Supporting Information (SI)

Energetic Bi-diazole 'Transformers' toward High Energy Thermostable Energetic Compounds

Jingwei Meng^{*a*}, *Teng Fei*^{*a**}, *Jinxiong Cai*^{*a*}, *Qi Lai*^{*a*}, *Jinya Zhang*^{*a*}, *Siping Pang*^{*a**} and Chunlin He^{*a,b,c**}

^a Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 10081 (China).

^b State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 10081 (China).

^c Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China.

*Email: feiteng@bit.edu.cn (T. Fei); pangsp@bit.edu.cn (S. Pang); chunlinhe@bit.edu.cn (C. He).

Table of Contents

1.	Experimental section	S1
2.	X-ray crystallography details	S3
3.	Heat of formation	S6
4.	Stability and theoretical analysis	S7
5.	Spectrum Analysis and DSC plots	S9
6.	90 neutral energetic compounds with a $T_d > 300^{\circ}$ C were collected and summarized	S13
7.	Reference	S23

1. Experimental section

1.1 General methods

All reagents were purchased from Energy Chemical of analytical grade and used without further purification. The ¹H NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz spectrometers at 25 °C. Chemical shifts were reported relative to Me₄Si as external standards. Infrared spectra (IR) were recorded on a Perkin Elmer Spectrum BX FT-IR instrument. Elemental analyses (C, H, N) were carried out on a Vario EL III Analyzer. Melting and decomposition (onset) points were recorded on a differential scanning calorimeter (TA Discovery DSC25) at a scan rate of 10 °C min⁻¹. The sensitivities to impact (IS) and friction (FS) were determined according to BAM standards.

1.2 Safety precautions

Although none of the energetic materials described herein have exploded or detonated in the course of this research, they are potentially explosive energetic materials that may be sensitive to impact and friction. Appropriate safety precautions should be taken at all times when handling these materials.

1.3 Preparation of 4,4'-bipyrazole (1), TNBP-2, and DATNBP-2

Synthetic route of 4,4'-bipyrazole (1) [1] and **TNBP-2** according to the reported method (Scheme 1) are provided in this section.

Synthesis of 4,4'-bipyrazole (1): The precursor compound 4,4'-bipyrazole was synthesized according to the reported method¹. The 1,4-bis(dimethylamino)butene was prepared from 1,4-dichloro-2-butyne using SOCl₂ as a reagent, and its rearrangement into the conjugated cis-transbutadiene over Na metal dispersion and the subsequent Vilsmeier-Haack-Arnold formylation providing symmetric perchlorate salt. The latter was hydrolyzed to bis-dialdehyde and then

converted into the 4,4-bipyrazole (1). ¹H NMR(d6-DMSO): δ7.79, 12.76 (s,2H) ppm; ¹³C NMR(d6-DMSO): δ113.10, 130.76 ppm. Elemental analysis of C₆H₆N₄ (134.14): calcd: C,53.72; H,4.51; N,41.77%; found: C52.93 H4.76, N42.31%.

Synthesis of 3,3',5,5'-tetranitro-4,4'-bipyrazole (TNBP-2): Fuming HNO₃ (2.33 mL, 98%) was added to a warm solution of 1 (0.31 g, 2.3 mmol) in 98% H₂SO₄ (14 mL). The mixture was placed into a pre-heated oil bath and the clear solution formed was stirred at 100°C (bath temperature) for 8 h. After cooling, the mixture containing a colorless solid reaction product was poured into crushed ice and left overnight at 5-10 °C. The crystalline deposit was filtered (0.706 g, 91%), washed with 40 mL of ice water and dried. T_d (onset): 298 °C. ¹H NMR(d6-DMSO): δ 9.46(s,2H) ppm; ¹³C NMR(d6-DMSO): δ 101.04, 149.86 ppm. IR(KBr): 3740, 3208, 2967, 1567, 1519, 1482, 1416, 1348, 1320, 1274, 1207, 1018, 994, 842, 758, 744, 712, 675, 635, 580, 518vcm⁻¹. Elemental analysis of C₆H₂N₈O₈ (314): calcd: C22.94, H0.64, N35.67%; found: C23.06, H0.79, N35.72%.

Synthesis of 1,1'-diamine-3,3',5,5'-tetranitro-4,4'-bipyrazole (DATNBP-2): A mixture of TNBP-2(0.34 g, 1.08 mmol) and 1,8-diazabicycloundec-7-ene (DBU) (0.33 g, 2.16 mmol) in anhydrous acetonitrile (15 mL) was stirred at the ambient temperature for 0.5 h. And then fresh O-p-tolylsulfonylhydroxylamine (2.3 equiv, 9.2 mmol) in anhydrous dichloromethane solution (30 mL) was added with portions in 5 min. The mixture was stirred for 2.5 h, and the solvent was removed under vacuum. The **DATNBP-2** was obtained by flash chromatography as a yellow solid (0.32 g, 86 %). T_d(onset): 305 °C. ¹H NMR(d6-DMSO): δ 8.03(s,2H), 7.43(s,2H) ppm; ¹³C NMR(d6-DMSO): δ 100.50, 140.07, 145.53 ppm. IR(KBr): 3338.29, 3273.72, 1549.05, 1488.96, 1428.07, 1377.52, 1324.73, 1132.00, 1103.58, 1011.12, 868.47, 831.58, 730.06, 627.53, 612.90 \tilde{v} cm⁻¹. Elemental analysis of C₆H₄N₁₀O₈ (344.02): calcd: C20.94, H1.17, N40.70%; found: C20.65, H2.23, N39.03%.

