Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Ruthenium-Catalyzed 1,3-Indolyl Migration within α,α-Disubstituted Allylic Alcohols

Xue Zhang, Zhen Luo, Tang-Lin Liu,* and Qing-Hua Li*

School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

Table of contents

I General information	2
II General procedure III The analytical and spectral characterization data IV References V NMR spectra	2
	4
	26
	28

I General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 600 MHz and 400 MHz instruments. Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26), carbon (chloroform δ 77.0) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), bs (broad singlet). Coupling constants were reported in Hertz (Hz). All high resolution mass spectra (HRMS) were obtained on a Bruker Apex-2. For thin layer chromatography (TLC), Qingdao Haiyang Chemical was used, and compounds were visualized with a UV light at 254 nm. Further visualization was achieved by staining with iodine, or potassium permanganate solution followed by heating using a heat gun. Flash chromatography separations were performed on Qingdao Haiyang Chemical 200-300 mesh silica gel. All reactions were carried out under a nitrogen atmosphere. All commercially available reagents were used as received for the reactions without any purification. All solvents were dried on alumina columns using a solvent dispensing system.

II General procedure

General procedure for preparation of allylic alcohols 1

Allylic alcohols were prepared by vinyl-magnesium bromide added to **S1**. To a solution of indoloyl-2-ketones¹ **S1** (1 mmol) in dry THF was added vinyl-magnesium bromide (1 M in THF, 1.2 equiv.) under nitrogen by a syringe over 5 min at 0 °C. Then, the reaction mixture was allowed to warm to room temperature and stirred for 3 h. The reaction was quenched via the addition of saturated aqueous NH₄Cl at 0 °C, and the mixture was extracted with ethyl acetate. The organic layer was washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel using EtOAc in hexanes to afford the

allylic alcohols 1.

General procedure for preparation of allylic alcohols 3 or 5

TMS
$$K_2CO_3$$
 K_2CO_3 K_2CO_3

K₂CO₃ (3.0 equiv.) was added to alcohol² **S2** in MeOH and stirring was continued at room temperature for 2 h. The crude was filtered under a pad of celite and washed with dichloromethane. The residue was washed with ammonium chloride and brine and dried over Na₂SO₄. After evaporation of the solvent, the residue was purified by column chromatography on silica gel to afford the corresponding propargylic alcohol **S3**.

To a flame-dried flask equipped with a magnetic stir bar were added LiAlH₄ (3.0 equiv., 1 M in THF) and THF. Propargylic alcohol **S3** (1.0 equiv.) was added slowly to the mixture and then reflux at 80 °C for 5 h. The reaction was quenched with potassium sodium tartrate solution at 0 °C and then extracted with EtOAc. The organic phase was combined and washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by column chromatography on silica gel to afford the corresponding allylic alcohol **5**.

General procedure for Ruthenium catalyzes 1,3-migration of indole

To a vial equipped with a dried stir bar was added allylic alcohols **1** (0.1 mmol), RuCp*Cl₂ (5 mol%), K₃PO₄ (1.0 equiv), toluene (0.5 mL) in the glovebox. The reaction mixture was taken outside the glovebox and allowed to stir at 60 o C (oil bath) for 12 h. The reaction mixture was added to water (10 mL), and extracted with EtOAc (3 × 5 mL). The organic layer was washed with aqueous NaHCO₃ and brine and dried over Na₂SO₄. And the residue was purified by column chromatography with silica gel to give pure products **2**.

III The analytical and spectral characterization data Allyl alcohols 1:

1-(1-Methyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1a)

HO N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 208.0 mg of brown liquid in 79% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.61-7.59 (m, 1H), 7.35-7.29 (m, 4H), 7.28-7.26 (m, 1H), 7.25-7.20 (m, 2H), 7.12-7.08 (m, 1H), 6.56 (dd, J = 16.8 Hz, 10.8 Hz, 1H), 6.50 (s, 1H), 5.29-5.25 (m, 2H), 3.47 (s, 3H), 2.40 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.4, 143.2, 142.3, 138.8, 128.5, 127.5, 126.7, 126.1, 122.2, 121.0, 119.7, 113.5, 109.3, 102.8, 76.6, 31.6.

1-(1-Methyl-1*H*-indol-2-yl)-1-(*p*-tolyl)prop-2-en-1-ol (1b)

Me 1b

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 194.1 mg of brown liquid in 70% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.58-7.56 (m, 1H), 7.23-7.17 (m, 4H), 7.10-7.06 (m, 3H), 6.51 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 6.46 (s, 1H), 5.24-5.20 (m, 2H), 3.45 (s, 3H), 2.41 (s, 1H), 2.32 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 143.3, 142.4, 140.5, 138.8, 137.1, 129.1, 126.7, 126.1, 122.1, 120.9, 119.6, 113.3, 109.3, 102.6, 76.5, 31.6, 21.2.

1-(4-Methoxyphenyl)-1-(1-methyl-1*H*-indol-2-yl)prop-2-en-1-ol (1c)

MeO 1c

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 202.4 mg of yellow liquid in 69% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 1H), 7.27-7.25 (m, 2H), 7.24-7.18

(m, 2H), 7.12-7.08 (m, 1H), 6.86-6.82 (m, 2H), 6.54 (dd, J = 16.8 Hz, 10.4 Hz 1H), 6.47 (s, 1H), 5.28-5.21 (m, 2H), 3.80 (s, 3H), 3.50 (s, 3H), 2.36 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 159.0, 143.3, 142.5, 138.9, 135.6, 127.5, 126.7, 122.2, 120.9, 119.7, 113.8, 113.4, 109.3, 102.6, 76.4, 55.4, 31.7.

1-(1-Methyl-1*H*-indol-2-yl)-1-(4-(methylthio)phenyl)prop-2-en-1-ol (1d)

MeS 1d

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40

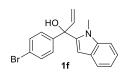
in hexane:ethyl acetate = 15:1) resulting in 232.1 mg of brown liquid in 75% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 1H), 7.27-7.24 (m, 2H), 7.22-7.17 (m, 4H), 7.12-7.08 (m, 1H), 6.57-6.52 (m, 1H), 6.49 (s, 1H), 5.29-5.23 (m, 2H), 3.49 (s, 3H), 2.47 (s, 3H), 2.39 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.0, 142.1, 140.3, 138.8, 137.7, 126.7, 126.4, 122.3, 121.0, 119.7, 113.6, 109.3, 102.8, 76.4, 31.7, 15.8.

1-(4-Chlorophenyl)-1-(1-methyl-1*H*-indol-2-yl)prop-2-en-1-ol (1e)

HO N


The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 268.0 mg of brown liquid in 90% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.6 Hz, 1H), 7.29-7.21 (m, 6H), 7.13-7.09 (m, 1H), 6.55-6.48 (m, 2H), 5.30-5.22 (m, 2H), 3.46 (s, 3H), 2.41 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 142.8, 142.0, 141.7, 138.9, 133.4, 128.6, 127.7, 126.6, 122.5, 121.0, 119.9, 113.9, 109.4, 102.9, 76.3, 31.7.

1-(4-Bromophenyl)-1-(1-methyl-1*H*-indol-2-yl)prop-2-en-1-ol (1f)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was

performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 239.6 mg of brown liquid in 70% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.61-7.58 (m, 1H), 7.45-7.43 (m, 2H), 7.25-7.20 (m, 4H), 7.13-7.09 (m, 1H), 6.55-6.48 (m, 2H), 5.30-5.23 (m, 2H), 3.47 (s, 3H), 2.40 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.8, 142.6, 141.6, 138.9, 131.6, 128.0, 126.6, 122.5, 121.6, 121.0, 119.9, 113.9, 109.4, 102.9, 76.3, 31.7.

1-(4-Fluorophenyl)-1-(1-methyl-1*H*-indol-2-yl)prop-2-en-1-ol (1g)

F 1g

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 250.4 of yellow liquid in 89% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.57 (m, 1H), 7.32-7.27 (m, 2H), 7.24-7.22 (m, 2H), 7.12-7.08 (m, 1H), 7.00-6.96 (m, 2H), 6.55-6.48 (m, 2H), 5.28-5.20 (m, 2H), 3.46 (s, 3H), 2.42 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.2 (d, J = 246.4 Hz), 143.0, 142.0, 139.2 (d, J = 3.0 Hz), 138.9, 128.0 (d, J = 8.1 Hz), 126.6, 122.4, 121.0, 119.8, 115.2 (d, J = 21.2 Hz), 113.7, 109.3, 102.8, 76.3, 31.6.

1-(3-Fluorophenyl)-1-(1-methyl-1*H*-indol-2-yl)prop-2-en-1-ol (1h)

F HO N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 239.1 mg of yellow liquid in 85% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.61-7.58 (m, 1H), 7.28-7.20 (m, 3H), 7.15-7.09 (m, 2H), 7.06-7.03 (m, 1H), 6.97-6.92 (m, 1H), 6.55-6.49 (m, 2H), 5.30-5.25 (m, 2H), 3.46 (s, 3H), 2.42 (s, 1H), 1.53 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 163.1 (d, J = 247.5 Hz), 146.2 (d, J = 6.1 Hz), 142.7, 141.7, 138.9, 129.9 (d, J = 8.1 Hz), 126.6, 122.4, 121.9 (d, J = 2.0 Hz), 121.1, 119.8, 114.4 (d, J = 21.2 Hz), 113.3 (d, J = 23.2 Hz), 113.2, 109.4, 102.9, 76.3 (d, J = 2.0 Hz),

1-(2-Fluorophenyl)-1-(1-methyl-1H-indol-2-yl)prop-2-en-1-ol (1i)

FHO I

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

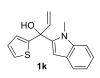
acetate = 15:1) resulting in 222.2 mg of yellow liquid in 79% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.58-7.56 (m, 1H), 7.33-7.28 (m, 2H), 7.24-7.20 (m, 1H), 7.18-7.04 (m, 4H), 6.58 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 6.37 (s, 1H), 5.39-5.21 (m, 2H), 3.62 (s, 3H), 3.16-3.13 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 160.7 (d, J = 246.4 Hz), 141.0, 140.7, 138.9, 130.8 (d, J = 9.1 Hz), 129.9 (d, J = 9.1 Hz), 128.7 (d, J = 3.0 Hz), 126.7, 124.3 (d, J = 3.0 Hz), 122.2, 121.1, 119.7, 116.6 (d, J = 22.2 Hz), 115.2, 109.3, 102.8, 76.1, 31.2.

1-(1-Methyl-1*H*-indol-2-yl)-1-(naphthalen-2-yl)prop-2-en-1-ol (1j)

HO I


The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 222.5 mg of yellow liquid in 71% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.83-7.76 (m, 4H), 7.63-7.61 (m, 1H), 7.48-7.43 (m,3H), 7.24-7.20 (m, 2H), 7.14-7.10 (m, 1H), 6.63 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 6.57 (s, 1H), 5.32-5.28 (m, 2H), 3.46 (s, 3H), 2.51 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.1, 142.2, 140.8, 138.9, 133.3, 132.8, 128.4, 128.2, 127.7, 126.7, 126.3, 126.2, 124.7, 124.5, 122.3, 121.0, 119.8, 113.8, 109.4, 102.9, 31.7.

1-(1-Methyl-1*H*-indol-2-yl)-1-(thiophen-2-yl)prop-2-en-1-ol (1k)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 164.3 mg of brown liquid in 61% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.6 Hz, 1H), 7.30-7.27 (m, 2H), 7.25-7.20 (m, 1H), 7.12-7.08 (m, 1H), 6.95-6.93 (m, 1H), 6.79-6.78 (m, 1H), 6.56 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 6.44 (s, 1H), 5.35-5.26 (m, 2H), 3.63 (s, 3H), 2.60 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 148.5, 142.1, 141.6, 139.0, 126.9, 126.6, 125.6, 125.4, 122.4, 121.1, 119.7, 114.7, 109.4, 102.6, 75.4, 31.8.

2-(1-Methyl-1*H*-indol-2-yl)-1-phenylbut-3-en-2-ol (11)

HO N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 230.2 mg of white liquid in 83% yield.

acetate = 15:1) resulting in 176.6 mg of brown liquid in 77% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 1H), 7.32-7.25 (m, 4H), 7.24-7.17 (m, 3H), 7.12-7.08 (m, 1H), 6.53 (s, 1H), 6.07 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.20-5.01 (m, 2H), 3.84 (s, 3H), 3.49-3.39 (m, 2H), 2.02 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 142.1, 141.8, 138.8, 135.3, 131.3, 128.3, 127.2, 127.0, 121.9, 120.8, 119.6, 114.6, 109.2, 100.7, 74.6, 47.3, 32.2.

3-(1-Methyl-1*H*-indol-2-yl)hex-1-en-3-ol (1m)

HO N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

¹H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.23-7.18 (m, 1H), 7.10-7.06 (m, 1H), 6.44 (s, 1H), 6.10 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.23-5.17 (m, 2H), 3.81 (s, 3H), 2.09-2.03 (m, 2H), 1.87 (s, 1H), 1.50-1.38 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.6, 142.1, 138.7, 126.9, 121.8, 120.7, 119.5, 114.0, 109.2, 100.3, 74.9, 43.6, 32.0, 16.9, 14.5.

3-(1-Methyl-1H-indol-2-yl)oct-1-en-3-ol(1n)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 221.3 mg of brown liquid in 86% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.6 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.23-7.17 (m, 1H), 7.10-7.06 (m, 1H), 6.43 (s, 1H), 6.10 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.23-5.17 (m, 2H), 3.81 (s, 3H), 2.09-2.02 (m, 2H), 1.89 (s, 1H), 1.47-1.31 (m, 6H), 0.92-0.89 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.6, 142.2, 138.7, 126.9, 121.8, 120.7, 119.5, 114.0, 109.2, 100.3, 74.9, 41.3, 32.3, 32.0, 23.3, 22.8, 14.2.

1-Cyclopropyl-1-(1-methyl-1*H*-indol-2-yl)prop-2-en-1-ol (10)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 161.4 mg of yellow liquid in 71% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.22-7.18 (m, 1H), 7.10-7.06 (m, 1H), 6.68 (s, 1H), 5.87 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.21-5.07 (m, 2H), 3.77 (s, 3H), 1.83 (s, 1H), 1.59-1.52 (m, 1H), 0.67-0.47 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 142.7, 139.8, 138.7, 126.9, 121.8, 120.7, 119.5, 115.4, 109.2, 101.0, 74.1, 32.0, 21.1, 2.0, 0.8.

