Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

One-Pot Synthesis of 1,3-Oxazin-4-ones through an Ir-Catalyzed Mild Formal Condensation Reaction of Secondary Amides with Acyl Chlorides

Si-Jia Yu,† Jie Li,† Jian-Liang Ye,* and Pei-Qiang Huang*

Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China

Table of Contents

1.	General Information	S2
2.	The Structures of Amides Used	S 3
3.	Experiment Details	S 4
	3.1 General Procedure A for Synthesis of 2,3,6,7-Tetrahydrocyclopenta[<i>e</i>]-	1,3-
	oxazin-4-one 7 .	
	3.2 General Procedure B for Synthesis of 2,3,5,6,7,8-Hexahydro-4 <i>H</i> -benzo	[e]-
	1,3-oxazin-4-one 9 .	
	3.3 General Procedure C for Synthesis of 2,3-Dihydro-4 <i>H</i> -1,3-oxazin-4-one 13 .	
4.	Preparation and Characterization of 1,3-Oxazin-4-ones	S6
5.	Copies of NMR Spectra of Compounds 7a-7af	S33
6.	Copies of NMR Spectra of Compounds 9a-9l	S65
7.	Copies of NMR Spectra of Compounds 13a, 13b	S77
8.	X-Ray Structures of Compound 7a	S79
9.	X-Ray Structures of Compound 7c	S80
10.	X-Ray Structures of Compound 9a	S81
11.	X-Ray Structures of Compound 9b	S82

1. General Information

Melting points were determined by a Switzerland Büchi M-560 automatic melting point apparatus. Infrared spectra were measured with a Nicolet Avatar 330 FT-IR spectrometer using film KBr pellet techniques. 1 H NMR and 13 C NMR spectra were recorded on 400 MHz spectrometer with CDCl₃ as solvent. Chemical shifts (δ) are reported in ppm and respectively referenced to either the internal standard Me₄Si or solvent signals (Me₄Si at 0 ppm for 1 H NMR and CDCl₃ at 77.0 ppm for 13 C NMR). HRMS spectra were recorded with Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization. Unless otherwise stated, reactions were performed in oven-dried glassware under a nitrogen atmosphere using standard Schlenk techniques. Flash column chromatography was performed with silica gel (200-300 mesh), eluting with AcOEt / Petroleum ether (EA / PE). Toluene was distilled over sodium under N₂. All other commercially available compounds were used as received.

Table S1. The structures of amides used

3. Experiment Details

3.1 General Procedure A for Synthesis of 2,3,6,7-tetrahydrocyclopenta[*e*]-1,3-oxazin-4-one 7.

To a solution of secondary amide **5** (0.50 mmol, 1.0 equiv) and [IrCl(COE)₂]₂ (2.2 mg, 0.5 mol%, weighted in the glove box) in toluene (2.5 mL, 0.2 M) was added Et₂SiH₂ (130 μ L, 1.0 mmol, 2.0 equiv) at room temperature. The mixture was stirred at the same temperature until complete consumption of amide (monitored by TLC). Then Et₃N (382 μ L, 2.75 mmol, 5.5 equiv) was added. After being stirred for 15 min, to the reaction mixture a solution of adipoyl chloride **6** (146 μ L, 1.0 mmol, 2.0 equiv) in toluene (1.0 mL) was added dropwise and stirred for 12 h at room temperature. The resulted mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (elution AcOEt / Petroleum ether) to provide the corresponding 1,3-oxazin-4-ones **7**.

3.2 General Procedure B for Synthesis of 2,3,5,6,7,8-hexahydro-4H-benzo[e]-1,3-oxazin-4-one 9.

To a solution of secondary amide **5** (0.50 mmol, 1.0 equiv.) and [IrCl(COE)₂]₂ (2.2 mg, 0.5 mol%, weighted in the glove box) in toluene (2.5 mL, 0.2 M) was added Et_2SiH_2 (130 μ L, 1.0 mmol, 2.0 equiv) at room temperature. The mixture was stirred at the

same temperature until complete consumption of amide (monitored by TLC). Then Et_3N (1.1 mL, 8.0 mmol, 16.0 equiv) was added. After being stirred for 15 min, to the reaction mixture a solution of pimeloyl chloride **8** (654 μ L, 4.0 mmol, 8.0 equiv) in toluene (4.0 mL) was added dropwise and stirred for 12 h at room temperature. The resulted mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (elution: AcOEt / Petroleum ether) to provide the corresponding 1,3-oxazin-4-ones **9**.