2. X-ray crystallography details

2.1 Single crystal preparation and crystallographic data

The crystal of **DATNBP-2** suitable for single-crystal XRD was obtained from slow evaporation of its petroleum ether and ethyl acetate solution at room temperature. Crystallographic data of compounds in this study are provided in this section.

2.2 Hydrogen bond interaction

The strengths of the relevant intra-/intermolecular interaction were evaluated by the integrated value of the crystal orbital Hamilton population (COHP) below the Fermi energy, using a recently developed High Accuracy Atomistic Simulation for Energetic Materials (HASEM) package [2,3]. The generalized gradient approximation (GGA) is used for the exchange-correlation function in the Perdew-Burke-Ernzerhof (PBE) form.

Compound	DATNBP-2	DATNBP-2
CCDC No.	2268272	2206102
Formula	$C_{6}H_{4}N_{10}O_{8}$	$C_{6}H_{4}N_{10}O_{8}$
M_{w}	344.19	344.19
Crystal system	orthorhombic	orthorhombic
Space group	Pbca	Pbca
a[Å]	12.899(6)	12.8197(17)
b[Å]	6.244(2)	6.1427(7)
c[Å]	30.293(10)	30.168(4)
α[°]	90	90
β[°]	90	90
γ[°]	90	90
V[Å ³]	2440.0(16)	2375.7(5)
Z	8	8
T[K]	298K	170K
λ[Å]	0.71073	0.71073
$P_{calcd}[g \cdot cm^{-3}]$	1.874	1.925
μ [mm ⁻¹]	0.173	0.178
F(000)	1392.0	1392.0
Crystal size/mm ³	$0.12\times0.06\times0.05$	0.09×0.04×0.03
θ range[°]	4.148-52.826	4.166-52.91

Table S1 Crystallographic data for DATNBP-2.

	-12≤h≤16	-14≤h≤14
Index ranges	-7≤k≤7	-6≤k≤7
	-37 <u>≤</u> 1 <u>≤</u> 37	-36≤l≤3
Data/restraints/ parameters	2441/16/229	2424/24/226
GOF on F2	1.021	1.053
$R[F^{2}>2\sigma(F^{2})]$	0.0803	0.0839
$wR(F^2)$	0.1862	0.1863

Figure S1 Single-crystal X-ray structures and packing diagram of DATNBP-2 at 170K

Figure S2 Hydrogen bonds for DATNBP-2.Table S2 Hydrogen bonds for DATNBP-2.

D-HA	D-H/Å	HA/Å	DA/Å	D-HA/°	Energy/kcal mol ⁻¹
N3-H3BO7	0.88	2.56	2.931(7)	106	1.345580175
Intra N3-H3BO2	0.88	2.24	2.777(6)	119	4.50832775
Intra N10-H10AN9	0.88	1.58	1.97(2)	102	6.56486332
Intra N10-H10AO6	0.88	2.43	2.918(13)	116	2.24655391
N10-H10AO3	0.88	2.14	2.909(10)	146	5.114588295

Figure S3 Hydrogen bonds for DATNBP-1.

Table S3. Hydrogen bonds for DATNBP-1.

D-HA	D-H/Å	HA/Å	DA/Å	D-HA/°	Energy/kcal mol ⁻¹
N5-H5BO2	0.87	2.24	2.944	120	2.046158
N5-H5BO6	0.87	2.37	3.023	133	1.14726
N6-H6BO1	0.90	2.27	3.132	160	1.396774

Figure S4 Hydrogen bonds for DATNBP-1.

Table S4 Hydrogen bonds for DATNBP-1.

D-HA	D-H/Å	HA/Å	DA/Å	D-HA/°	Energy/kcal mol ⁻¹
Intra N3-H3BO1	0.86	2.24	2.759	119	4.30832775

N3-H3BO1	0.86	2.53	3.244	141	1.64121657
N3-H3AO4	0.86	2.42	3.166	145	1.92341630
Intra N3-H3BO1	0.86	2.26	2.830	124	4.02853527

3. Heat of formation

Theoretical calculations were performed by using the Gaussian09 program and Multiwfn software [4,5]. Gas phase heats of formation of the title compounds were computed based on an isodesmic reaction (Scheme S2). The geometric optimization and frequency analyses of the structures employed B3LYP/6-31++G** level, Zero-point energies (ZPE), and total energy(E_0) were calculated at the M062X/6-311++(d,p) level.

The heat of formation was obtained by using the isodesmic reaction approach. Atomization energies were obtained by employing the G2 ab initio method. All of the optimized structures were characterized to be true local energy minima on the potential energy surface without imaginary frequencies. The heats of formation in the solid state were further obtained by employing Trouton's rule according to equation 1[6].

Scheme S2 Isodesmic reactions for DATNBP-1, DATNBP-2.