1-Cyclohexyl-1-(1-methyl-1*H*-indol-2-yl)prop-2-en-1-ol (1p)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 218.2 mg of brown liquid in 81% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.21-7.16 (m, 1H), 7.09-7.05 (m, 1H), 6.37 (s, 1H), 6.28 (dd, J = 17.6 Hz, 10.8 Hz, 1H), 5.30-5.26 (m, 2H), 3.90 (s, 3H), 2.11-2.04 (m, 1H), 1.94 (s, 1H), 1.82-1.65 (m, 3H), 1.55-1.54 (m, 1H), 1.35-0.99 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.6, 138.7, 126.9, 121.7, 120.6, 119.6, 114.0, 109.2, 101.7, 77.8, 46.4, 32.4, 28.4, 27.4, 26.9, 26.6.

5,9-Dimethyl-3-(1-methyl-1*H*-indol-2-yl)deca-1,8-dien-3-ol (1q)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf =

0.40 in hexane:ethyl acetate = 15:1) resulting in 246.1 mg of yellow liquid in 79% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.23-7.17 (m, 1H), 7.10-7.05 (m, 1H), 6.44 (s, 1H), 6.23-6.11 (m, 1H), 5.29-5.21 (m, 2H), 5.10-5.03 (m, 1H), 3.83 (s, 3H), 2.03-1.91 (m, 4H), 1.86 (s, 1H), 1.66 (d, J = 4.8 Hz, 3H), 1.57 (d, J = 4.8 Hz, 3H), 1.49-1.29 (m, 2H), 1.26-1.18 (m, 1H), 0.99-0.91 (m, 3H). 13 C NMR (101 MHz, CDCl₃) δ 143.2, 142.6, 138.7, 131.6, 126.9, 124.8, 121.8, 120.7, 119.6, 114.1, 109.2, 100.4, 75.4, 48.0, 39.0, 32.0, 28.4, 25.8, 25.6, 21.9, 17.8.

8-Chloro-3-(1-methyl-1*H*-indol-2-yl)oct-1-en-3-ol (1r)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 218.9 mg of yellow liquid in 75% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.57-7.55 (m, 1H), 7.29-7.26 (m, 1H), 7.22-7.18 (m, 1H), 7.10-7.06 (m, 1H), 6.42 (s, 1H), 6.09 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.24-5.18 (m, 2H), 3.80 (s, 3H), 3.52 (t, J = 6.8 Hz, 2H), 2.11-2.03 (m, 2H), 1.87 (s, 1H), 1.82-1.75 (m, 2H), 1.52-1.40 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 142.4, 141.9, 138.7, 126.8, 121.9, 120.7, 119.6, 114.3, 109.2, 100.3, 74.7, 45.1, 41.1, 32.6, 32.0, 27.3, 22.9.

3-(1-methyl-1H-indol-2-yl)-8-phenoxyoct-1-en-3-ol (1s)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl

acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 241.1 mg of yellow liquid in 69% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.6 Hz, 1H), 7.30-7.27 (m, 2H), 7.25-7.18 (m, 2H), 7.10-7.06 (m, 1H), 6.95-6.86 (m, 3H), 6.44 (s, 1H), 6.11 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 5.25-5.19 (m, 2H), 3.95 (t, J = 6.4 Hz, 2H), 3.82 (s, 3H), 2.15-2.07 (m, 2H), 1.86 (s, 1H), 1.83-1.77 (m, 2H), 1.62-1.48 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 159.2, 142.5, 142.0, 138.7, 129.6, 126.9, 121.9, 120.7, 120.7, 119.6, 114.7, 114.2, 109.2, 100.4, 74.8, 67.9, 41.2, 32.0, 29.4, 26.6, 23.4.

1-(1,3-Dimethyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1t)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 208.0 mg of yellow liquid in 75% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 1H), 7.33-7.30 (m, 4H), 7.26-7.24 (m, 1H), 7.22-7.19 (m, 2H), 7.13-7.09 (m, 1H), 6.59 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 5.26-5.19 (m, 2H), 3.42 (s, 3H), 2.43 (s, 1H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.4, 144.1, 137.6, 136.3, 128.5, 127.4, 126.3, 122.4, 119.0, 118.9, 112.8, 109.7, 109.0, 78.0, 32.2, 11.1.

1-(1,4-Dimethyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1u)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 144.2 of brown liquid in 52% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.31 (m, 4H), 7.27-7.23 (m, 1H), 7.15-7.08 (m, 2H), 6.91 (d, J = 6.8 Hz, 1H), 6.58 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 6.52 (s, 1H), 5.30-5.26 (m, 2H), 3.44 (s, 3H), 2.55 (s, 3H), 1.26 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 143.3, 141.7, 138.6, 130.5, 128.4, 127.4, 126.5, 126.2, 122.4, 119.9, 113.4, 106.9, 101.2, 76.6, 31.8, 18.8.

1-(1,5-dimethyl-1H-indol-2-yl)-1-phenylprop-2-en-1-ol (1v)

HO N 1v Me The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 191.4 mg of brown liquid in 69% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.34-7.29 (m, 4H), 7.25-7.22 (m, 1H), 7.13 (d, J = 8.4 Hz, 1H), 7.05-7.02 (m, 1H), 6.54 (dd, J = 17.2 Hz, 10.8 Hz, 1H), 6.41 (s, 1H), 5.27-5.22 (m, 2H), 3.42 (s, 3H), 2.44 (s, 3H), 2.39 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 143.3, 142.3, 137.2, 128.9, 128.4, 127.4, 126.9, 126.1, 123.8, 120.6, 113.4, 109.0, 102.2, 76.6, 31.6, 21.5.

1-(1,6-Dimethyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1w)

HO N N N Me The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 180.3 mg of brown liquid in 65% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.0 Hz, 1H), 7.34-7.28 (m, 4H), 7.27-7.25 (m, 1H), 7.04 (s, 1H), 6.96-6.93 (m, 1H), 6.54 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 6.45 (s, 1H), 5.28-5.23 (m, 2H), 3.42 (s, 3H), 2.48 (s, 3H), 2.36 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 143.3, 141.7, 139.2, 132.1, 128.4, 127.4, 126.1, 124.5, 121.5, 120.6, 113.4, 109.3, 102.6, 76.6, 31.6, 22.1.

1-(1,7-Dimethyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1x)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 138.7 mg of yellow liquid in 50% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.2 Hz, 1H), 7.34-7.28 (m, 4H), 7.27-7.23 (m, 1H), 6.96-6.88 (m, 2H), 6.52 (dd, J = 17.2 Hz, 10.4 Hz, 1H), 6.48 (s, 1H), 5.25-5.21 (m, 2H), 3.72 (s, 3H), 2.69 (s, 3H), 2.40 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 142.3, 137.6, 128.4, 127.6, 127.3, 126.1, 125.5, 121.4, 119.8, 119.2, 113.2, 103.5, 76.7, 34.9, 20.7.

1-(5-Methoxy-1-methyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1y)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 202.4 mg of brown liquid in 69% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.35-7.29 (m, 4H), 7.27-7.25 (m, 1H), 7.13 (d, J = 8.8Hz, 1H), 7.07-7.04 (m, 1H), 6.88-6.86 (m, 1H), 6.53 (dd, J = 16.8 Hz, 10.4 Hz, 1H), 6.41 (s, 1H), 5.28-5.23 (m, 2H), 3.83 (s, 3H), 3.43 (s, 3H), 2.49 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 154.3, 143.5, 143.2, 142.8, 134.2, 128.4, 127.4, 126.9, 126.2, 113.5, 112.5, 110.1, 102.8, 102.4, 76.7, 56.1, 31.8.

1-(6-Chloro-1-methyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1z)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 175.7 mg of brown liquid in 59% yield.

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 1H), 7.35-7.28 (m, 5H), 7.27-7.23 (m, 1H), 7.07-7.04 (m, 1H), 6.51 (dd, J = 16.8 Hz, 10.4 Hz, 1H), 6.44 (s, 1H), 5.29-5.22 (m, 2H), 3.41 (s, 3H), 2.43 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.2, 143.1, 142.9, 139.3, 128.5, 128.2, 127.6, 126.1, 125.2, 121.8, 120.4, 113.9, 109.4, 102.8, 76.6, 31.8.

1-(5-Bromo-1-methyl-1*H*-indol-2-yl)-1-phenylprop-2-en-1-ol (1aa)

acetate = 15:1) resulting in 208.8 mg of brown liquid in 61% yield.

HO N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 1H), 7.35-7.30 (m, 4H), 7.28-7.26 (m, 1H), 7.24-7.20 (m, 1H), 7.12-7.08 (m, 1H), 6.56 (dd, J = 16.8 Hz, 10.4 Hz, 1H), 6.50 (s, 1H), 5.29-5.26 (m, 2H), 3.47 (s, 3H), 2.39 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 143.5, 143.2, 142.3, 138.9, 128.5, 127.5, 126.7, 126.2, 122.2, 121.0, 119.7, 113.6, 109.3, 102.8, 76.7, 31.7.

The products 2:

3-(1-Methyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2a)³

2a

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 24.7 mg of yellow solid in 94% yield, melting point 110-112 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 7.2 Hz, 2H), 7.60-7.57 (m, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.50-7.47 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 7.18-7.15 (m, 1H), 7.08-7.05 (m, 1H), 6.29 (s, 1H), 3.73 (s, 3H), 3.45 (t, J = 7.8 Hz, 2H), 3.21 (t, J = 7.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 198.7, 140.1, 137.6, 136.9, 133.4, 128.9, 128.2, 128.0, 121.0, 120.0, 119.5, 109.0, 98.7, 37.6, 29.7, 21.2.

3-(1-Methyl-1H-indol-2-yl)-1-(p-tolyl) propan-1-one (2b)³

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf =

0.40 in hexane:ethyl acetate = 15:1) resulting in 24.7 mg of yellow solid in 89% yield, melting point 101-103 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 3H), 7.18-7.15 (m, 1H), 7.08-7.05 (m, 1H), 6.29 (s, 1H), 3.72 (s, 3H), 3.42 (t, J = 7.8 Hz, 2H), 3.20 (t, J = 7.8 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 198.4, 144.2, 140.2, 137.7, 134.5, 129.5, 128.3, 128.0, 121.0, 120.0, 119.5, 109.0, 98.8, 37.5, 29.6, 21.8, 21.3.

1-(4-Methoxyphenyl)-3-(1-methyl-1*H*-indol-2-yl)propan-1-one (2c)³

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.50 in hexane:ethyl acetate = 15:1) resulting in 24.0 mg of yellow solid in 82% yield, melting point 97-99 $^{\circ}$ C.

¹H NMR (600 MHz, CDCl₃) δ 8.00-7.98 (m, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.17-7.15 (m, 1H), 7.07-7.05 (m, 1H), 6.96-6.94 (m, 2H), 6.28 (s, 1H), 3.87 (s, 3H), 3.72 (s, 3H), 3.40-3.37 (m, 2H), 3.20-3.18 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.3, 163.8, 140.3, 137.7, 130.5, 130.1, 128.0, 121.0, 120.0, 119.5, 114.0, 109.0, 98.8, 55.6, 37.3, 29.6, 21.4.

3-(1-Methyl-1*H*-indol-2-yl)-1-(4-(methylthio)phenyl)propan-1-one (2d)

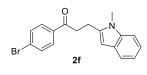
The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 20.7 mg of yellow solid in 67% yield, melting point 116-118 °C.

¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.29-7.27 (m, 3H), 7.17-7.15 (m, 1H), 7.08-7.05 (m, 1H), 6.28 (s, 1H), 3.72 (s, 3H), 3.39 (t, J = 7.8 Hz, 2H), 3.19 (t, J = 7.8 Hz, 2H), 2.53 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 197.7, 146.3, 140.1, 137.7, 133.3, 128.6, 128.0, 125.4, 121.0, 120.0, 119.6, 109.0, 98.8, 37.4, 29.6, 21.3, 15.0.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NOS [M+H]⁺:310.1260; Found:310.1259.

1-(4-Chlorophenyl)-3-(1-methyl-1*H*-indol-2-yl)propan-1-one (2e)¹


CI De la companya de

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 20.5 mg of yellow solid in 69% yield, melting point 107-109 °C.

¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 7.8 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 6.27 (s, 1H), 3.72 (s, 3H), 3.41 (t, J = 7.8 Hz, 2H), 3.20 (t, J = 7.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 197.5, 139.9, 139.8, 137.7, 135.3, 129.6, 129.2, 128.0, 121.1, 120.0, 119.6, 109.0, 98.8, 37.6, 29.7, 21.2.

1-(4-Bromophenyl)-3-(1-methyl-1*H*-indol-2-yl)propan-1-one (2f)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.50

in hexane:ethyl acetate = 15:1) resulting in 29.1 mg of yellow solid in 85% yield, melting point 112-114 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.07 (t, J = 7.2 Hz, 1H), 6.27 (s, 1H), 3.72 (s, 3H), 3.40 (t, J = 7.8 Hz, 2H), 3.20 (t, J = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.7, 139.8, 137.7, 135.7, 132.2, 129.7, 128.6, 128.0, 121.1, 120.0, 119.6, 109.0, 98.8, 37.6, 29.7, 21.2.

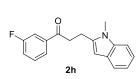
HRMS(ESI): m/z Calcd. for C₁₈H₁₆BrNNaO [M+Na]⁺:364.0307; Found:364.0307.

3-(1-Methyl-1*H*-indol-2-yl)-1-(*p*-tolyl) propan-1-one (2g)

F 2g

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40

in hexane:ethyl acetate = 15:1) resulting in 19.1 mg of yellow solid in 68% yield, melting point 72-74 o C.


¹H NMR (600 MHz, CDCl₃) δ 8.04-8.02 (m, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.18-7.13 (m, 3H), 7.07 (t, J = 7.2 Hz, 1H), 6.28 (s, 1H), 3.72 (s, 3H), 3.41 (t, J = 7.8 Hz, 2H), 3.20 (t, J = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.1, 166.0 (d, J = 255.2 Hz), 139.9, 137.6, 133.4 (d, J = 3.0 Hz), 130.8 (d, J = 9.2 Hz), 128.0, 121.1, 120.0, 119.6, 116.0 (d, J = 21.1 Hz), 109.0, 98.8, 37.5, 29.6, 21.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -104.83.

HRMS(ESI): m/z Calcd. for C₁₈H₁₇FNO [M+H]⁺:282.1289; Found:282.1288.

1-(3-Fluorophenyl)-3-(1-methyl-1*H*-indol-2-yl)propan-1-one (2h)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.50

in hexane:ethyl acetate = 15:1) resulting in 20.5 mg of yellow solid in 73% yield, melting point 86-88 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 7.8 Hz, 1H), 7.70-7.67 (m, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.48-7.44 (m, 1H), 7.30-7.27 (m, 2H), 7.17 (t, J = 7.2 Hz, 1H), 7.07 (t, J = 7.2 Hz, 1H), 6.28 (s, 1H), 3.73 (s, 3H), 3.43 (t, J = 7.8 Hz, 2H), 3.21 (t, J = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.4 (d, J = 2.4 Hz), 163.1 (d, J = 248.5 Hz), 139.8, 139.1 (d, J = 6.0 Hz), 137.7, 130.5 (d, J = 7.7 Hz), 128.0, 123.9 (d, J = 3.2 Hz), 121.1, 120.4 (d, J = 21.4 Hz), 120.0, 119.6, 115.0 (d, J = 22.5 Hz), 109.0, 98.9, 37.8, 29.7, 21.1.