3.3 General Procedure B for Synthesis of 2,3-dihydro-4H-1,3-oxazin-4-one 13.

To a solution of secondary amide 5i (0.50 mmol, 1.0 equiv.) and [IrCl(COE)₂]₂ (2.2 mg, 0.5 mol%, weighted in the glove box) in toluene (2.5 mL, 0.2 M) was added Et₂SiH₂ (130 μ L, 1.0 mmol, 2.0 equiv) at room temperature. The mixture was stirred at the same temperature until complete consumption of amide (monitored by TLC). Then Et₃N (1.1 mL, 8.0 mmol, 16.0 equiv) was added. After being stirred for 15 min, to the reaction mixture a solution of acyl chloride 12 (4.0 mmol, 8.0 equiv) in toluene (4.0 mL) was added dropwise and stirred for 12 h at room temperature. The resulted mixture was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (elution: AcOEt / Petroleum ether) to provide the corresponding 1,3-oxazin-4-ones 13.

4. Preparation and Characterization of 1,3-oxazin-4-ones

3-Isopropyl-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7a)

Following the general procedure A, the reaction of secondary amide **5a** (82 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7a** (110 mg, yield: 86%) as a white solid; Mp 95-98 °C; IR (film) v_{max} : 2967, 2870, 1660, 1439, 1311, 1204, 1041, 912, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.40 (m, 2H), 7.39-7.31 (m, 3H), 6.37 (s, 1H), 4.86 (septet, J = 6.9 Hz, 1H), 2.67-2.53 (m, 1H), 2.51-2.30 (m, 2H), 2.25-2.12 (m, 1H), 1.95-1.81 (m, 1H), 1.78-1.67 (m, 1H), 1.29 (d, J = 6.9 Hz, 3H), 1.05 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 162.2, 138.5, 128.7, 128.0 (2C), 126.9 (2C), 111.0, 85.0, 43.8, 31.2, 25.7, 21.3, 20.5, 19.4 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₆H₂₀NO₂ 258.1489, found 258.1484.

3-Cyclopropyl-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7b)

Following the general procedure A, the reaction of secondary amide **5b** (81 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7b** (116 mg, yield: 91%) as a white solid; Mp 106-109 °C; IR (film) ν_{max} : 2960, 2869, 1669, 1455, 1429, 1364, 1299, 1235, 1109, 1028, 941, 759, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.38 (s, 5H), 6.29 (s, 1H), 2.64-2.51 (m, 2H), 2.50-2.34 (m, 2H), 2.32-2.18 (m, 1H), 1.96-1.83 (m, 1H), 1.82-1.70 (m, 1H), 1.05-0.93 (m, 1H), 0.87-0.78 (m, 1H), 0.77-0.64 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 163.9, 137.4, 128.9, 128.3 (2C), 126.5 (2C), 109.9, 90.4, 31.3, 26.9, 25.6, 19.5, 9.0, 6.3 ppm; HRMS (ESI) m/z: [M + Na]⁺

3-Cyclohexyl-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7c)

Following the general procedure A, the reaction of secondary amide **5c** (102 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7c** (144 mg, yield: 97%) as a white solid; Mp 131-134 °C; IR (film) ν_{max} : 2930, 2855, 1660, 1533, 1439, 1310, 1216, 1129, 917, 894, 739, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.40 (m, 2H), 7.38-7.30 (m, 3H), 6.39 (s, 1H), 4.56-4.43 (m, 1H), 2.68-2.54 (m, 1H), 2.52-2.29 (m, 2H), 2.26-2.11 (m, 1H), 1.91-1.30 (m, 10H), 1.13-0.94 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 162.1, 138.7, 128.7, 127.0 (2C), 126.9 (2C), 111.1, 85.3, 51.6, 31.5, 31.3, 31.2, 25.8, 25.7, 25.6, 25.3, 19.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₉H₂₃NO₂Na 320.1621, found 320.1616.