Table S5 The zero point energy (ZPE), temperature correction coefficient (H_T), total energy (E_0), heat of formation (HOF) of **DATNBP-2**

Compound	ZPE (a.u)	$H_{T}(a.u)$	$E_0(a.u)$	HOF (kJ mol ⁻¹)
DATNBP-1	0.165464	0.18725900	-1376.857830	457.5
DATNBP-2	0.165038	0.18662000	-1376.913937	477.3
CH_4	0.044558	0.00381000	-40.4966719	-74.6
NH_3	0.034252	0.00366528	-56.5405858	-45.9
bipyrazole	0.069995	0.00850752	-448.8305749	286.8
CH ₃ NO ₂	0.049628	0.00531000	-244.9716281	-81.0
N_2H_4	0.053276	0.057481	-111.8435902	110.6

4. Stability and theoretical analysis

4.1 Lattice parameter

Lattice parameter of two **DATNBP-1** were analyzing by using VASP (Vienna Ab initio Simulation Package) [7]. The calculations were performed using projected augmented wave (PAW) formalism of the Kohn–Sham density functional theory. Geometry optimization was done using GGA, including van der Waals interaction using DFT-D3.

Name	Total Energy	Energy of Molecule	Lattice Energy(ev)	Lattice Energy (kJ mol ⁻¹)
DATNBI	-388.407881	-192.58147975	-1.622460965	-156.5436329
DATNBP-1	-772.6030224	-191.4780852	-1.672670425	-161.3881078
DATNBP-2	-1659.130717	-205.4989431	-1.892396546	-182.5884485

Table S5 Correlation energy of crystal of DATNBP-1 and DATNBP-2

4.2 The bond properties of selected bonds in DATNBP-2, DATNBP-1, and DATNBI

The Mayer bond orders, the bond dissociation energy (BDE), and the bond length for C-NO₂ bonds in **DATNBP-2**, **DATNBP-1**, and **DATNBI** are calculated by the Gaussian 09 software and Multiwfn software.

	Label	BDE (kcal mol ⁻¹)	Mayer Order	Bond length (Å)
	C13-N4	64.09	0.89240660	1.44877
DATNED 2	C17-N8	65.85	0.89771746	1.42808
DAINBP-2	C20-N16	64.09	0.89238630	1.44877
	C22-N12	65.85	0.89771741	1.42808
	C19-N15	57.58	0.77284767	1.45680
DATNED 1	C20-N16	64.20	0.82748265	1.42922
DAINDE-1	C23-N17	64.20	0.82757670	1.42874
	C24-N18	57.58	0.77314367	1.45680
	C10-N8	59.88	0.82393386	1.43285
	C11-N9	57.56	0.74622171	1.46854
DAINDI	C24-N22	59.88	0.82391675	1.43286
	C25-N23	57.56	0.74622720	1.46853

Table S6 The bond properties of selected bonds in DATNBP-1 and DATNBP-2

4.3 The Hirschfeld Surfaces and The Two-dimensional(2D) Fingerprint

To better understand the relationship between structure and mechanical sensitivity, the Hirschfeld surfaces and the two-dimensional(2D) fingerprint are studied (Fig.S5) [8].

Figure S5 2D fingerprint plots in crystal stacking and Hirschfeld surfaces of DATNBP-2(a) and DATNBP-2(b), and the individual atomic contact percentage contribution of two DATNBP-1(c).

5. Spectrum Analysis and DSC plots

¹H, ¹³C NMR, and IR spectra of compounds in this study are provided in this section. The thermal stability of DATNBP-2 was tested using the differential scanning calorimeter (DSC) method and the DSC plots are shown in Fig. S13.

Figure S7 ¹³C NMR spectrum of 1 in d6-DMSO.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S9 ¹³C NMR spectrum of TNBP-2 in d6-DMSO.

Figure 11 ¹³C NMR spectrum of DATNBP-2 in d6-DMSO.

Figure S12 IR spectrum of compound DATNBP-2.

Figure S13 DSC curve of DATNBP-2

6. 90 neutral energetic compounds with a $T_{\rm d} > 300^{\circ}$ C were collected and summarized

	D	$T_{\rm d}$	D	Р	IS	FS	
Compound	$(g \cdot cm^{-3})$	(°C)	$(m \cdot s^{-1})$	(GPa)	(J)	(N)	Ref.
$ \begin{array}{c} $	1.860	300	8813	33.08	22	300	9
$O_2N \xrightarrow{NO_2}_{N \sim N} NO_2$	1.816	302	8285	29.2	23	>360	10
$ \begin{array}{c c} & NH_2 \\ & H_2N \\ & N \\ & N$	1.683	302	8742	26.9	>40	>360	11
$ \begin{array}{c} $	1.874	302	8935	34.5	>20	>360	12
$O_2 N \xrightarrow{NO_2}_{N \to N} NO_2$	1.825	303	8304	29.8	21	>360	10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.840	303	8809	29.3	19	288	13
	1.72	303	7854	21.5	>40	>360	14
$\begin{array}{c c} N-N & N & N \\ N & N & N-N \\ H & N-N & NO_2 \\ H_2N \end{array}$	1.82	305	8312	27	>80	>360	15
	1.91	305	9200	34.8	16	>360	16

Table S7 90 neutral energetic compounds with a $T_{\rm d}$ > 300°C were collected and summarized