¹⁹F NMR (565 MHz, CDCl₃) δ -111.60.

HRMS(ESI): m/z Calcd. for C₁₈H₁₇FNO [M+H]⁺:282.1289; Found:282.1289.

1-(2-Fluorophenyl)-3-(1-methyl-1*H*-indol-2-yl)propan-1-one (2i)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 26.4 mg of yellow solid in 94% yield, melting point 81-83 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.91-7.88 (m, 1H), 7.55-7.51 (m, 2H), 7.28-7.24 (m, 2H), 7.17-7.14 (m, 2H), 7.06 (t, J = 7.8 Hz, 1H), 6.27 (s, 1H), 3.72 (s, 3H), 3.47-3.44 (m, 2H), 3.20 (t, J = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 197.1 (d, J = 4.2 Hz), 162.2 (d, J = 254.4 Hz), 140.0, 137.7, 134.8 (d, J = 9.1 Hz), 130.9 (d, J = 2.6 Hz), 128.0, 125.7 (d, J = 13.1 Hz), 124.7 (d, J = 3.3 Hz), 121.0, 120.0, 119.5, 116.9 (d, J = 23.8 Hz), 108.9, 98.9, 42.5 (d, J = 8.0 Hz), 29.6, 21.1 (d, J = 2.3 Hz).

¹⁹F NMR (565 MHz, CDCl₃) δ -109.17.

HRMS(ESI): m/z Calcd. for C₁₈H₁₇FNO [M+H]⁺:282.1289; Found:282.1288.

3-(1-Methyl-1*H*-indol-2-yl)-1-(naphthalen-2-yl)propan-1-one (2j)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) ($Rf = \frac{1}{2}$)

0.30 in hexane:ethyl acetate = 15:1) resulting in 27.6 mg of yellow solid in 88% yield, melting point 114-116 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.51 (s, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.92-7.87 (m, 2H), 7.61 (t, J = 7.8 Hz, 1H), 7.57-7.53 (m, 2H), 7.28 (d, J = 8.4 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 6.34 (s, 1H), 3.74 (s, 3H), 3.58 (t, J = 7.8 Hz, 2H), 3.26 (t, J = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 198.7, 140.1, 137.7, 135.9, 134.3, 132.7, 129.9, 129.7, 128.7, 128.7, 128.0, 128.0, 127.0, 123.9, 121.0, 120.0, 119.6, 109.0, 98.9, 37.7, 29.7, 21.4.

HRMS(ESI): m/z Calcd. for C₂₂H₂₀NO [M+H]⁺:314.1539; Found:314.1539.

3-(1-Methyl-1*H*-indol-2-yl)-1-(thiophen-2-yl) propan-1-one (2k)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (40:1) (Rf = 0.30 in

hexane:ethyl acetate = 15:1) resulting in 13.5 mg of yellow solid in 50% yield, melting point 65-67 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 3.0 Hz, 1H), 7.65 (d, J = 4.8 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 7.18-7.14 (m, 2H), 7.07 (t, J = 7.2 Hz, 1H), 6.29 (s, 1H), 3.72 (s, 3H), 3.38 (t, J = 7.8 Hz, 2H), 3.21 (t, J = 7.8 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 191.6, 144.1, 139.8, 137.7, 133.9, 132.0, 128.3, 128.0, 121.1, 120.0, 119.6, 109.0, 98.9, 38.4, 29.7, 21.4.

HRMS(ESI): m/z Calcd. for C₁₆H₁₆NOS [M+H]⁺:270.0947; Found:270.0947.

4-(1-Methyl-1*H*-indol-2-yl)-1-phenylbutan-2-one (2l)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.30

in hexane:ethyl acetate = 15:1) resulting in 24.1 mg of yellow solid in 87% yield, melting point 74-76 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.2 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.23 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 7.2 Hz, 2H), 7.14 (t, J = 7.2 Hz, 1H), 7.05 (t, J = 7.2 Hz, 1H), 6.11 (s, 1H), 3.73 (s, 2H), 3.61 (s, 3H), 2.99 (t, J = 7.8 Hz, 2H), 2.90 (t, J = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 206.9, 139.7, 137.6, 134.1, 129.5, 129.0, 127.9, 127.3, 121.0, 120.0, 119.5, 108.9, 98.8, 50.6, 40.6, 29.5, 20.9.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NO [M+H]⁺:278.1539; Found:278.1538.

1-(1-Methyl-1*H*-indol-2-yl)hexan-3-one (2m)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 21.1 mg of yellow solid in 92% yield, melting point 94-96 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 1H), 7.27-7.25 (m, 1H), 7.17-7.14 (m, 1H), 7.07-7.04 (m, 1H), 6.20 (s, 1H), 3.68 (s, 3H), 3.02 (t, J = 7.8 Hz, 2H), 2.86 (t, J = 7.8 Hz, 2H), 2.45 (t, J = 7.2 Hz, 2H), 1.66-1.62 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 209.6, 140.0, 137.6, 128.0, 121.0, 120.0, 119.5, 108.9, 98.7, 45.1, 41.4, 29.6, 20.8, 17.5, 13.9.

HRMS(ESI): m/z Calcd. for C₁₅H₂₀NO [M+H]⁺:230.1540; Found:230.1539.

1-(1-Methyl-1*H*-indol-2-yl)octan-3-one (2n)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) ($Rf = \frac{1}{2}$)

0.40 in hexane:ethyl acetate = 15:1) resulting in 20.6 mg of yellow solid in 80% yield, melting point 79-81 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 7.8 Hz, 1H), 7.27-7.25 (m, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.06 (t, J = 7.2 Hz, 1H), 6.20 (s, 1H), 3.68 (s, 3H), 3.02 (t, J = 7.8 Hz, 2H),

2.87 (t, J = 7.8 Hz, 2H), 2.46 (t, J = 7.2 Hz, 2H), 1.63-1.58 (m, 2H), 1.35-1.27 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.8, 140.0, 137.6, 128.0, 121.0, 120.0, 119.5, 108.9, 98.7, 43.2, 41.4, 31.6, 29.6, 23.7, 22.6, 20.8, 14.0.

HRMS(ESI): m/z Calcd. for C₁₇H₂₄NO [M+H]⁺:258.1852; Found:258.1853.

1-Cyclopropyl-3-(1-methyl-1*H*-indol-2-yl)propan-1-one (20)

O N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in hexane:ethyl

acetate = 15:1) resulting in 16.6 mg of yellow solid in 73% yield, melting point 57-59 °C.

¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 7.8 Hz, 1H), 7.27-7.25 (m, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.24 (s, 1H), 3.68 (s, 3H), 3.04 (s, 4H), 2.00-1.96 (m, 1H), 1.08-1.06 (m, 2H), 0.93-0.88 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 209.4, 140.1, 137.6, 128.0, 121.0, 120.0, 119.5, 108.9, 98.7, 42.1, 29.6, 21.0, 20.8, 11.0.

HRMS(ESI): m/z Calcd. for C₁₅H₁₈NO [M+H]⁺:228.1383; Found:228.1383.

1-Cyclohexyl-3-(1-methyl-1*H*-indol-2-yl)propan-1-one (2p)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (40:1) (Rf = 0.40 in

hexane:ethyl acetate = 15:1) resulting in 14.0 mg of yellow solid in 52% yield, melting point 88-90 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 7.8 Hz, 1H), 7.27 (s, 1H), 7.15 (t, J = 7.2 Hz, 1H), 7.06 (t, J = 7.2 Hz, 1H), 6.20 (s, 1H), 3.68 (s, 3H), 3.01 (t, J = 7.8 Hz, 2H), 2.91 (t, J = 7.8 Hz, 2H), 2.42-2.37 (m, 1H), 1.89-1.86 (m, 2H), 1.81-1.78 (m, 2H), 1.39-1.30 (m, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 212.6, 140.3, 137.6, 128.0, 120.9, 120.0, 119.5, 108.9, 98.6, 51.2, 39.4, 29.6, 28.7, 26.0, 25.8, 20.8.

HRMS(ESI): m/z Calcd. for C₁₈H₂₃NNaO [M+Na]⁺:292.1672; Found:292.1573.

5,9-Dimethyl-1-(1-methyl-1*H*-indol-2-yl)dec-8-en-3-one (2q)

2q N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl

acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 15:1) resulting in 30.2 mg of yellow solid in 97% yield, melting point 59-61 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 1H), 7.27-7.25 (m, 1H), 7.17-7.14 (m, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.20 (s, 1H), 5.10-5.06 (m, 1H), 3.68 (s, 3H), 3.03-3.00 (m, 2H), 2.87-2.83 (m, 2H), 2.48-2.44 (m, 1H), 2.30-2.26 (m, 1H), 2.07-1.93 (m, 4H), 1.68 (s, 3H), 1.60 (s, 3H), 1.34-1.30 (m, 1H), 0.91 (d, J = 6.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 209.4, 140.0, 137.6, 131.7, 128.0, 124.4, 121.0, 120.0, 119.5, 108.9, 98.7, 50.6, 42.0, 37.2, 29.6, 29.2, 25.8, 25.6, 20.8, 19.9, 17.8.

HRMS(ESI): m/z Calcd. for C₂₁H₃₀NO [M+H]⁺:312.2322; Found:312.2322.

8-Chloro-1-(1-methyl-1*H*-indol-2-yl)octan-3-one (2r)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl

acetate (40:1) (Rf = 0.50 in hexane:ethyl acetate = 20:1) resulting in 24.8 mg of yellow solid in 85% yield, melting point 55-57 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 1H), 7.26-7.25 (m, 1H), 7.15 (t, J = 7.2 Hz, 1H), 7.06 (t, J = 7.2 Hz, 1H), 6.20 (s, 1H), 3.68 (s, 3H), 3.51 (t, J = 6.6 Hz, 2H), 3.02 (t, J = 7.8 Hz, 2H), 2.86 (t, J = 7.8 Hz, 2H), 2.48 (t, J = 7.2 Hz, 2H), 1.79-1.74 (m, 2H), 1.65-1.60 (m, 2H), 1.46-1.41 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 208.2, 138.9, 136.6, 126.9, 120.0, 119.0, 118.5, 107.9, 97.7, 43.9, 41.9, 40.5, 31.5, 28.6, 25.6, 22.1, 19.8.

HRMS(ESI): m/z Calcd. for C₁₇H₂₃ClNO [M+H]⁺:292.1463; Found:292.1463.

1-(1-Methyl-1*H*-indol-2-yl)-8-phenoxyoctan-3-one (2s)

PhO N

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl

acetate (40:1) (Rf = 0.40 in hexane:ethyl acetate = 10:1) resulting in 25.8 mg of yellow solid in 74% yield, melting point 73-75 o C.

¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, J = 7.8 Hz, 1H), 7.27-7.26 (m, 3H), 7.15 (t, J = 7.8 Hz, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.92 (t, J = 7.2 Hz, 1H), 6.87 (d, J = 8.4 Hz, 2H), 6.20 (s, 1H), 3.93 (t, J = 6.6 Hz, 2H), 3.67 (s, 3H), 3.02 (t, J = 7.8 Hz, 2H), 2.87 (t, J = 7.8 Hz, 2H), 2.49 (t, J = 7.2 Hz, 2H), 1.80-1.76 (m, 2H), 1.70-1.65 (m, 2H), 1.50-1.44 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 209.4, 159.2, 139.9, 137.6, 129.6, 128.0, 121.0, 120.7, 120.0, 119.5, 114.7, 108.9, 98.7, 67.7, 43.0, 41.5, 29.6, 29.3, 25.9, 23.7, 20.8. HRMS(ESI): m/z Calcd. for C₂₃H₂₈NO₂ [M+H]⁺:350.2115; Found:350.2115.

3-(1,3-Dimethyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2t)

O N Me 2t The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in

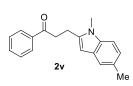
hexane:ethyl acetate = 10:1) resulting in 20.5 mg of yellow solid in 74% yield, melting point 85-87 o C.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.6 Hz, 2H), 7.56 (t, J = 7.2Hz, 1H), 7.51-7.43 (m, 3H), 7.25-7.24 (m, 1H), 7.17 (t, J = 7.2 Hz, 1H), 7.09 (t, J = 7.2 Hz, 1H), 3.70 (s, 3H), 3.23 (s, 4H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 198.9, 136.9, 136.8, 135.6, 133.4, 128.8, 128.5, 128.2, 121.1, 119.0, 118.3, 108.8, 107.0, 38.7, 29.8, 19.1, 8.9.

3-(1,4-Dimethyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2u)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40 in


hexane:ethyl acetate = 10:1) resulting in 21.4 mg of yellow solid in 77% yield, melting point 74-76 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 7.8 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H), 7.12 (d, J = 8.4 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H), 6.87 (d, J = 7.2 Hz, 1H), 6.30 (s, 1H), 3.72 (s, 3H), 3.46 (t, J = 7.8 Hz, 2H), 3.21 (t, J = 7.8 Hz, 2H), 2.51 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 198.8, 139.5, 137.4, 137.0, 133.4, 129.4, 128.9, 128.2, 127.8, 121.2, 119.8, 106.6, 97.3, 37.8, 29.8, 21.3, 18.8.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NO [M+H]⁺:278.1539; Found:278.1540.

3-(1,5-Dimethyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2v)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40

in hexane:ethyl acetate = 10:1) resulting in 20.8 mg of yellow solid in 75% yield, melting point 104-106 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.31 (s, 1H), 7.16 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.20 (s, 1H), 3.69 (s, 3H), 3.43 (t, J = 7.8 Hz, 2H), 3.18 (t, J = 7.8 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 198.8, 140.1, 137.0, 136.1, 133.4, 128.8, 128.7, 128.2, 128.2, 122.5, 119.8, 108.6, 98.3, 37.7, 29.7, 21.5, 21.3.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NO [M+H]⁺:278.1539; Found:278.1540.

3-(1,6-Dimethyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2w)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf =

0.40 in hexane:ethyl acetate = 10:1) resulting in 19.4 mg of yellow solid in 70% yield, melting point 89-91 o C.

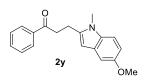
¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 7.8 Hz, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.40 (d, J = 7.8 Hz, 1H), 7.07 (s, 1H), 6.90 (d, J = 8.4 Hz, 1H), 6.23 (s, 1H), 3.69 (s, 3H), 3.43 (t, J = 7.8 Hz, 2H), 3.18 (t, J = 7.8 Hz, 2H), 2.48 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 198.8, 139.4, 138.1, 137.0, 133.4, 130.7, 128.8, 128.2, 125.8, 121.2, 119.6, 109.1, 98.6, 37.7, 29.6, 22.0, 21.3.