3-Methyl-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7d)

Following the general procedure, the reaction of secondary amide **5d** (68 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7d** (86 mg, yield: 75%) as a white solid; Mp 117-120 °C; IR (film) v_{max} : 2923, 2867, 1667, 1440, 1405, 1317, 1303, 1212, 1075, 758, 740, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.42 (s, 5H), 6.15 (s, 1H), 2.82 (s, 3H), 2.64-2.48 (m, 3H), 2.46-2.35 (m, 1H), 1.99-1.87 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 163.6, 136.0, 129.6, 128.7 (2C), 127.2 (2C), 109.7, 91.5, 31.3, 30.4, 26.0, 19.7 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₄H₁₅NO₂Na 252.0995, found 252.0991.

2-Phenyl-3-propyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7e)

Following the general procedure A, the reaction of secondary amide **5e** (82 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7e** (96 mg, yield: 74%) as a white solid; Mp 95-97 °C; IR (film) v_{max} : 2964, 2871, 1664, 1464, 1447, 1425, 1299, 1218, 1093, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.37 (s, 5H), 6.21 (s, 1H), 3.95-3.72 (m, 1H), 2.86-2.71 (m, 1H), 2.67-2.55 (m, 1H), 2.53-2.39 (m, 2H), 2.37-2.24 (m, 1H), 1.96-1.76 (m, 2H), 1.62-1.46 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 162.9, 136.6, 129.3, 128.4 (2C), 127.0 (2C), 110.1, 89.8, 45.2, 31.3, 25.8, 21.7, 19.6, 11.2 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₆H₁₉NO₂Na 280.1308, found 280.1303.

3-Allyl-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7f)

Following the general procedure A, the reaction of secondary amide **5f** (81 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7f** (87 mg, yield: 68%) as a white solid; Mp 86-89 °C; IR (film) ν_{max} : 2956, 2839, 1664, 1444, 1216, 1080, 922, 741, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.38 (s, 5H), 6.21 (s, 1H), 5.84-5.67 (m, 1H), 5.10 (m, 2H), 4.63 (d, J = 15.7 Hz, 1H), 3.34 (dd, J = 15.7, 6.5 Hz, 1H), 2.64-2.43 (m, 3H), 2.40-2.26 (m, 1H), 2.00-1.78 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 162.6, 136.1, 133.0, 129.4, 128.4 (2C), 127.2 (2C), 117.4, 109.8, 89.2, 45.2, 31.3, 25.9, 19.6 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₆H₁₈NO₂ 256.1332, found 256.1327.

3-(2-Methoxyethyl)-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7g)

Following the general procedure A, the reaction of secondary amide **5g** (90 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7g** (101 mg, yield: 74%) as a white solid; Mp 89-92 °C; IR (film) v_{max} : 2927, 1666, 1464, 1446, 1421, 1362, 1302, 1209, 1118, 1080, 756, 738, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.35 (s, 5H, 6.39 (s, 1H),), 3.96 (dt, J = 14.5, 4.3 Hz, 1H), 3.58-3.48 (m, 1H), 3.44-3.36 (m, 1H), 3.22 (s, 3H), 3.18-3.07 (m, 1H), 2.63-2.53 (m, 1H), 2.52-2.37 (m, 2H), 2.34-2.22 (m, 1H), 1.97-1.73 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.2, 162.8, 136.7, 129.1, 128.3 (2C), 127.1 (2C), 109.7, 90.6, 71.3, 58.6, 43.1, 31.3, 25.8, 19.5, ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₆H₁₉NO₃Na 296.1257, found 296.1252.

Methyl 2-(4-oxo-2-phenyl-4,5,6,7-tetrahydrocyclopenta[e][1,3]oxazin-3(2H)-yl) acetate (7h)

$$\begin{array}{c|c}
O \\
N \\
CO_2Me
\end{array}$$
7h

Following the general procedure A, the reaction of secondary amide **5h** (97 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7h** (105 mg, yield: 73%) as a white solid; Mp 97-100 °C; IR (film) v_{max} : 2951, 2921, 1749, 1668, 1427, 1396, 1210, 1074, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.36 (m, 5H), 6.37 (s, 1H), 4.47 (d, J = 17.7 Hz, 1H), 3.61 (s, 3H), 3.24 (d, J = 17.7 Hz, 1H), 2.65-2.57 (m, 2H), 2.54 (t, J = 7.7 Hz, 2H), 2.06-1.93 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 170.1, 169.9, 164.1, 134.2, 130.3, 128.8 (2C), 127.8 (2C), 109.6, 91.4, 51.9, 43.8, 31.1, 25.9, 19.8 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₆H₁₇NO₄Na 310.1050,

