### **Supporting Information**

# High-valence Ni<sup>3+</sup> construction and stability by electrochemical de-lithiation boosting oxygen evolution

Shujing Li<sup>1,2#</sup>, Xiaoming Zhu<sup>3#</sup>, Xiaohan Wang<sup>1</sup>, Wenshu Luo<sup>2</sup>, Xu Yu<sup>2</sup>, Qiuyun Guo<sup>1</sup>, Kunming Song<sup>1</sup>, Han Tian<sup>2\*</sup>, Xiangzhi Cui<sup>1,2\*</sup>, Jianlin Shi<sup>2</sup>
<sup>1</sup>School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P.R. China
<sup>2</sup>Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
<sup>3</sup>College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P.R. China

\* Correspondence to: cuixz@mail.sic.ac.cn; tianhan@mail.sic.ac.cn

#### **Supplementary Figures**



Fig. S1 Charging and discharging cycle curve of NCM94.



Fig. S2 LSV curves of de-NCM94 after different electrochemical de-lithiation voltages.



Fig. S3 XRD patterns of de-NCM94 after different electrochemical de-lithiation voltages.



**Fig. S4** i-t curves of de-NCM94 de-lithiated at 1 V for different times (30 min, 60 min, 90 min and 120 min).



Fig. S5 Rietveld refinement results of NCM94-initial.



Fig. S6 Rietveld refinement results of NCM94-1V-30min.



Fig. S7 Rietveld refinement results of NCM94-1V-60min.



Fig. S8 Rietveld refinement results of NCM94-1V-90min.



Fig. S9 SEM images of de-NCM94 at different magnifications after varied electrochemical de-lithiation time.



Fig. S10 TEM image of initial NCM94.



Fig. S11 HRTEM image of initial NCM94.



Fig. S12 SAED image of initial NCM94.



Fig. S13 Li 1s XPS spectra of de-NCM94 after varied electrochemical de-lithiation time.



Fig. S14 Co 2p XPS spectra of de-NCM94 after varied electrochemical de-lithiation time.



Fig. S15 Mn 2p XPS spectra of de-NCM94 after varied electrochemical de-lithiation time.



Fig. S16 LSV curves of  $LiCoO_2$  and  $LiNiO_2$  before and after electrochemical delithiation.



Fig. S17 LSV curves of NCM94-1V-90min and commercial IrO<sub>2</sub>.



Fig. S18 CV curves of de-NCM94 after varied electrochemical de-lithiation times.



Fig. S19 LSV curves of NCM94-1V-90min before and after stability testing of 300 h.



Fig. S20 SEM images of NCM94-1V-90min after stability testing.

#### **Supplementary Tables**

| samples   | a=b (Å)   | c (Å)      |
|-----------|-----------|------------|
| Initial   | 2.8800(4) | 14.1994(0) |
| 1V-30min  | 2.8774(5) | 14.2201(3) |
| 1V-60min  | 2.8753(7) | 14.2285(1) |
| 1V-90min  | 2.8740(8) | 14.2311(0) |
| 1V-120min | -         | -          |

**Table 1.** Rietveld refinement results of de-NCM after varied de-lithiation time.

|               | Li    | Ni    | Co    | Mn    | de-lithiation<br>degree |  |
|---------------|-------|-------|-------|-------|-------------------------|--|
| concentration | 2.31  | 24.15 | 0.18  | < 0.1 | 38%                     |  |
|               | µg/mL | ng/mL | ng/mL | ng/mL |                         |  |