HRMS(ESI): m/z Calcd. for C₁₉H₁₉NNaO [M+Na]⁺:300.1359; Found:300.1359.

3-(1,7-Dimethyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2x)

O N Me

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40


in hexane:ethyl acetate = 10:1) resulting in 25.2 mg of yellow solid in 91% yield, melting point 84-86 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 7.8 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 7.35 (d, J = 7.8 Hz, 1H), 6.92 (t, J = 7.8 Hz, 1H), 6.85 (d, J = 7.2 Hz, 1H), 6.26 (s, 1H), 3.98 (s, 3H), 3.43 (t, J = 7.8 Hz, 2H), 3.16 (t, J = 7.8 Hz, 2H), 2.77 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 198.8, 140.4, 137.0, 136.6, 133.4, 128.8, 128.8, 128.2, 124.3, 120.7, 119.6, 118.2, 99.5, 37.6, 32.7, 21.6, 20.5.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NO [M+H]⁺:278.1539; Found:278.1540.

3-(5-Methoxy-1-methyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2y)

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (20:1) (Rf = 0.40 in hexane:ethyl acetate = 10:1) resulting in 25.8 mg of yellow solid in 88% yield, melting point 112-114 o C. 1 H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 7.8 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.48 (t, J = 7.2 Hz, 2H), 7.16 (d, J = 9.0 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.83-6.82 (m, 1H), 6.21 (s, 1H), 3.83 (s, 3H), 3.69 (s, 3H), 3.42 (t, J = 7.8 Hz, 2H), 3.18 (t, J = 7.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 198.7, 154.3, 140.7, 137.0, 133.4, 133.1, 128.8, 128.3, 128.2, 110.9, 109.6, 102.4, 98.5, 56.2, 37.7, 29.8, 21.3.

HRMS(ESI): m/z Calcd. for C₁₉H₂₀NO₂ [M+H]⁺:294.1489; Found:294.1489.

3-(6-Chloro-1-methyl-1*H*-indol-2-yl)-1-phenylpropan-1-one (2z)

O N CI

The title compound was prepared according to the general procedure as described, silica gel flash column chromatography was performed using hexanes and ethyl acetate (30:1) (Rf = 0.40

in hexane:ethyl acetate = 10:1) resulting in 24.1 mg of yellow solid in 81% yield, melting point 86-88 o C.

¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.8 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.40 (d, J = 8.4 Hz, 1H), 7.26 (s, 1H), 7.03-7.02 (m, 1H), 6.25 (s, 1H), 3.69 (s, 3H), 3.44 (t, J = 7.8 Hz, 2H), 3.19 (t, J = 7.8 Hz, 2H).

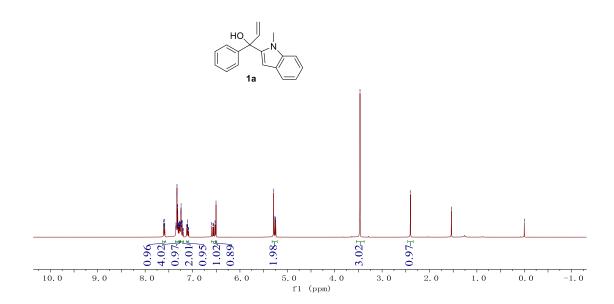
¹³C NMR (151 MHz, CDCl₃) δ 198.5, 141.0, 138.1, 136.9, 133.5, 128.9, 128.2, 127.0, 126.5, 120.8, 120.1, 109.1, 99.0, 37.4, 29.8, 21.2.

HRMS(ESI): m/z Calcd. for C₁₈H₁₇ClNO [M+H]⁺:298.0993; Found:298.0993.

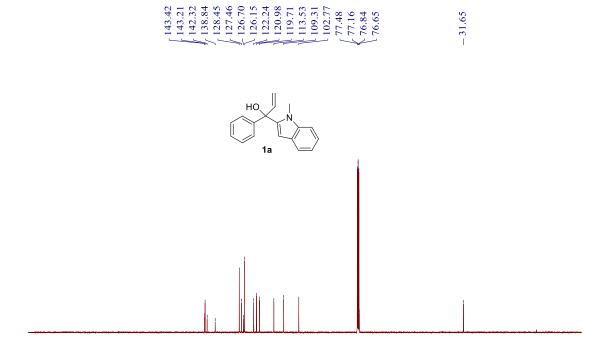
IV References

1. C. R. Reddy, M. Subbarao, P. Sathish, D. H. Kolgave and R. R. Donthiri, One-Pot Assembly of 3-Hydroxycarbazoles *via* Uninterrupted Propargylation/Hydroxylative Benzannulation Reactions, *Org. Lett.*, 2020, **22**, 689-693.

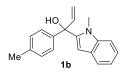
2. W.-R. Zhu, Q. Su, X.-Y. Deng, J.-S. Liu, T. Zhong, S.-S. Meng, J.-T. Yi, J. Weng

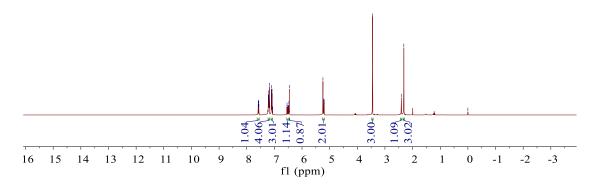

- and G. Lu, Organocatalytic Enantioselective SN₁-type Dehydrative Nucleophilic Substitution: Access to Bis(Indolyl)Methanes Bearing Quaternary Carbon Stereocenters, *Chem. Sci.*, 2022, **13**, 170-177.
- 3. L. Song, D. Ni, S. Jia, R. Pi, S. Dong, F. Yang, J. Tang and S. Liu, C(sp²)-H Bond Multiple Functionalization in Air for Construction of Tetrahydrocarbazoles with Continuous Quaternary Carbons and Polycyclic Diversification, *Org. Lett.*, 2020, **22**, 1846-1851.

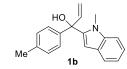
V NMR spectra

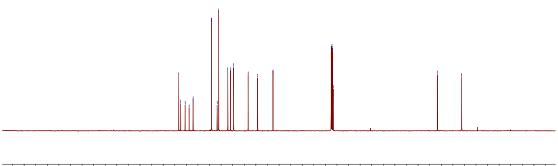

Allyl alcohols 1:

 1 H NMR (400 MHz, CDCl₃) for ${f 1a}$

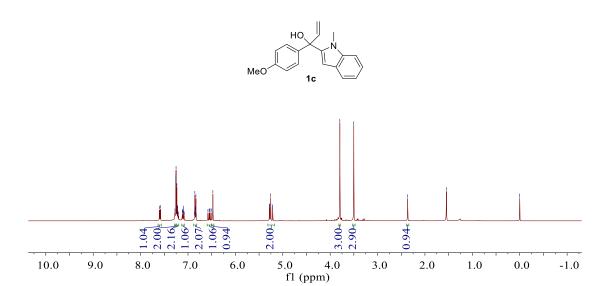


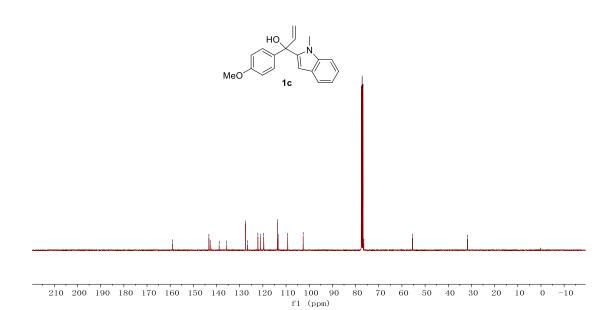

 ^{13}C NMR (101 MHz, CDCl₃) for 1a

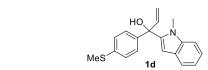


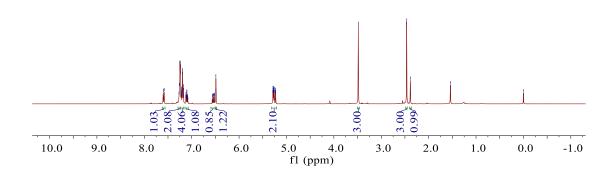


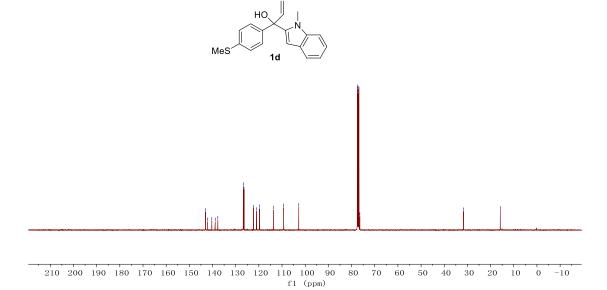
 ^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1b}$

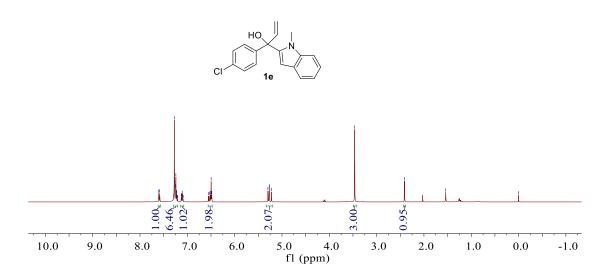


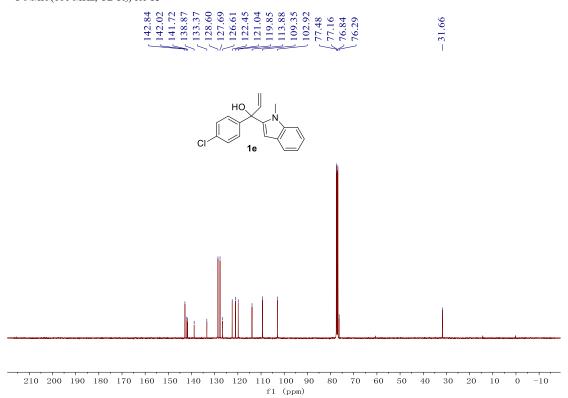


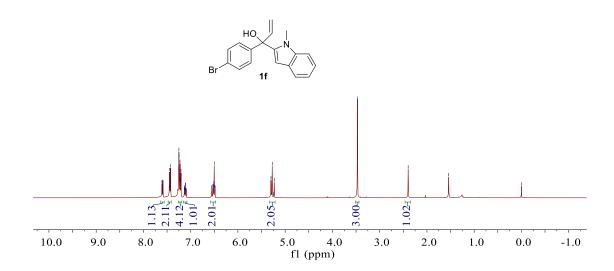

 ^{13}C NMR (101 MHz, CDCl₃) for 1c



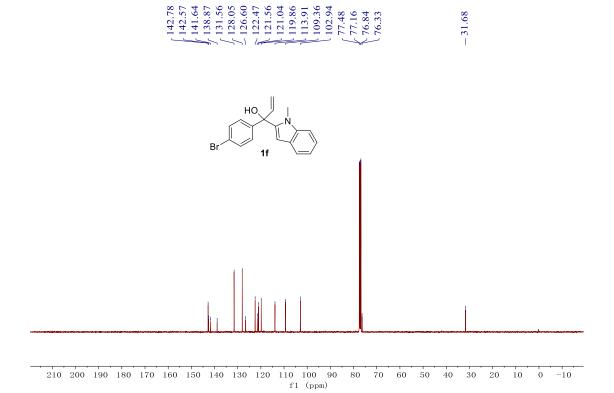


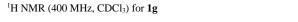

 ^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1d}$

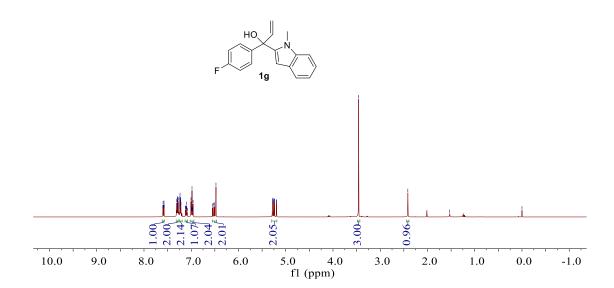




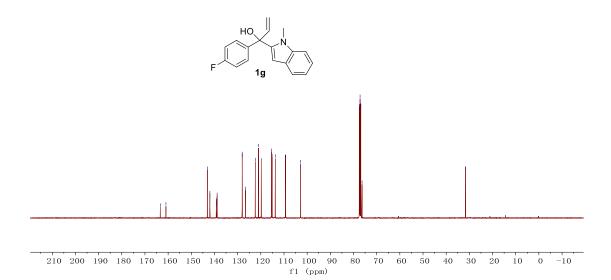
 ^{13}C NMR (101 MHz, CDCl₃) for 1e

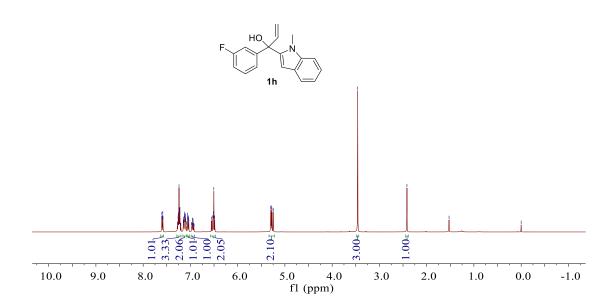


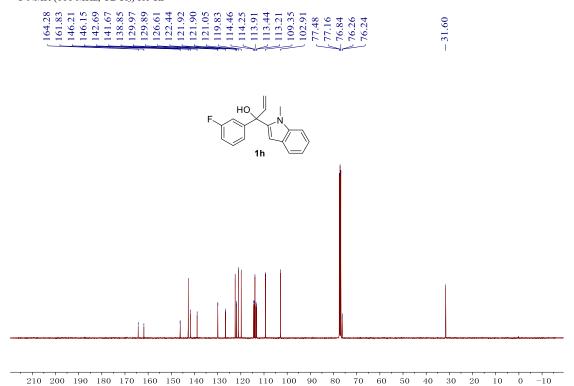


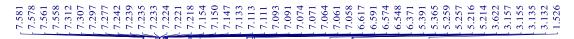


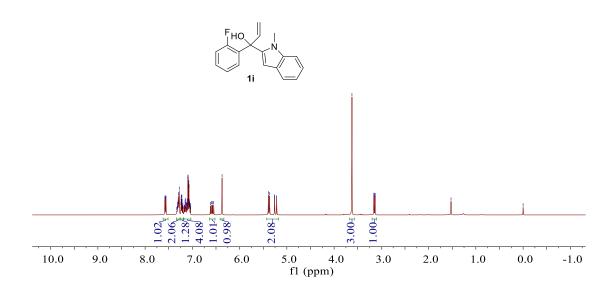
 ^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1f}$