$ \begin{array}{c} $	1.613	305	7244	21.75	23	360	17
$ \begin{array}{c c} O_2 N & N & N \\ N & N & N \\ N & N & N \\ \end{array} $	1.733	307	7838	24.1	22	>360	18
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1.72	307	8069	24.5	>40	360	19
	1.95	307	8844	34.4	13	160	20
$ \begin{array}{c} $	1.75	308	7939	25.6	>40	-	21
$\begin{array}{cccc} O_2 N & & N - N H \\ O - N & & O - N \\ H N & N & N - N \\ N & N & N & N - N \\ N & N & N & N - N \\ O & N H_2 \end{array}$	1.745	308	8329	27.9	18	240	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.79	309	8458	26.2	>40	360	23
$ \begin{array}{c} H \\ N \\ N$	1.66	309	6609	13.9	>40	>360	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.802	310	8332	29.6	11	>360	24
$O_2 N N \\ N \\$	1.81	310	9047	34.0	25	360	25

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.77	311	8189	27.9	>40	>360	26
	1.69	312	7698	23.4	32	>360	10
$\begin{array}{c c} N \\ N $	1.68	313	7756	23.6	>40	>360	27
	1.77	314	8027	26.4	>40	>360	28
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.882	314	8889	34.3	18	240	29
	1.855	314	8256	28.6	20	>360	30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.85	315	8572	31.4	>60	>360	31
	1.94	316	7850	31.3	40	360	32
	1.782	317	7991	25.2	>40	>360	28
$O_2 N \qquad N = N \\ N = $	1.79	317	8165	26.37	>40	>360	33
NO ₂ NO ₂ NO ₂ NO ₂ NO ₂	1.74	318	7612	24.3	5	240	33

S17

	1.71	319	6988	21.4	>40	>360	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.84	320	8120	-	50	-	35
O_2N N NH_2 H_2N NO_2	1.84	320	7933	24.6	>15	360	36
$ \begin{array}{c} $	1.89	322	8507	30.7	16	160	37
H_2N H_2N-N H_2N-N N N N N N N HN N N H	1.685	324	8423	24.16	>60	-	38
$ \begin{array}{c} $	1.88	325	8338	30.7	40	360	39
$O_2 N \longrightarrow N H_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O$	1.825	326	8551	29.8	35	>360	40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.90	327	8837	32.9	>40	>360	41
	1.804	328	7535	19.2	>40	>360	42
	1.634	328	7336	19.7	30	>360	18

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.812	328	8002	28.52	>70	-	43
	1.86	329	7853	24.5	>40	-	44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.88	329	7720	24.33	8.2	>360	45
$ \begin{array}{c} $	1.87	331	9075	30.7	>80	>360	46
$HO N \\ N \\$	1.887	332	8538	30.4	>40	>360	47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.85	332	8476	30.24	>40	>360	33
O_2N	1.88	332	7840	27.91	20	-	48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.84	335	8030	27.3	5	>360	49
$\begin{array}{c c} O_2 N & N = N & N \\ O_2 N & N & N \\ H_2 N & N & N \\ H_2 N & N & N \\ \end{array}$	1.872	335	8657	27.82	>60	>360	50
$ \begin{array}{c} O_2 N \\ N \\ N \\ N \\ H \\ N O_2 \end{array} $	1.85	336	8250	27.4	15	160	51

$\begin{array}{c c} & & & & \\ O_2 N & & & \\ N - N & & N - N \\ N - N & & N \\ H & & N \\ \end{array} $	1.851	336	8568	31.4	19	240	52
$ \begin{array}{c} $	1.76	337	7970	23.88	>40	>360	53
$O_2 N $ $NO_2 N $ $N $	1.81	337	8227	26.3	>40	>360	54
	1.80	338	8099	27.14	>40	>360	55
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$	1.865	341	8517	30.6	22	352	56
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	1.68	341	7818	20.4	>40	>360	57
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.92	342	8639	31.7	20	360	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.68	342	8944	25.8	40	360	58
$O_2N \qquad NO_2 \\ N \\ O_2N \qquad N^+N \\ N^-N \\ N^-N \\ N^- \\ NH_2$	1.78	343	7547	21.9	10	240	36
$O_2 N \xrightarrow{N \\ N \\ N \\ N \\ N \\ NH_2}^{N \\ NH_2}$	1.743	348	7849	22.16	>80	>360	59

S20

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.73	348	8102	25	18	>360	60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.93	350	8176	27.72	50	>360	71
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.78	350	7721	26.58	60	-	60
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.97	350	8320	34.1	87	36	61
	1.772	351	7871	21.8	>40	>360	62
$ \begin{array}{c c} & NO_2 \\ & NO_2 \\ & NH \\ & N \\ & NO_2 \\ & NO_2 \\ & NO_2 \end{array} $	1.805	351	8234	28.6	10	352	56
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.78	353	9275	28.7	>80	>360	63
	1.786	354	7558	22.29	>30	>360	64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.855	354	8404	29.2	19	240	52
$ \begin{array}{c} O_2 N \\ H_2 N \\ N \\$	1.90	355	8727	32.6	>60	>360	65

S21

	1.77	356	7160	19.4	18	-	15
$ \begin{array}{c} O_2 N & NO_2 \\ H_2 N & N & NH_2 \\ O & & & & \\ O & & & & \\ \end{array} $	1.878	358	7842	27.5	15	>360	66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.76	360	7757	25.1	10	360	71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.87	364	8359	26.5	>60	>360	67
	1.83	365	8120	26.9	>40	>360	68
	1.82	365	8528	29.4	20	>360	60
$H_2N \bigvee_{N=N} NH$ $N \bigvee_{N=N} NH_2$	1.67	365	7426	18.16	>40	>360	69
$O_2 N NO_2$ $N N NO_2$ $N N N N N N N N N N N N N N N N N N N $	1.94	366	7670	24.2	9	>360	36
	1.81	368	8054	26.53	>40	>360	55
$ \begin{array}{c} $	1.794	370	7891	22.7	60	>360	70