3-Benzyl-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7i)

Following the general procedure A, the reaction of secondary amide **5i** (106 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7i** (127 mg, yield: 83%) as a white solid; Mp 78-81 °C; IR (film) v_{max} : 2922, 2867, 1664, 1462, 1440, 1361, 1301, 1213, 1078, 756, 736, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.19 (m, 8H) ppm; 7.13 (d, J = 6.6 Hz, 2H), 6.15 (s, 1H), 5.37 (d, J = 15.4 Hz, 1H), 3.82 (d, J = 15.5 Hz, 1H), 2.72-2.61 (m, 1H), 2.60-2.45 (m, 2H), 2.41-2.29 (m, 1H), 2.00-1.79 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.4, 162.9, 137.0, 135.6, 129.4, 128.4 (3C), 127.6 (2C), 127.23 (2C), 127.21 (2C), 109.5, 89.1, 45.9, 31.3, 25.9, 19.6 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₂₀H₁₉NO₂Na 328.1308, found 328.1302.

3-(Furan-2-ylmethyl)-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-o ne (7j)

Following the general procedure A, the reaction of secondary amide **5j** (101 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7j** (130 mg, yield: 88%) as a white solid; Mp 92-95 °C; IR (film) ν_{max} : 2923, 2868, 1665, 1460, 1443, 1300, 1205, 1075, 1012, 738, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.32 (m, 5H), 7.30-7.26 (m, 1H), 6.34-6.21 (m, 2H), 6.14 (d, J = 2.8 Hz, 1H), 5.11 (d, J = 15.8 Hz,

1H), 3.98 (d, J = 15.8 Hz, 1H), 2.68-2.56 (m, 1H), 2.55-2.43 (m, 2H), 2.42-2.29 (m, 1H), 1.99-1.78 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.6, 162.6, 150.4, 142.0, 135.8, 129.4, 128.4 (2C), 127.2 (2C), 110.2, 109.6, 108.3, 89.7, 39.1, 31.3, 25.8, 19.6 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₈H₁₇NO₃Na 318.1101, found 318.1095.

2-Phenyl-3-(thiophen-2-ylmethyl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H) -one (7k)

Following the general procedure A, the reaction of secondary amide **5k** (109 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7k** (141 mg, yield: 90%) as a white solid; Mp 80-83 °C; IR (film) ν_{max} : 2921, 2866, 1663, 1459, 1443, 1367, 1299, 1210, 853, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.32 (m, 5H), 7.18 (d, J = 4.9 Hz, 1H), 6.89-6.84 (m, 1H), 6.73 (d, J = 2.7 Hz, 1H), 6.22 (s, 1H), 5.32 (d, J = 15.6 Hz, 1H), 4.05 (d, J = 15.6 Hz, 1H), 2.79-2.60 (m, 1H), 2.59-2.45 (m, 2H), 2.43-2.33 (m, 1H), 1.99-1.84 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 167.9, 162.8, 139.7, 135.6, 129.6, 128.5 (2C), 127.4 (2C), 126.5, 126.4, 125.3, 109.5, 89.7, 40.9, 31.3, 25.9, 19.6 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₈H₁₇NO₂SNa 334.0872, found 334.0865.

3-(tert-Butyl)-2-phenyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7l)

Following the general procedure A, the reaction of secondary amide 51 (89 mg, 0.50

mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **71** (69 mg, yield: 51%) as a white solid; Mp 103-106 °C; IR (film) v_{max} : 2965, 2925, 1635, 1540, 1491, 1451, 1364, 1312, 1218, 718, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.40 (m, 2H), 7.36-7.29 (m, 3H), 6.62 (s, 1H), 2.60-2.52 (m, 1H), 2.47-2.39 (m, 1H), 2.33-2.25 (m, 1H), 2.22-2.12 (m, 1H), 1.93-1.80 (m, 1H), 1.75-1.65 (m, 1H), 1.52 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.1, 163.8, 139.0, 128.7, 128.1 (2C), 127.0 (2C), 112.5, 87.0, 56.9, 31.1, 29.1 (3C), 25.7, 19.6 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₇H₂₂NO₂ 272.1645, found 272.1644.