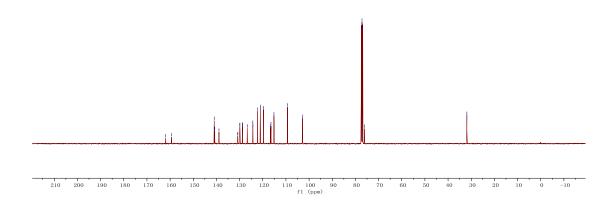

 ^{13}C NMR (101 MHz, CDCl₃) for 1g

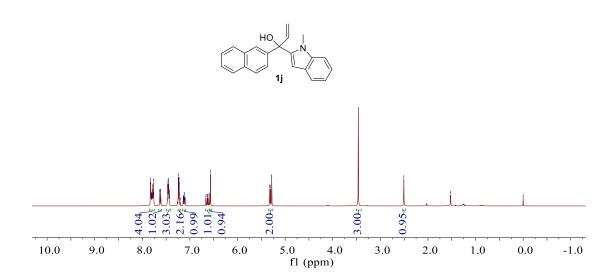


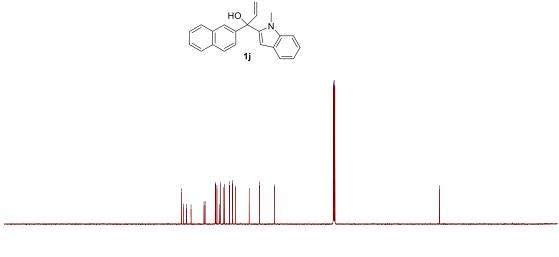



^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1h}$

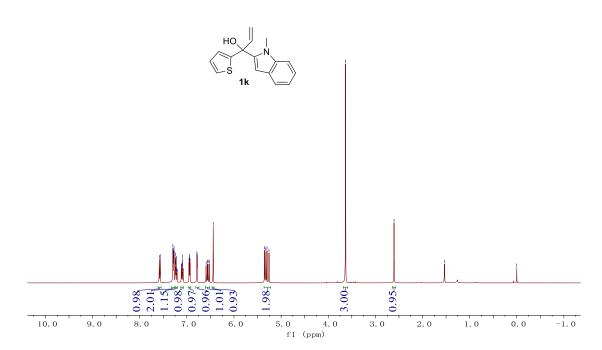
f1 (ppm)

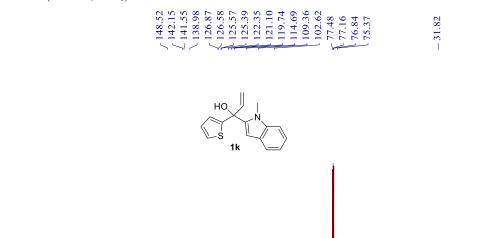


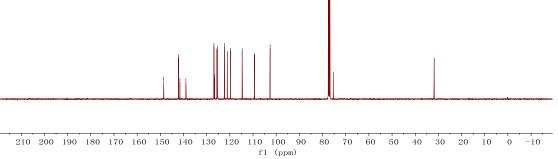

 $^{13}\text{C NMR}$ (101 MHz, CDCl3) for 1i

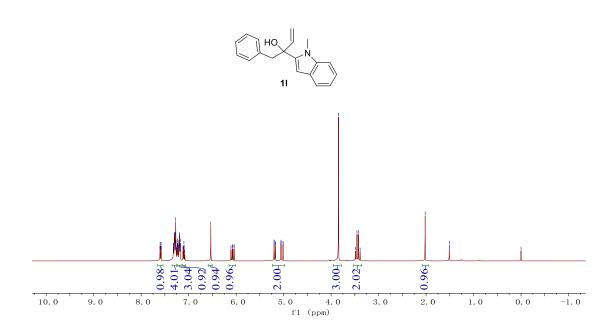


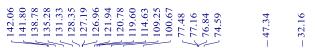
^{13}C NMR (101 MHz, CDCl3) for $\boldsymbol{1j}$

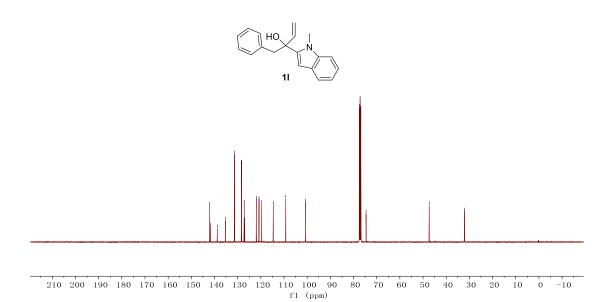


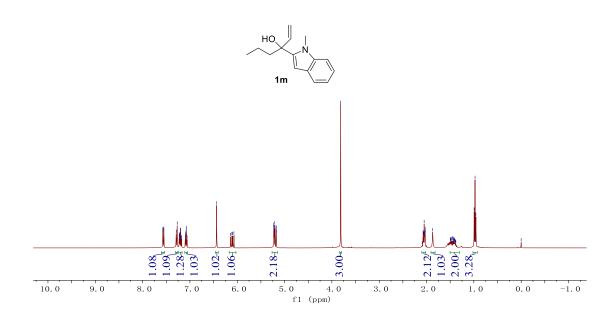

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

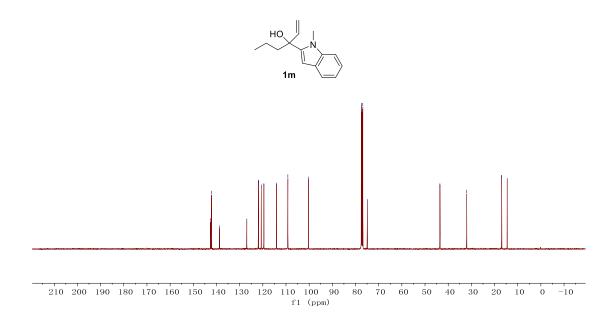


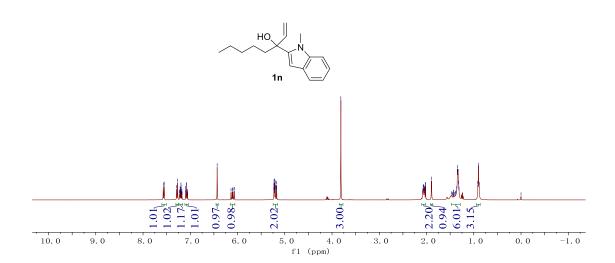

 ^{13}C NMR (101 MHz, CDCl₃) for 1k

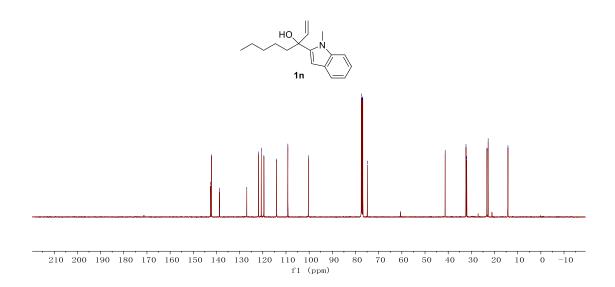




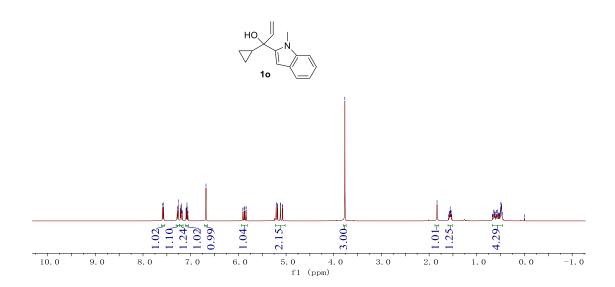

 ^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1l}$



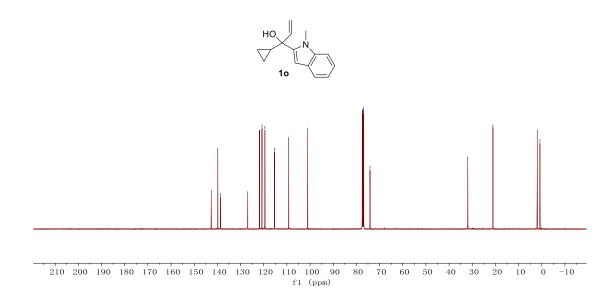

 ^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1m}$

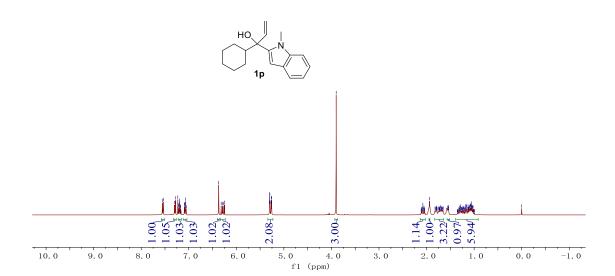


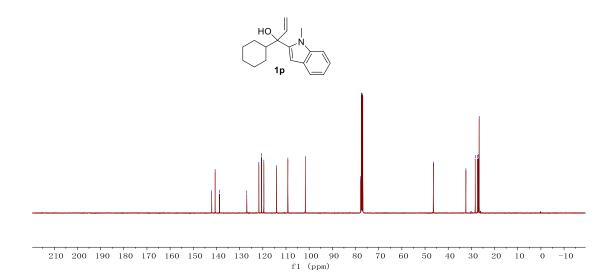


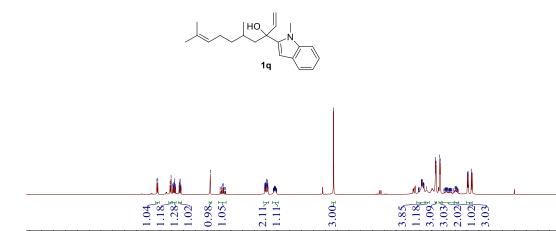

 ^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1n}$






 ^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1o}$




 13 C NMR (101 MHz, CDCl₃) for 1p

5.0

 $^{13}\text{C NMR}$ (101 MHz, CDCl₃) for $\boldsymbol{1q}$

8.0

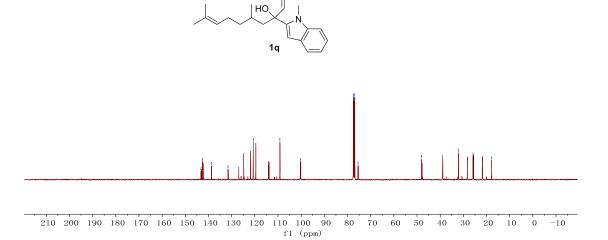
7. 0

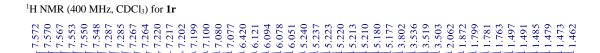
9.0

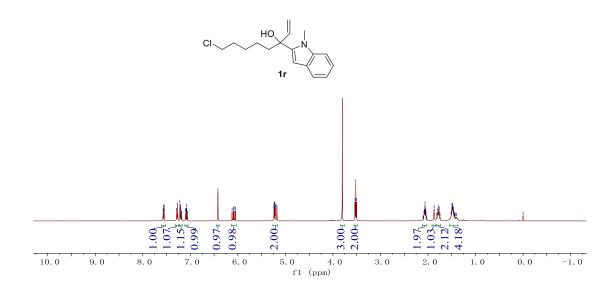
10.0

4.0

fl (ppm)