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.877	372	8705	32.25	26	>360	9
NH NH NO ₂ NH NH	1.81	376	8026	26.2	>40	>360	68
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.64	378	7250	21.0	69	>360	71
	1.794	382	7528	22.1	30	>360	30
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.75	394	6198	14.5	15	>360	71
NO_2	1.69	400	7032	19.9	19	-	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.74	405	7200	23.0	16	300	16
$ \begin{array}{c} O_2 N \\ H_2 N \\ N \\$	1.78	406	7789	21.8	>40	>360	72
$NO_2 N \xrightarrow{O} N NO_2$ $O_2 N \xrightarrow{O} N N \xrightarrow{O} NO_2$ $NO_2 N \xrightarrow{O} N NO_2$ $NO_2 N \xrightarrow{O} N NO_2$	1.82	415	7874	28.2	10	240	73

$ \begin{array}{c} & NO_2 \\ & N \\ HN \\ N \\ $	1.794	425	7503	21.37	>30	>360	64

7. Reference

- [1] I. Gospodinov, K. V. Domasevitch, C. C. Unger, Midway between Energetic Molecular Crystals and High-Density Energetic Salts: Crystal Engineering with Hydrogen Bonded Chains of Polynitro Bipyrazoles. *Cryst. Growth & Des.*, 2020, 20, 755-764.
- [2] L. Zhang, S. Jiang, Y. Yu, Y. Long, H. Zhao, L. Peng, J. Chen, Phase transition in octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under static compression: An application of the first-principles method specialized for CHNO solid explosives. *J. Phys. Chem. B*, 2016, 120, 11510-11522.
- [3] Z. Mo, A. Zhang, X. Cao, Q. Liu, X. Xu, H. An, W. Pei, S. Zhu, JASMIN: A parallel software infrastructure for scientific computing. *Front. Comput. Sci.*, 2010, 4, 480-488.
- [4] J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, rev. B.01; Wallingford, CT (2010).
- [5] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33, 580-592.
- [6] M. S. Westwell, M. S. Searle, D. H. Williams, Empirical Correlations between Thermodynamic Properties and Intermolecular Forces. J. Am. Chem. Soc., 1995, 117, 5013-5015.
- [7] G. G. Kresse, J. J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Physical review*. *B*, **1996**, 54, 11169.
- [8] M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis. *CrystEngComm*, 2009, 11, 19-32.
- [9] T. Yan, H. Yang, Y. Chen, Z. Yi, S. Zhu, G. Cheng, An advanced and applicable heat-resistant explosive through the controllable regiochemical modulation. J. Mater. Chem. A, 2020, 8, 23857.
- [10] J. Cai, T. Fei, R. Li, J. Xiong, J. Zhang, P. Yin, S. Pang, Intramolecular Assembly of Nitrobiazoles and an Ether Bridge:Toward Energetic Materials with Enhanced Energy and Safety. ACS Appl. Mater. Interfaces, 2022, 14, 52951-52959.
- [11] J. Yount, M. Zeller, 4,4',5,5' -Tetraamino-3,3'-azo-bis-1,2,4-triazole and the electrosynthesis of high-performing insensitive energetic materials. J. Mater. Chem. A, 2020, 8, 19337.
- [12] C. Lei, G. Cheng, Z. Yi, Q. Zhang, H. Yang, A facile strategy for synthesizing promising pyrazole-fused energetic compounds. *Chem. Eng. J*, 2021, 416, 129190.

- [13] A. Stc, B. Xjq, A. Tll, A. Qhz, Tetrazolo [1,5- b]pyridazine as a versatile scaffold for construction of multipurpose energetic materials. *Energetic Materials Frontiers*, 2021, 3, 137-145.
- [14] Y. Tang, K. Li, A. K. Chinnam, R. J. Staples, J. M. Shreeve, Mono-n-oxidation of heterocycle-fused pyrimidines. *Dalton Trans.*, 2021, 50, 2143.
- [15] H. Gao, Q. Zhang, J.M. Shreeve, Fused heterocycle-based energetic materials. J. Mater. Chem. A, 2020, 8, 4193.
- [16] Y. Liu, G. Zhao, Y. Tang, G. Zhang, Multipurpose [1,2,4]triazolo[4,3-b][1,2,4,5]tetrazinebased energetic materials. J. Mater. Chem. A, 2019, 7, 7875.
- [17] P. Lian, L. Chen, J. Chen, J. Wang, et al. The nitration of 1-methyl-2,4,5-triiodoimidazole and its oxidation by-product under nitration conditions, *J. Energ. Mate.*, **2022**, 40, 46-60.
- [18] Y. Tang, C. He, G. H. Imler, D. A. Parrish, J. M. Shreeve, Ring closure of polynitroazoles via an N, N'-alkylene bridge: towards high thermally stable energetic compounds. *J. Mater. Chem. A*, **2018**, 6, 8382.
- [19] P. Yin, D. A. Parrish, J. M. Shreeve, Bis (nitroamino-1, 2, 4-triazolates): N-Bridging Strategy Toward Insensitive Energetic Materials. *Angew. Chem. Int. Edit.*, 2014, 53,12889-12892.
- [20] Q. Sun, C. Shen, X. Li, Q. Lin, M. Lu, Combination of four oxadiazole rings for the generation of energetic materials with high detonation performance, low sensitivity and excellent thermal stability. *J. Mater. Chem. A*, 2017, 5, 11063-11070.
- [21] P. Yin, Q. Zhang, J. Zhang, D. A. Parrish, M. S. Jean'ne, N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials. *J. Mater. Chem. A.*, **2013**, 1, 7500-7510.
- [22] Y. Tang, H. Gao, D. A. Parrish, J. M. Shreeve, 1, 2, 4-Triazole Links and N-Azo Bridges Yield Energetic Compounds. *Chem. Eur. J*, 2015, 21, 11401-11407.
- [23] Y. Qu, Q. Zeng, J. Wang, Q. Ma, H. Li, H. Li, G. Yang, Furazans with azo linkages: stable CHNO energetic materials with high densities, highly energetic performance, and low impact and friction sensitivities. *Chem. Eur. J*, **2016**, 22, 12527-12532.
- [24] D. Fischer, J. L. Gottfried, T. M. Klapötke, K. Karaghiosoff, J. Stierstorfer, T. G. Witkowski, Synthesis and investigation of advanced energetic materials based on bispyrazolylmethanes. *Angew. Chem. Int. Edit.*, 2016, 128, 16366-16369.