3-Isopropyl-2-(p-tolyl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7m)

7m

Following the general procedure A, the reaction of secondary amide **5m** (89 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7m** (136 mg, yield: 88%) as a white solid; Mp 116-119 °C; IR (film) ν_{max} : 2971, 1659, 1541, 1507, 1445, 1369, 1298, 1203, 1041, 811 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 7.7 Hz, 2H), 7.15 (d, J = 7.4 Hz, 2H), 6.33 (s, 1H), 4.84 (septet, J = 6.5 Hz, 1H), 2.68-2.55 (m, 1H), 2.68-2.55 (m, 2H), 2.34 (s, 3H), 2.25-2.13 (m, 1H), 1.95-1.81 (m, 1H), 1.80-1.66 (m, 1H), 1.28 (d, J = 6.5 Hz, 3H), 1.04 (d, J = 6.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 162.2, 138.6, 135.5, 128.7 (2C), 126.9 (2C), 110.8, 85.0, 43.7, 31.2, 25.7, 21.2, 21.0, 20.5, 19.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₇H₂₁NO₂Na 294.1465, found 294.1460.

3-Isopropyl-2-(o-tolyl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7n)

Following the general procedure A, the reaction of secondary amide **5n** (89 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7n** (117 mg, yield: 86%) as a white solid; Mp 101-103 °C; IR (film) ν_{max} : 2966, 2878, 1745, 1661, 1440, 1370, 1202, 1040, 921, 748 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.26 (d, J = 6.5 Hz, 2H), 7.21 (d, J = 7.0 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 6.49 (s, 1H), 4.80 (septet, J = 6.5 Hz, 1H), 2.70-2.58 (m, 1H), 2.51 (s, 3H), 2.49-2.38 (m, 2H), 2.23-2.09 (m, 1H), 1.96-1.82, 1.29 (d, J = 6.5 Hz, 3H), 1.81-1.69 (m, 1H), (m, 1H), 0.94 (d, J = 6.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 162.6, 136.6, 135.3, 131.0, 129.0, 127.7, 125.2, 110.2, 83.7, 43.7, 31.2, 25.9, 21.2, 20.5, 19.5, 19.3 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₇H₂₂NO₂ 272.1645, found 272.1640.

4-(3-Isopropyl-4-oxo-2,3,4,5,6,7-hexahydrocyclopenta[e][1,3]oxazin-2-yl)phenyl acetate (70)

Following the general procedure A, the reaction of secondary amide **50** (111 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **70** (134 mg, yield: 85%) as a white solid; Mp 120-123 °C; IR (film) ν_{max} : 2970, 2926, 2872, 1762, 1664, 1504, 1445, 1370, 1200, 1164, 1016, 913, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 7.7 Hz, 2H), 7.09 (d, J = 7.6 Hz, 2H), 6.37 (s, 1H), 4.87 (septet, J = 7.1 Hz, 1H), 2.67-2.57 (m, 1H), 2.52-2.42 (m, 1H), 2.41-2.34 (m, 1H), 2.30 (s, 3H), 2.26-2.16 (m, 1H), 1.96-1.84 (m, 1H), 1.83-1.70 (m, 1H), 1.29 (d, J = 7.1 Hz, 3H), 1.06 (d, J = 7.1 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 169.0, 165.9, 162.1, 150.9, 136.0, 128.1 (2C), 121.2 (2C), 111.0, 84.4, 43.9, 31.2, 25.7, 21.2, 20.9, 20.5, 19.3 ppm;

HRMS (ESI) m/z: $[M + H]^+$ cacld for $C_{18}H_{22}NO_4$ 316.1543, found 316.1541.