**Table 2.** ICP-MS result of electrolyte after 90 min of electrochemical de-lithiationunder 1 V.

| spent lithium-ion battery<br>materials                                    | OER catalysts                                                           | recycling method                   | overpotential<br>(at 10 mA cm <sup>-2</sup> ) | reference |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------|-----------------------------------------------|-----------|
| LiNi <sub>0.94</sub> Co <sub>0.05</sub> Mn <sub>0.01</sub> O <sub>2</sub> | de-NCM94                                                                | electrochemical<br>de-lithium      | 270 mV                                        | This work |
| LiNi <sub>0.5</sub> Co <sub>0.2</sub> Mn <sub>0.3</sub> O <sub>2</sub>    | NiCoMnB                                                                 | boriding process                   | 271 mV                                        | 1         |
| $LiNi_{0.8}Co_{0.1}Mn_{0.1}O_2$                                           | NiCoMnB                                                                 | boriding process                   | 263 mV                                        | 1         |
| LiFePO <sub>4</sub>                                                       | Ni-LiFePO <sub>4</sub>                                                  | electrochemical<br>transformation  | 285 mV                                        | 2         |
| Spent LIBs                                                                | MnCo <sub>2</sub> O <sub>4</sub>                                        | chemical leaching,<br>calcination  | 400 mV                                        | 3         |
| LiNi <sub>0.5</sub> Mn <sub>0.3</sub> Co <sub>0.2</sub> O <sub>2</sub>    | NiMnCo-AC                                                               | thermal radiation                  | 340 mV                                        | 4         |
| LiCoO <sub>2</sub>                                                        | CP4(LiCoO <sub>2</sub> )                                                | calcination                        | 550 mV                                        | 5         |
| LiNi <sub>0.5</sub> Mn <sub>0.3</sub> Co <sub>0.2</sub> O <sub>2</sub>    | Ni <sub>0.5</sub> Mn <sub>0.3</sub> Co <sub>0.2</sub> (OH) <sub>2</sub> | mechanochemical activation process | 280 mV                                        | 6         |
| LiCoO <sub>2</sub>                                                        | CoN-graphene                                                            | calcination,<br>hydrothermal       | 280 mV                                        | 7         |

## **Table 3.** Comparison of overpotential of recycling spent LIBs cathode materials forOER electrocatalysts at 10 mA cm<sup>-2</sup>.

#### References

- Z. Chen, W. Zou, R. Zheng, W. Wei, W. Wei, B. J. Ni and H. Chen, Synergistic recycling and conversion of spent Li-ion battery leachate into highly efficient oxygen evolution catalysts, *Green Chem.*, 2021, 23, 6538-6547.
- 2. Y. Shen, Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production, *J. Power Sources*, 2022, **528**, 231220.
- S. Natarajan, S. Anantharaj, R. J. Tayade, H. C. Bajaj and S. Kundu, Recovered spinel MnCo<sub>2</sub>O<sub>4</sub> from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium, *Dalton Trans.*, 2017, 46, 14382-14392.
- M. Jiao, Q. Zhang, C. Ye, Z. Liu, X. Zhong, J. Wang, C. Li, L. Dai, G. Zhou and H. M. Cheng, Recycling spent LiNi<sub>1-x-y</sub>Mn<sub>x</sub>Co<sub>y</sub>O<sub>2</sub> cathodes to bifunctional NiMnCo catalysts for zinc-air batteries, *Proc. Natl. Acad. Sci. U S A*, 2022, **119**, 2202202119.
- A. Arif, M. Xu, J. Rashid, C. S. Saraj, W. Li, B. Akram and B. Hu, Efficient Recovery of Lithium Cobaltate from Spent Lithium-Ion Batteries for Oxygen Evolution Reaction, *Nanomaterials (Basel)*, 2021, 11, 3343.
- Y. Yang, H. Yang, H. Cao, Z. Wang, C. Liu, Y. Sun, H. Zhao, Y. Zhang and Z. Sun, Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li<sub>2</sub>CO<sub>3</sub> from spent LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2</sub> batteries, *J. Clean. Prod.*, 2019, **236**, 117576.
- Z. Lu, G. Chen, Y. Li, H. Wang, J. Xie, L. Liao, C. Liu, Y. Liu, T. Wu, Y. Li, A. C. Luntz, M. Bajdich and Y. Cui, Identifying the Active Surfaces of Electrochemically Tuned LiCoO<sub>2</sub> for Oxygen Evolution Reaction, *J. Am. Chem. Soc.*, 2017, **139**, 6270-6276.