.-F. Hung, H. Bin Yang, J. Gao, W. Cai, H. M. Chen, J. Li and B. Liu, Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting, *Nat. Commun.*, 2020, **11**, 4246.
- 23 L. Zhuang, F. Xu, K. Wang, J. Li, C. Liang, W. Zhou, Z. Xu, Z. Shao and Z. Zhu, Porous structure engineering of iridium oxide nanoclusters on atomic scale for efficient pH-universal overall water splitting, *Small*, 2021, **17**, 2100121.
- 24 D. Chen, R. Yu, D. Wu, H. Zhao, P. Wang, J. Zhu, P. Ji, Z. Pu, L. Chen, J. Yu and S. Mu, Anionmodulated molybdenum oxide enclosed ruthenium nano-capsules with almost the same water splitting capability in acidic and alkaline media, *Nano Energy*, 2022, **100**, 107445.
- 25 Q. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao and X. Huang, Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis, *Angew. Chem. Inter. Ed.*, 2019, **58**, 13983-13988.