- [25] Q. Ma, Z. Cheng, L. Yang, W. Du, Y. Yin, W. Ma, J. Li, Accelerated discovery of thermostable high-energy materials with intramolecular donor–acceptor building blocks. *Chem. Commun.*, 2022, 58, 4460-4463.
- [26] P. Yin, J. Zhang, D. A. Parrish, J. M. Shreeve, Energetic N, N'-Ethylene-Bridged Bis (nitropyrazoles): Diversified Functionalities and Properties. *Chem. Eur. J*, 2014, 20, 16529-16536.
- [27] J. Chen, J. Tang, H. Xiong, H. Yang, G. Cheng, Combining triazole and furazan frameworks via methylene bridges for new insensitive energetic materials. *Energetic Materials Frontiers*, 2020, 1, 34-39.
- [28] T. Yan, G. Cheng, H. Yang, 1, 2, 4-Oxadiazole-Bridged Polynitropyrazole Energetic Materials with Enhanced Thermal Stability and Low Sensitivity. *ChemPlusChem*, 2019, 84,1567-1577.
- [29] J. Tang, H. Xiong, H. Yang, G. Cheng, The Design and Synthesis of New Advanced Energetic Materials Based on Pyrazole-triazole Backbones. *Dalton Trans.*, 2023, 52, 3169-3175.
- [30] K. V. Domasevitch, I. Gospodinov, H. Krautscheid, T. M. Klapötke, J. Stierstorfer, Facile and selective polynitrations at the 4-pyrazolyl dual backbone: straightforward access to a series of high-density energetic materials. *New J. Chem*, **2019**, 43(3), 1305-1312.
- [31] Y. Tang, C. He, G. H. Imler, D. A. Parrish, M. S. Jean'ne, A C-C bonded 5, 6-fused bicyclic energetic molecule: Exploring an advanced energetic compound with improved performance. *Chem. Commun.*, 2018, 54, 10566-10569.
- [32] Z. L. Chioato, T. M. Klapötke, F. Mieskes, J. Stierstorfer, M. Weyrauther, (Picrylamino)-1,
 2, 4-triazole Derivatives–Thermally Stable Explosives. *Eur. J. Inorg. Chem.*, 2016, 7, 956-962.
- [33] G. Zhang, W. Hu, J. Ma, H. Yang, G. Cheng, Combining 5, 6-fused triazolo-triazine with pyrazole: A novel energetic framework for heat-resistant explosive. *Chem. Eng. J*, 2021, 426, 131297.
- [34] J. Zhang, F. Bi, J. Zhang, X. Wang, Z. Yang, G. Zhang, B. Wang, Synthetic and thermal studies of four insensitive energetic materials based on oxidation of the melamine structure. *RSC adv.*, 2021, 11, 288-295.
- [35] J. P. Agrawal, Some new high energy materials and their formulations for specialized

applications. Propell. Explos. Pyrot., 2005, 30, 316-328.