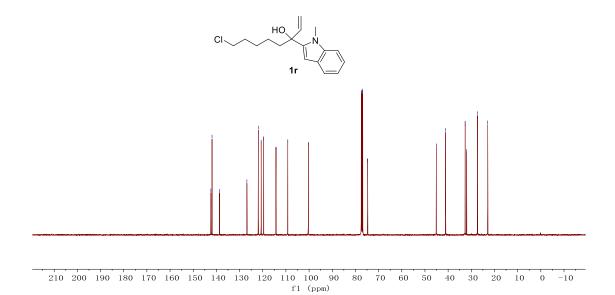

3.0

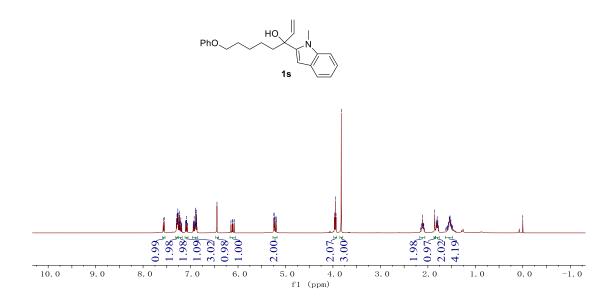

2.0


1.0

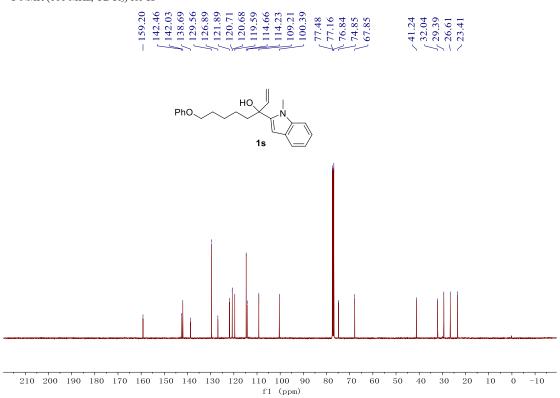
0.0

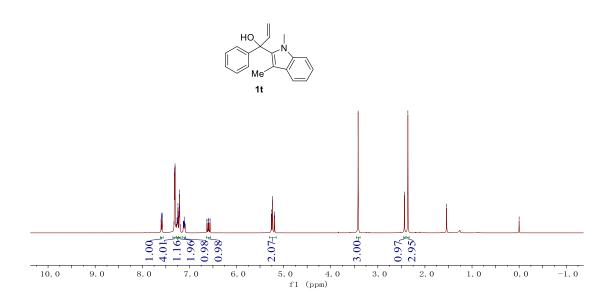
-1.0



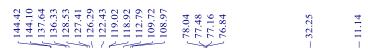


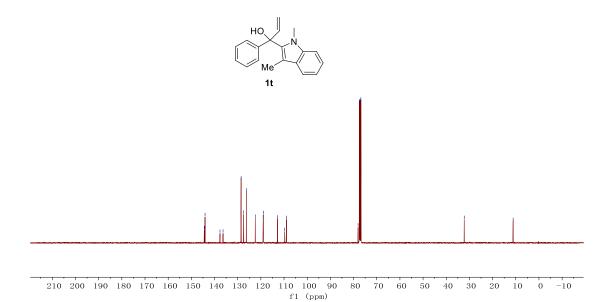
 ^{13}C NMR (101 MHz, CDCl₃) for 1r



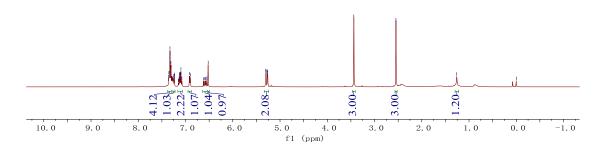


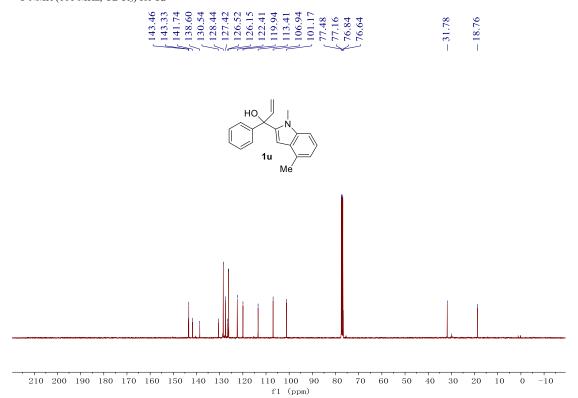
 ^{13}C NMR (101 MHz, CDCl₃) for 1s



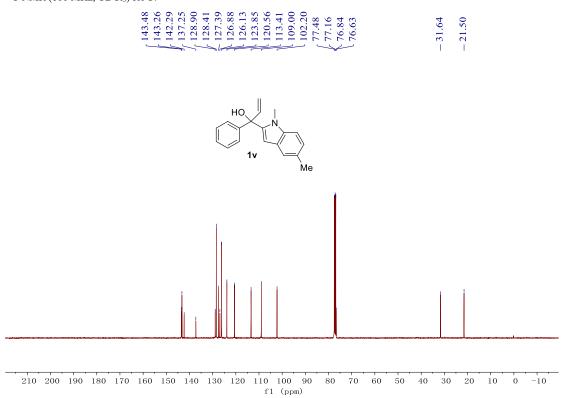


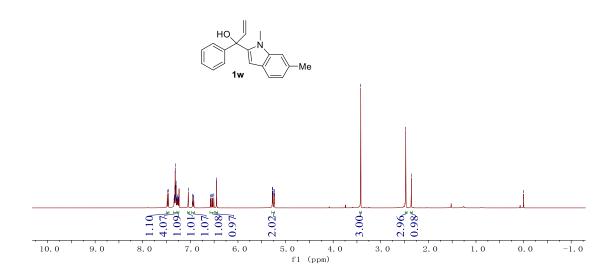
 ^{13}C NMR (101 MHz, CDCl₃) for 1t



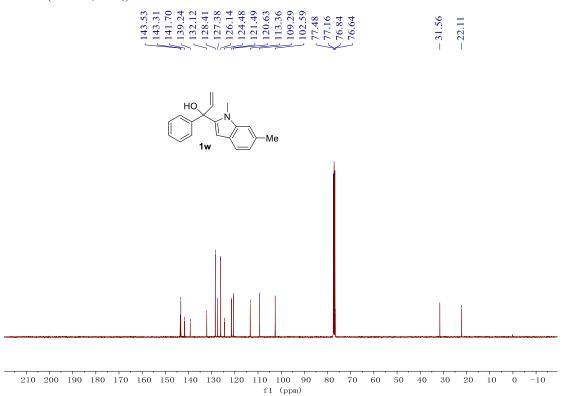


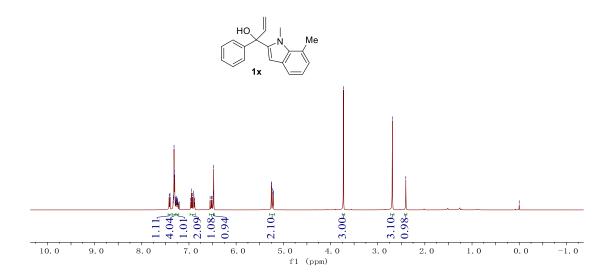
^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1u}$

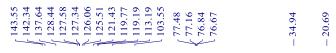


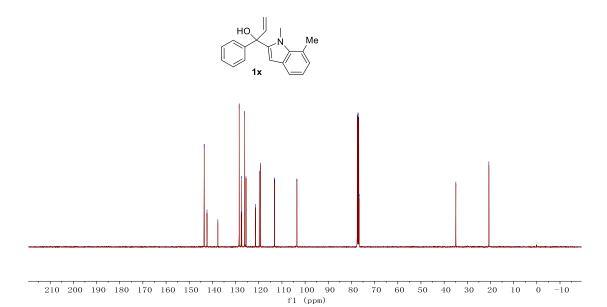


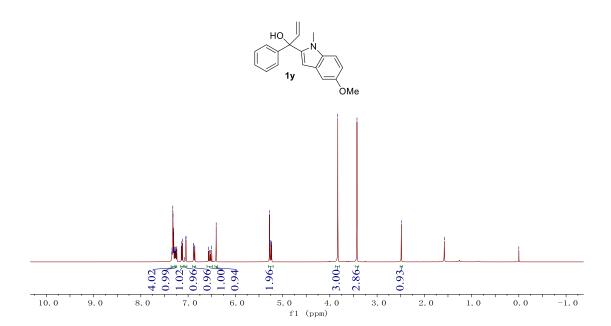
 ^{13}C NMR (101 MHz, CDCl₃) for 1v

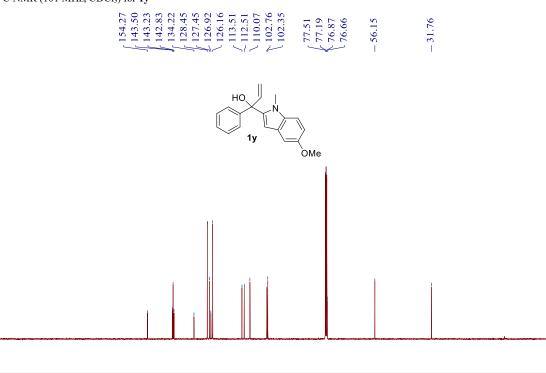



 ^{13}C NMR (101 MHz, CDCl₃) for 1w






^{13}C NMR (101 MHz, CDCl₃) for 1x

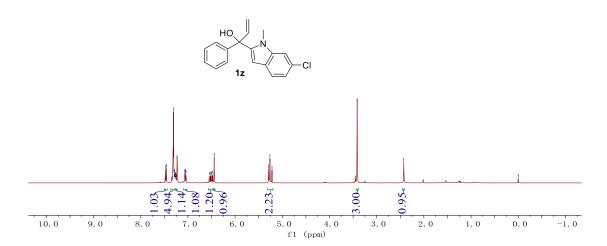


^{13}C NMR (101 MHz, CDCl₃) for 1y

f1 (ppm)

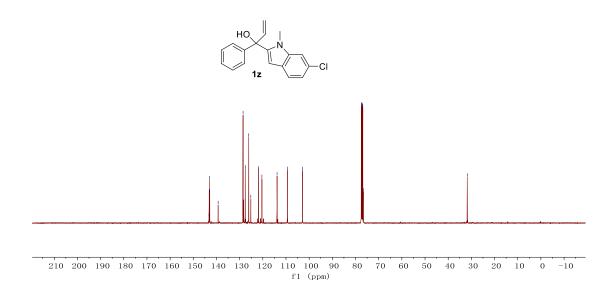
80 70

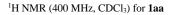
50

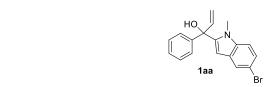

60

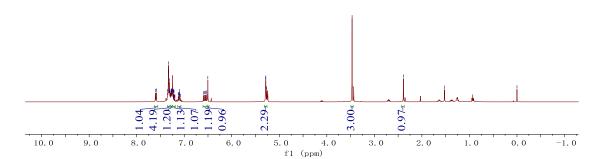
30 20

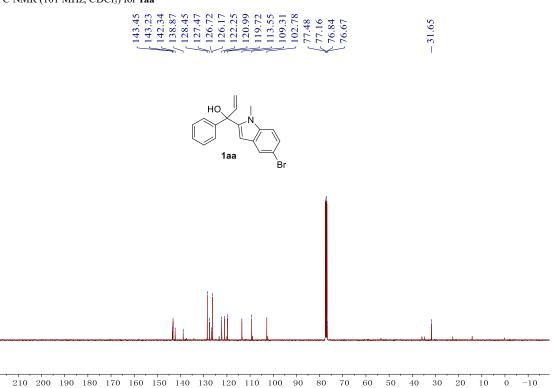
210 200 190 180 170 160 150 140 130 120 110 100 90



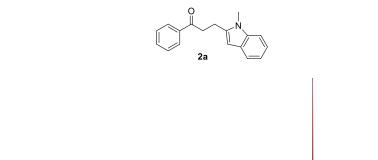


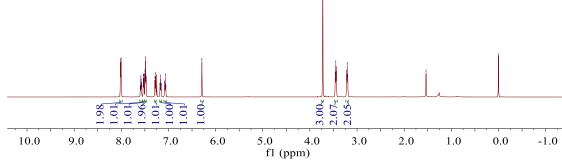

^{13}C NMR (101 MHz, CDCl₃) for $\boldsymbol{1z}$



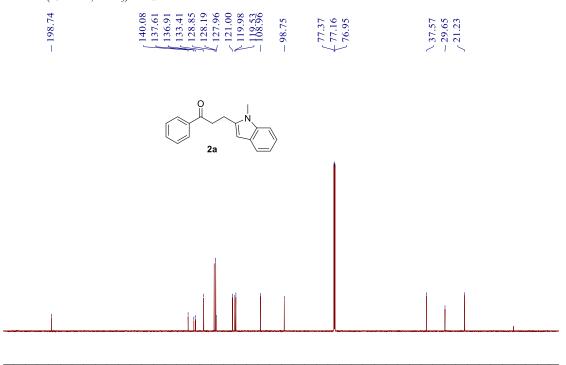


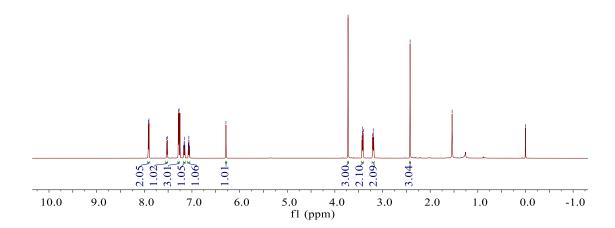
$^{13}\text{C NMR}$ (101 MHz, CDCl₃) for 1aa

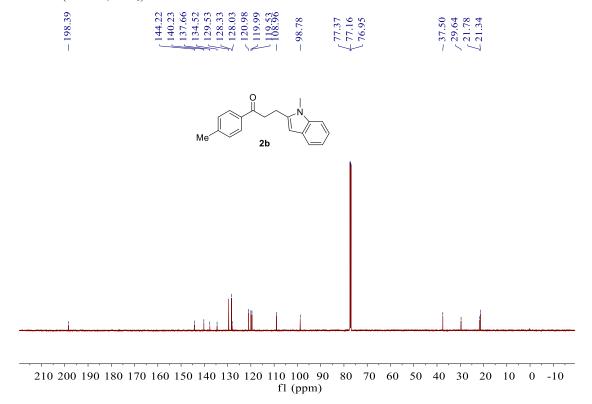


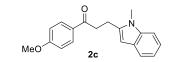

f1 (ppm)

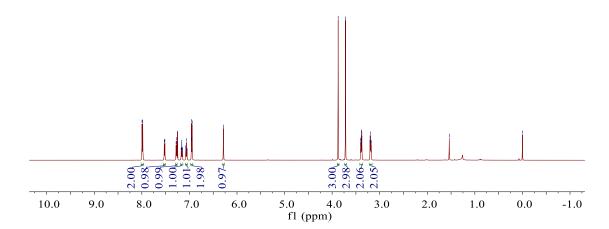
The products 2:


¹H NMR (600 MHz, CDCl₃) for **2a**

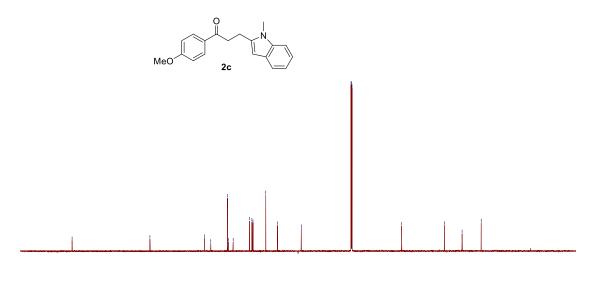

¹³C NMR (151 MHz, CDCl₃) for **2a**


 $210\ 200\ 190\ 180\ 170\ 160\ 150\ 140\ 130\ 120\ 110\ 100\ 90\ \ 80\ \ 70\ \ 60\ \ 50\ \ 40\ \ 30\ \ 20\ \ 10\ \ 0\ \ -10$ $f1\ (ppm)$

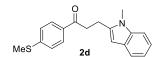


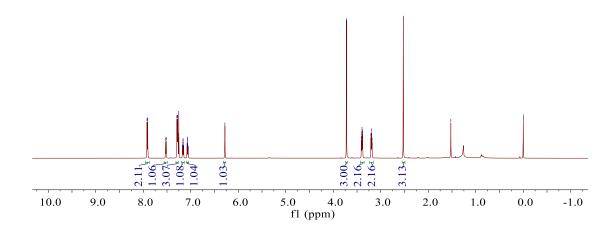

 $^{13}\text{C NMR}$ (151 MHz, CDCl₃) for 2b



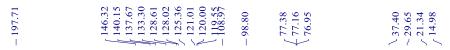


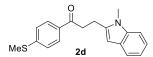
^{13}C NMR (151 MHz, CDCl₃) for 2c

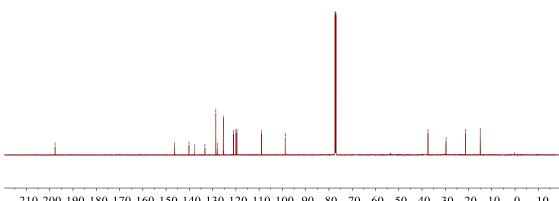




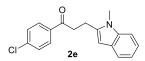
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (npm)

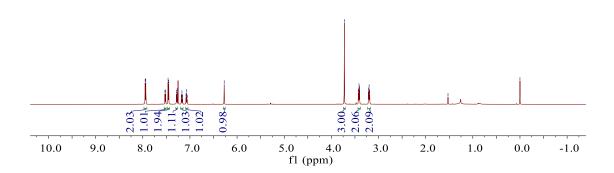




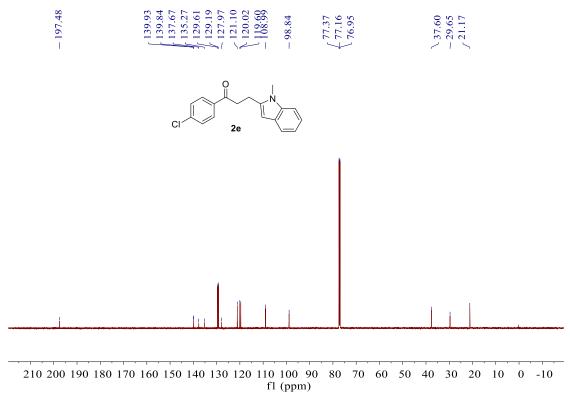


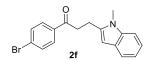
 $^{13}\text{C NMR}$ (151 MHz, CDCl₃) for 2d

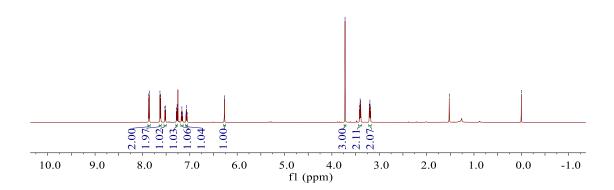


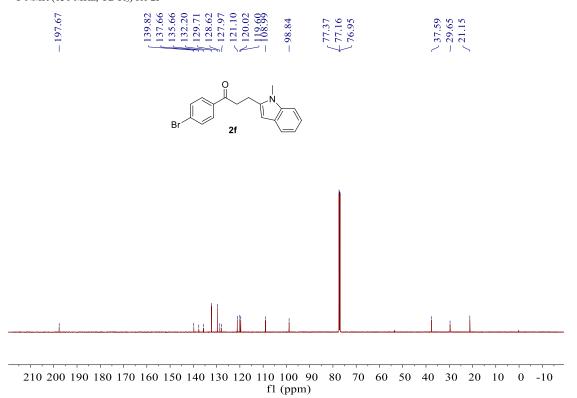


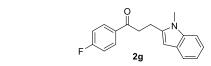
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

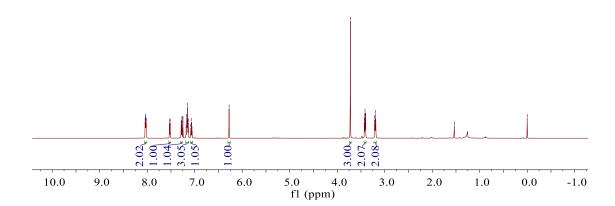


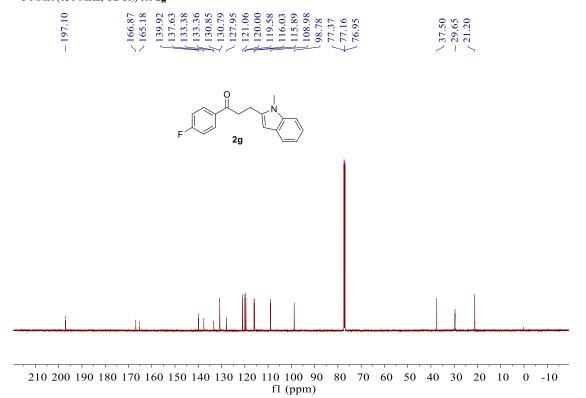


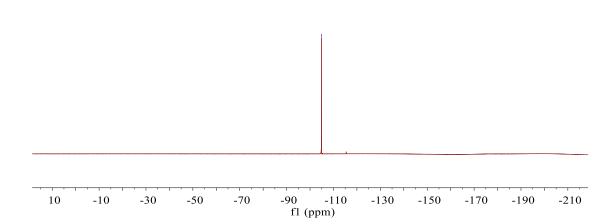

 $^{13}\text{C NMR}$ (151 MHz, CDCl₃) for 2e



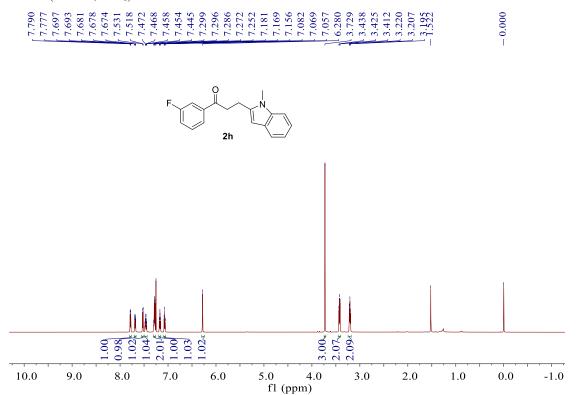



$^{13}\text{C NMR}$ (151 MHz, CDCl₃) for 2f

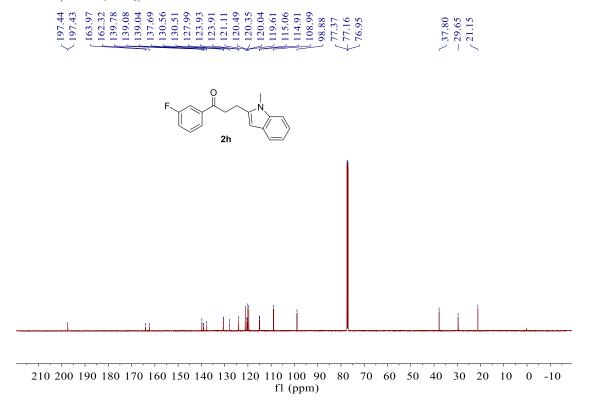


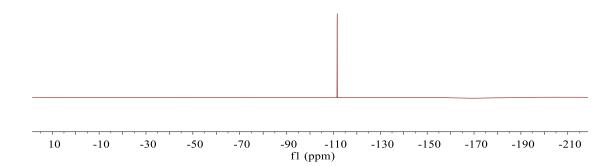


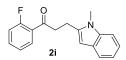
13 C NMR (151 MHz, CDCl₃) for 2g

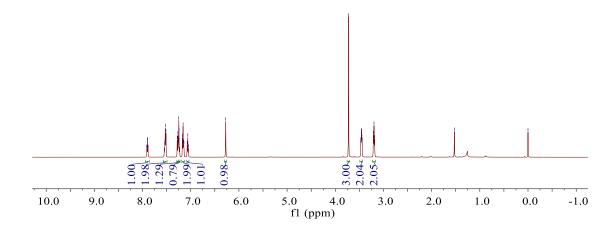


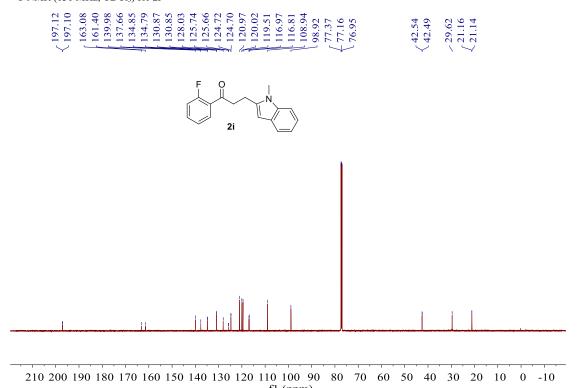
 $^{19}\mbox{F}$ NMR (565 MHz, CDCl3) for 2g