- [36] W. Geng, Q. Ma, Y. Chen, W. Yang, Y. Jia, J. Li, S. M. Wang, Structure–performance relationship in thermally stable energetic materials: tunable physical properties of benzopyridotetraazapentalene by incorporating amino groups, hydrogen bonding, and π - π interactions. *Crys. Growth & Des.*, **2020**, 20, 2106-2114.
- [37] B. Wang, H. Xiong, G. Cheng, Z. Zhang, H. Yang, An unexpected method to synthesise 1,
 2, 4-oxadiazolone derivatives: a class of insensitive energetic materials. *New J. Chem.*, 2018, 42, 19671-19677.
- [38] G. H. Tao, B. Twamley, M. S. Jean'ne, A thermally stable nitrogen-rich energetic material-3, 4, 5-triamino-1-tetrazolyl-1, 2, 4-triazole (TATT). J. Mater. Chem. A, 2009, 19, 5850-5854.
- [39] F. Yang, Y. Xu, P. Wang, Q. Lin, F. Bi, N. Liu, M. Lu, Pyrazolo [1, 5-a] pyrimidine with similar "amino–nitro–amino" arrangement characteristics to TATB: a novel heat-resistant explosive with fused structure. *CrystEngComm.*, 2021, 23, 2801-2808.
- [40] Y. Wang, Q. Zhang, S. Song, Preparation of 7,8-dinitropyrazolo[1,5-a][1,3,5]triazine-2,4diamine useful for producing energetic materials. 2021, CN 112851681.
- [41] C. Li, C. Lei, J. Tang, T. Zhu, G. Cheng, H. Yang, C-C bonded bis-5, 6 fused triazole– triazine compound: an advanced heat-resistant explosive with high energy and low sensitivity. *Dalton Trans.*, 2022, 51, 15292-15299.
- [42] Z. Yin, W. Huang, Z. Zeng, Y. Liu, Y. Tang, Reducing the Electron Delocalization of FOX-7 toward a Thermally Stable Explosive as a Hexanitrosilbene (HNS) Replacement. *Cryst. Growth. & Des.*, 2022, 22, 1867-1873.
- [43] Z. Fu, Y. Wang, L. Yang, R. Su, J. Chen, F. Nie, F. Chen, Synthesis and characteristics of novel, high-nitrogen 1, 2, 4-oxadiazoles. *RSC adv.*, 2014, 4, 11859-11861.
- [44] L. Ding, P. Wang, Q. Lin, D. Li, Y. Xu, M. Lu, Synthesis, characterization and properties of amphoteric heat-resistant explosive materials: Fused [1, 2, 5] oxadiazolo [3', 4': 5, 6] pyrido [4, 3-d][1, 2, 3] triazines. *Chem. Eng. J.*, 2022, 432, 134293.
- [45] A. K. Chinnam, R. J. Staples, J. M. Shreeve, Nucleophilic catalyzed structural binary cleavage of a fused [5, 5]-bicyclic compound. *Org. Lett.*, 2021, 23, 9408-9412.
- [46] Q. Ma, G. Zhang, J. Li, Z. Zhang, H. Lu, L. Liao, F. Nie, Pyrazol-triazole energetic hybrid with high thermal stability and decreased sensitivity: facile synthesis, characterization and promising performance. *Chem. Eng. J.*, **2020**, 379, 122331.

- [47] K. Li, W. Huang, Z. An, X. Wei, Y. Tang, Efficient Synthesis of a Superior Heat-Resistant Energetic Material Based on Fused Pyrazolotriazine Ring. *Cryst. Growth & Des.*, 2021, 21, 6872-6878.
- [48] D. Sheng, L. Chen, B. Yang, Y. Zhu, Performances of New Heat-resistant Insensitive Booster Explosive 2,5-Dipicryl-1,3,4-oxadiazole. *Chinese Journal of Energetic Materials*, 2011, 19, 184 -188.
- [49] T. M. Klapötke, T. G. Witkowski, 5,5'-Bis (2, 4, 6-trinitrophenyl)-2, 2'-bi (1, 3, 4-oxadiazole)(TKX-55): Thermally Stable Explosive with Outstanding Properties. *ChemPlusChem*, 2016, 81, 357-360.
- [50] Z. Cheng, Z. Zhang, Q. Ma, L. Yang, H. Yang, G. Cheng, W. Yang, A potential insensitivehighly-energetic material through conjugation-promoted N-oxidation strategy. *Chem. Eng. J.*, 2022, 436, 131990.
- [51] P. Yin, J. Zhang, L. A. Mitchell, D. A. Parrish, J. M. Shreeve, 3, 6-Dinitropyrazolo [4, 3-c] pyrazole-Based Multipurpose Energetic Materials through Versatile N-Functionalization Strategies. *Angew. Chem. Int. Ed.*, **2016**, 128, 13087-13089.
- [52] J. Cai, C. Xie, J. Xiong, J. Zhang, P. Yin, S. Pang, High performance and heat-resistant pyrazole-1, 2, 4-triazole energetic materials: tuning the thermal stability by asymmetric framework and azo-bistriazole bridge. *Chem. Eng. J.*, **2022**, 433,134480.
- [53] S. Manzoor, P. He, J. Q. Yang, Q. Tariq, J. R. Li, Y. Hu, et al. Synthesis and characterization of energetic compounds based on N-oxidation of 5-Nitroso-2, 4, 6triaminopyrimidine. *J. Mol. Struct.*, 2021, 1242, 130732.
- [54] Q. Wang, C. J. Lei, J. Tang, G. B. Cheng, H. W. Yang, Heat-Resistant and Low Sensitivity Energetic Material Constructed with [1, 2, 4] Triazolo [4, 3-a] pyridine Framework. *Propell. Explos. Pyrot.*, 2022, 14, e202200178.
- [55] T. Yan, G. Cheng, H. Yang, 1, 3, 4-Oxadiazole based thermostable energetic materials: Synthesis and structure–property relationship. *New J. Chem.* 2022, 44(16), 6643-6651.
- [56] H. Li, L. Zhang, N. Petrutik, K. Wang, Q. Ma, D. Shem-Tov, M. Gozin, Molecular and crystal features of thermostable energetic materials: guidelines for architecture of "bridged" compounds. ACS Cent. Sci., 2019, 6,54-75.
- [57] Y. Tang, Z. Yin, A. K. Chinnam, R. J. Staples, J. M. Shreeve, A duo and a trio of triazoles as very thermostable and insensitive energetic materials. *Inorg. Chem.*, 2020, 59, 17766-

17774.