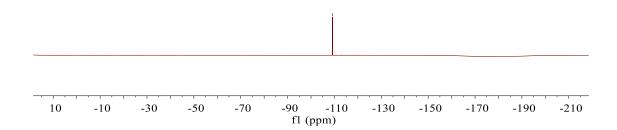

104.828



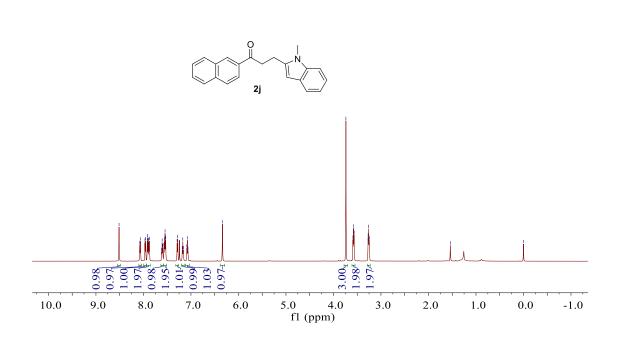

 $^{19}\mbox{F}$ NMR (565 MHz, CDCl3) for 2h


--111.599

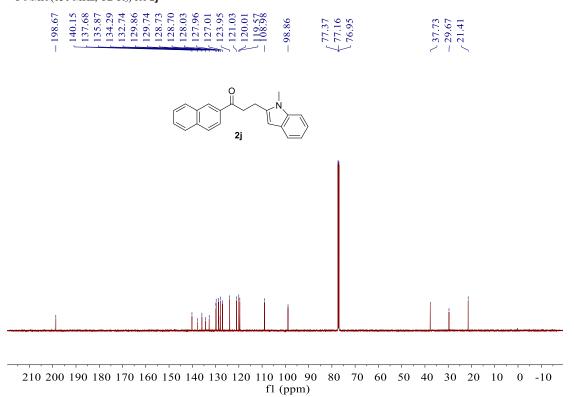


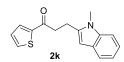


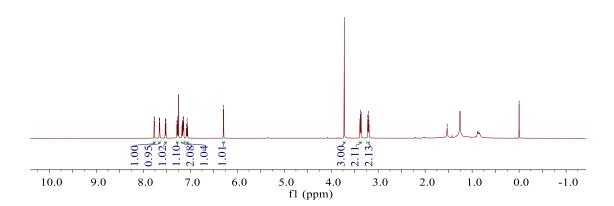
¹³C NMR (151 MHz, CDCl₃) for **2i**

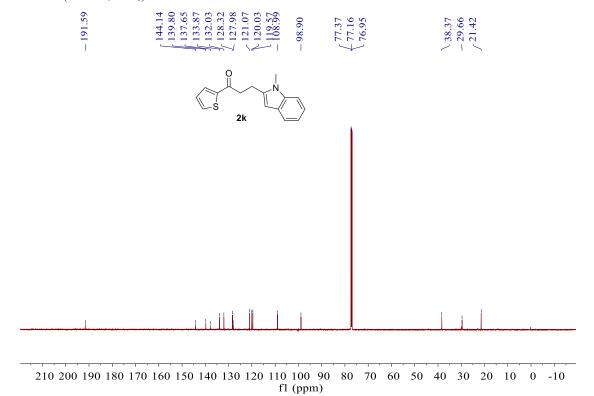

 ^{19}F NMR (565 MHz, CDCl₃) for 2i

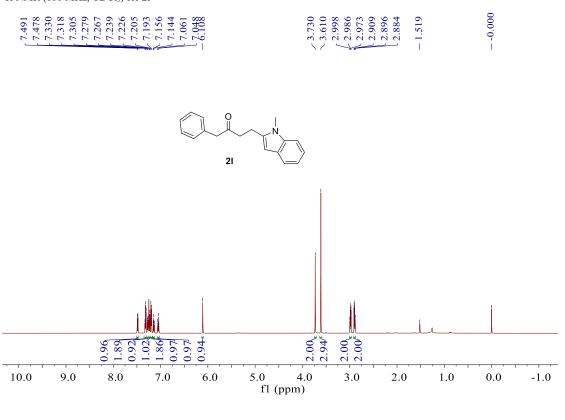
-109.168



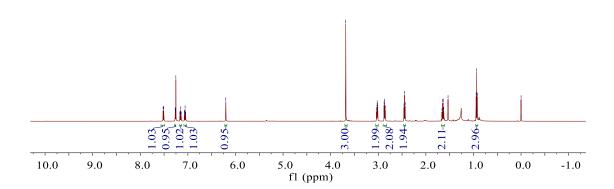


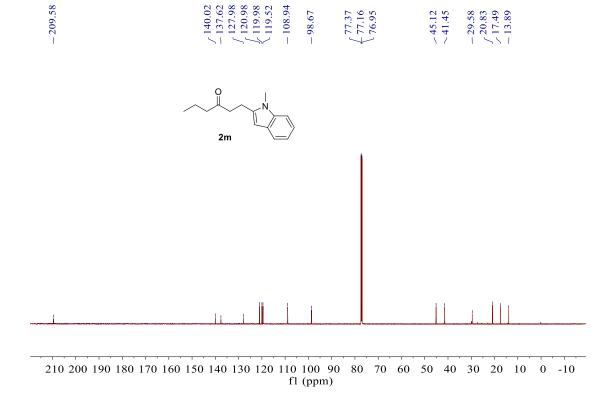

¹³C NMR (151 MHz, CDCl₃) for **2j**

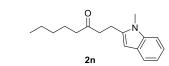


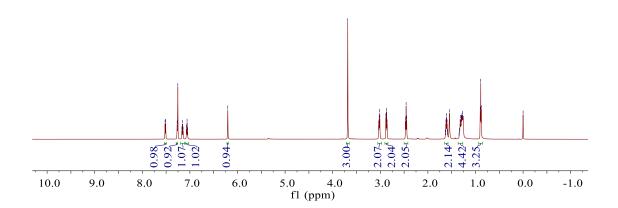


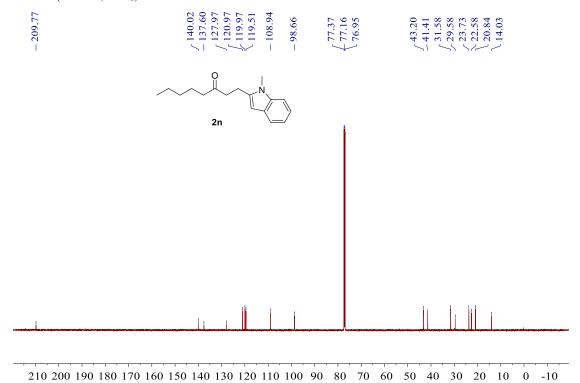


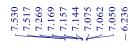


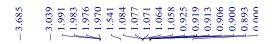


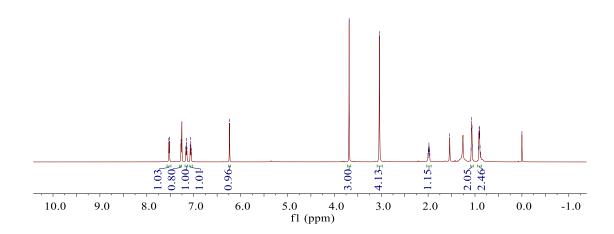


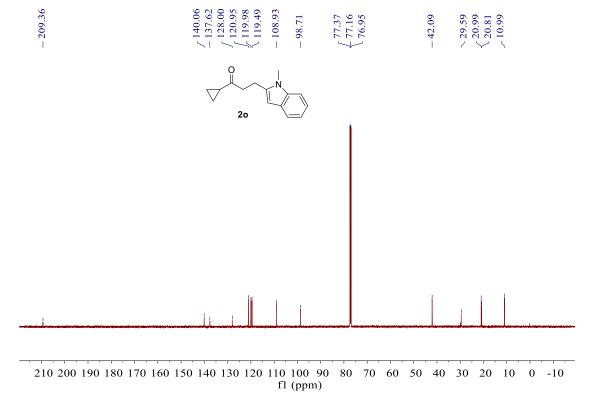


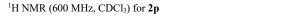


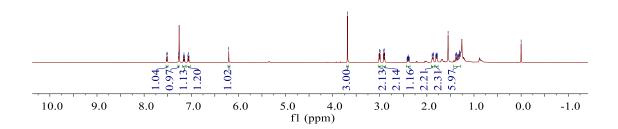


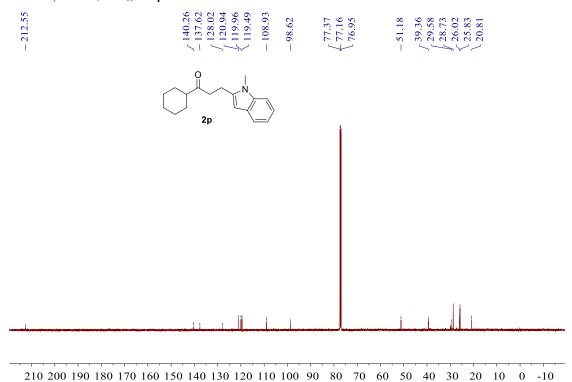


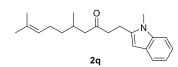


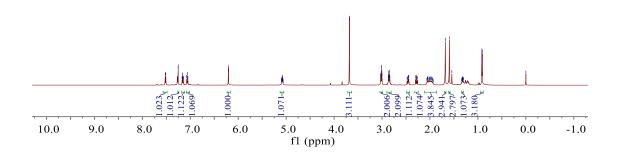




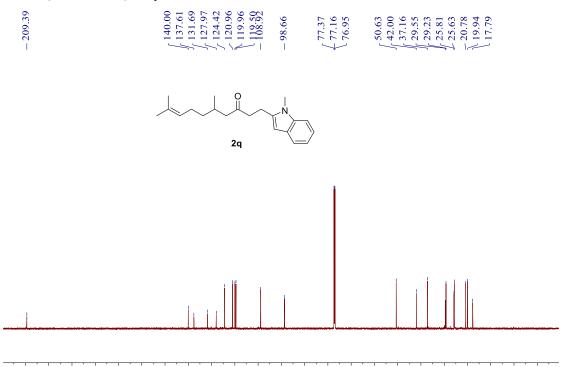


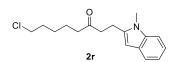


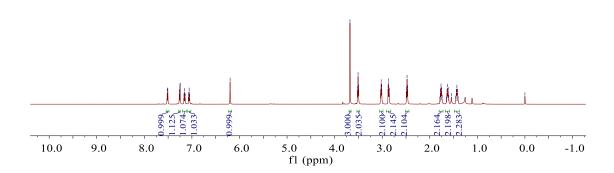




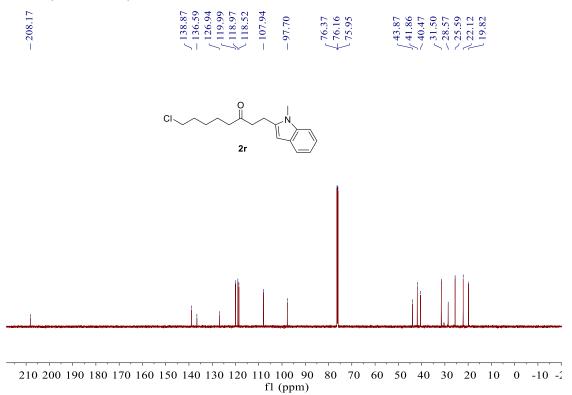
fl (ppm)

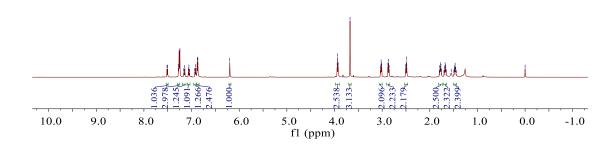



^{13}C NMR (151 MHz, CDCl₃) for $\boldsymbol{2q}$

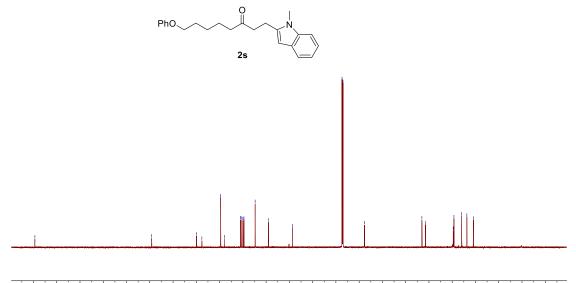


 $210\ 200\ 190\ 180\ 170\ 160\ 150\ 140\ 130\ 120\ 110\ 100\ 90\ \ 80\ \ 70\ \ 60\ \ 50\ \ 40\ \ 30\ \ 20\ \ 10\ \ \ 0\ \ -10$

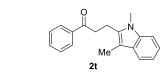


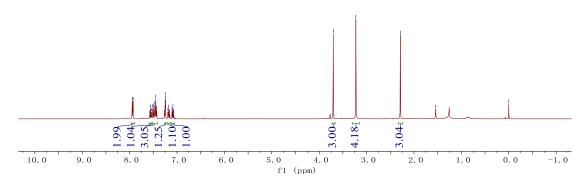


 ^{13}C NMR (151 MHz, CDCl₃) for 2r

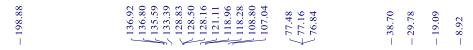


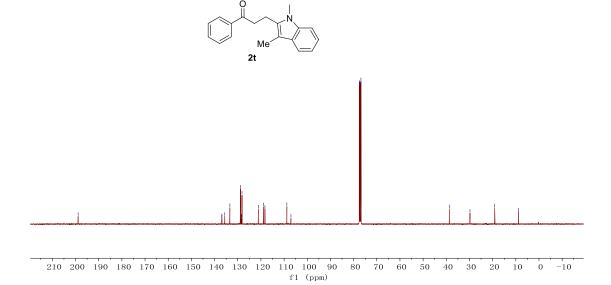
¹³C NMR (151 MHz, CDCl₃) for 2s

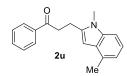


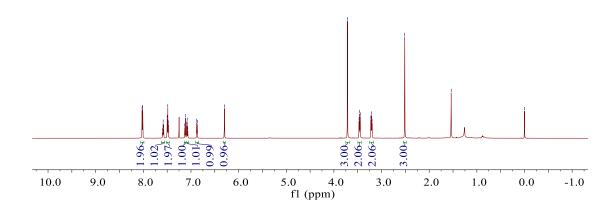


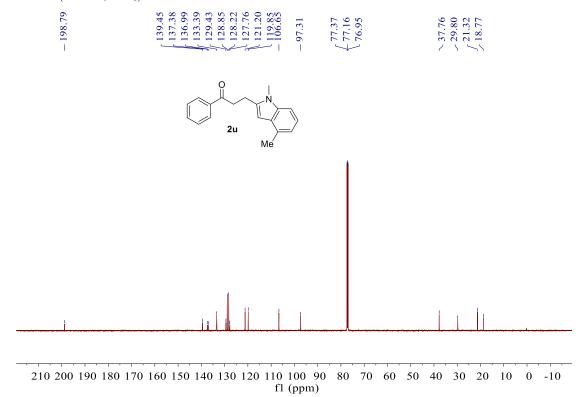
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (npm)

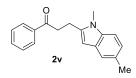


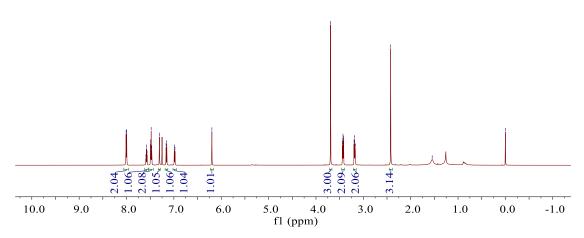


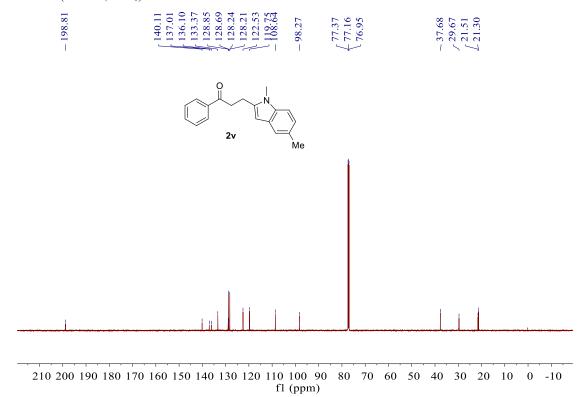

^{13}C NMR (101 MHz, CDCl₃) for 2t

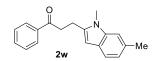


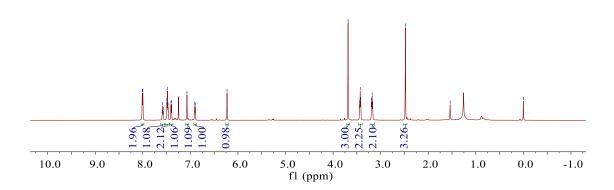


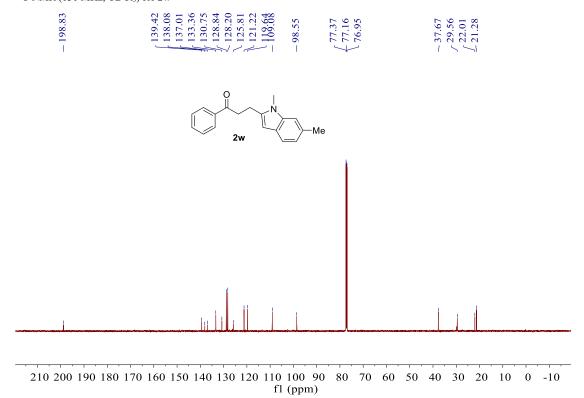


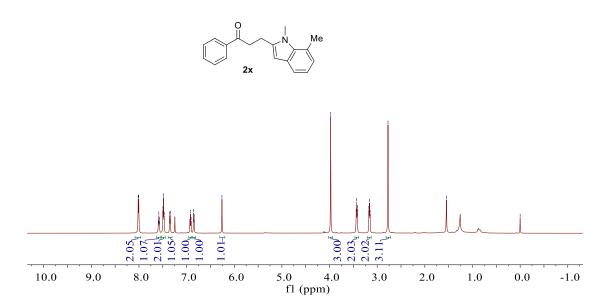

$^{13}\text{C NMR}$ (151 MHz, CDCl3) for 2u

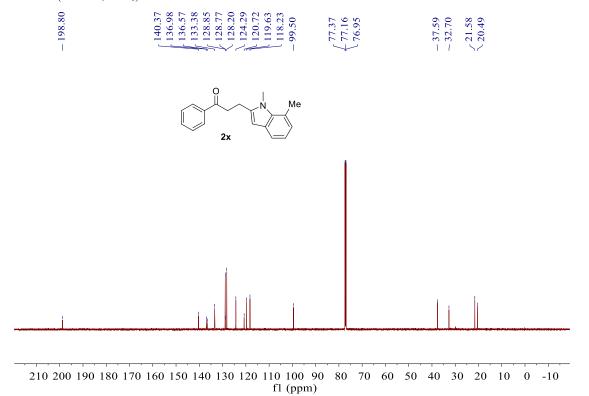


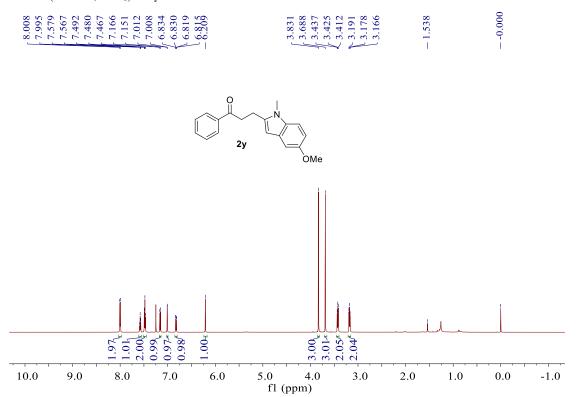

^{13}C NMR (151 MHz, CDCl₃) for 2v

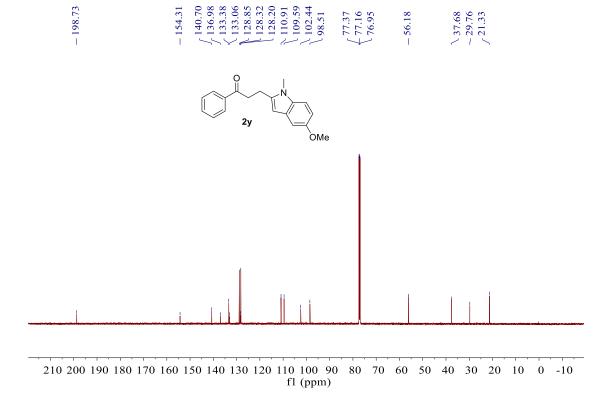


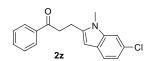


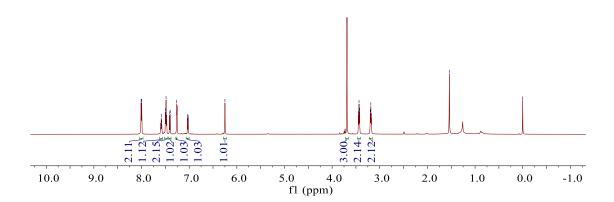


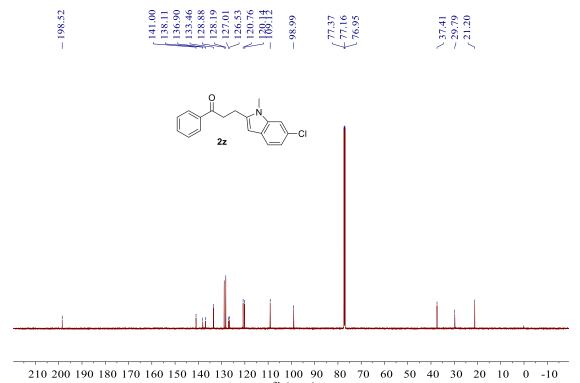

^{13}C NMR (151 MHz, CDCl₃) for 2w











^{13}C NMR (151 MHz, CDCl₃) for $\boldsymbol{2z}$