- [58] T. M. Klapötke, P. C. Schmid, S. Schnell, J. Stierstorfer, Thermal stabilization of energetic materials by the aromatic nitrogen-rich 4, 4', 5, 5'-tetraamino-3, 3'-bi-1, 2, 4-triazolium cation. *J. Mater. Chem. A.*, **2015**, 3, 2658-2668.
- [59] Y. Cao, Z. Cai, H. Xia, K. Wang, Y. Liu, Q. Zhang, W. Zhang, Simple reaction to prepare a heat-resistant and insensitive explosive (2-nitro-[1, 2, 4] triazolo [1, 5-a][1, 3, 5] triazine-5, 7-diamine) and its derivatives. *Chem. Eng. J.*, 2022, 432, 134297.
- [60] M. Deng, F. Chen, S. Song, S. Huang, Y. Wang, Q. Zhang, From the sensitive primary explosive ICM-103 to insensitive heat-resistant energetic materials through a local azide-toamino structural modification strategy. *Chem. Eng. J.*, **2022**, 429, 132172.
- [61] S. Mousavi, K. Esmaeilpour, M. H. Keshavarz, Preparation and characterization of nano N,N'-bis(1,2,4-triazol-3-yl-) -4,4'-diamino-2,2', 3,3', 5,5', 6,6'-octanitroazo-benzene explosive. *Indian J. Eng. Mater. S.*, 2014, 21, 585-588.
- [62] W. Cao, W. Dong, Z. Lu, Y. Bi, Y. Hu, T. Wang, J. Zhang, Construction of Coplanar Bicyclic Backbones for 1, 2, 4-Triazole-1, 2, 4-Oxadiazole-Derived Energetic Materials. *Chem. Eur. J.*, 2021, 27, 13807-13818.
- [63] W. Geng, Y. Jia, Y. Chen, Q. Ma, G. Fan, L. Liao, Superior thermally robust energetic materials featuring Z-E isomeric bis (3, 4-diamino-1, 2, 4-triazol-5-yl)-1 H-pyrazole: selfassembly nitrogen-rich tubes and templates with Hofmeister anion capture architecture. *CrystEngComm*, 2022, 22, 3144-3154.
- [64] T. Yan, J. Ma, H. Yang, G. Cheng, Introduction of energetic bis-1, 2, 4-triazoles bridges: A strategy towards advanced heat resistant explosives. *Chem. Eng. J.*, **2022**, 429, 132416.
- [65] Y. Tang, C. He, G. H. Imler, D. A. Parrish, J. M. Shreeve, Aminonitro groups surrounding a fused pyrazolotriazine ring: a superior thermally stable and insensitive energetic material. *ACS Appl. Energy Mater.*, 2019, 2, 2263-2267.
- [66] X. Li, B. L. Wang, Q. H. Lin, Compatibility study of 2, 6-diamino-3, 5-dinitropyridine-1oxide with some energetic materials. *Cent. Eur. J. of Energ. Mat.*, 2016, 13, 978-988.
- [67] Z. Zeng, Y. Liu, W. Huang, M. S. Jean'ne, Y. Tang, Radical-mediated C–N bond activation in 3, 5-diamino-4-nitro-1 H-pyrazole towards high-energy and insensitive energetic materials. *J. Mater. Chem. A.*, **2022**, 10, 8268-8272.
- [68] D. Kumar, Y. Tang, C. He, G. H. Imler, D. A. Parrish, J. M. Shreeve, Multipurpose

Energetic Materials by Shuffling Nitro Groups on a 3, 3'-Bipyrazole Moiety. *Chem. Eur. J.*, **2018**, 24, 17220-17224.

- [69] G. Zhang, H. Xiong, P. Yang, C. Lei, W. Hu, G. Cheng, H. Yang, A high density and insensitive fused [1, 2, 3] triazolo-pyrimidine energetic material. *Chem. Eng. J.*, 2021, 404, 126514.
- [70] Z. Cheng, W. Yang, Q. Ma, Z. Q. Zhang, L. Yang, H. Yang, G. Cheng, Constructing heatresistant and insensitive energetic compounds with the introduction of cyano group into fused pyrazolotriazine skeleton. *Cryst. Growth & Des.*, 2021, 22, 334-340.
- [71] Ł. Gutowski, W. Trzciński, M. Szala, 5, 5', 6, 6'-Tetranitro-2, 2'-bibenzimidazole: A Thermally Stable and Insensitive Energetic Compound. *ChemPlusChem*, 2018, 83, 87-91.
- [72] Y. Tang, J. Ma, G. H. Imler, D. A. Parrish, M. S. Jean'ne, Versatile functionalization of 3,
 5-diamino-4-nitropyrazole for promising insensitive energetic compounds. *Dalton Trans.*,
 2019, 48, 14490-14496.
- [73] N. Liu, Y. J. Shu, H. Li, L. J. Zhai, Y. N. Li, B. Z. Wang, Synthesis, characterization and properties of heat-resistant explosive materials: polynitroaromatic substituted difurazano [3, 4-b: 3', 4'-e] pyrazines. *RSC Adv.*, 2015, 5 43780-43785.