3-Isopropyl-2-(4-methoxyphenyl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7p)

Following the general procedure A, the reaction of secondary amide **5p** (97 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7p** (113 mg, yield: 78%) as a white solid; Mp 103-106 °C; IR (film) v_{max} : 2970, 2869, 1659, 1512, 1444, 1307, 1253, 1173, 1033, 823, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 8.1 Hz, 1H), 6.83 (d, J = 8.1 Hz, 1H), 6.29 (s, 1H), 4.79 (septet, J = 6.7 Hz, 1H), 3.77 (s, 1H), 2.64-2.51 (m, 1H), 2.46-2.29 (m, 2H), 2.23-2.09 (m, 1H), 1.92-1.79 (m, 1H), 1.77-1.63 (m, 1H), 1.24 (d, J = 6.7 Hz, 3H), 1.00 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 162.3, 160.0, 130.5, 128.3 (2C), 113.4 (2C), 110.7, 85.0, 55.1, 43.8, 31.3, 25.8, 21.2, 20.5, 19.4 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for $C_{17}H_{22}NO_3$ 288.1594, found 288.1587.

2-(Benzo[d][1,3]dioxol-5-yl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin -4(5H)-one (7q)

Following the general procedure A, the reaction of secondary amide **5q** (104 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7q** (142 mg, yield: 94%) as a white solid; Mp 123-126 °C; IR (film) ν_{max} : 2971, 1660, 1490, 1431, 1298, 1241, 1203, 1098, 1038, 929, 872, 791 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 6.90 (app. d, J = 11.7 Hz, 2H), 6.75 (d, J = 7.9 Hz, 1H), 6.28 (s, 1H), 5.97 (s, 2H), 4.82 (septet, J =

6.6 Hz, 1H), 2.68-2.56 (m, 1H), 2.51-2.34 (m, 2H), 2.29-2.18 (m, 1H), 1.96-1.85 (m, 1H), 1.84-1.71 (m, 1H), 1.27 (d, J = 6.6 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.7, 162.1, 148.0, 147.7, 132.5, 120.9, 110.8, 107.6, 107.4, 101.2, 85.0, 43.8, 31.3, 25.8, 21.3, 20.4, 19.4 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₇H₂₀NO₄ 302.1387, found 302.1382.

(E)-3-Isopropyl-2-(4-(phenyldiazenyl)phenyl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]o xazin-4(5H)-one (7r)

Following the general procedure A, the reaction of secondary amide **5r** (134 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7r** (155 mg, yield: 86%) as a white solid; Mp 140-143 °C; IR (film) v_{max} : 2972, 2867, 1659, 1533, 1442, 1221, 1040, 880, 767 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.95-7.85 (m, 4H), 7.58 (d, J = 7.5 Hz, 2H), 7.55-7.45 (m, 3H), 6.41 (s, 1H), 4.92 (septet, J = 6.4 Hz, 1H), 2.70-2.57 (m, 1H), 2.54-2.42 (m, 1H), 2.41-2.31 (m, 1H), 2.28-2.15 (m, 1H), 1.97-1.84 (m, 1H), 1.78-1.67 (m, 1H), 1.31 (d, J = 6.4 Hz, 3H), 1.09 (d, J = 6.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 162.2, 152.9, 152.5, 141.3, 131.3, 129.1 (2C), 127.9 (2C), 122.9 (2C), 122.5 (2C), 111.4, 84.7, 43_9, 31.4, 25.8, 21.4, 20.6, 19.5 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₂₂H₂₃N₃O₂Na 384.1682, found 384.1675.

2-(4-Bromophenyl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-o ne (7s)

Following the general procedure A, the reaction of secondary amide 5s (121 mg, 0.50

mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7s** (147 mg, yield: 87%) as a white solid; Mp 107-109 °C; IR (film) v_{max} : 2972, 2868, 1656, 1485, 1442, 1225, 1201, 1010, 808, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 7.5 Hz, 2H), 7.31 (d, J = 7.5 Hz, 2H), 6.32 (s, 1H), 4.88 (septet, J = 6.5 Hz, 1H), 2.67-2.56 (m, 1H), 2.52-2.40 (m, 1H), 2.40-2.30 (m, 1H), 2.25-2.13 (m, 1H), 1.96-1.84 (m, 1H), 1.81-1.69 (m, 1H), 1.28 (d, J = 6.5 Hz, 3H), 1.05 (d, J = 6.5 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 162.0, 137.7, 131.3 (2C), 128.7 (2C), 123.0, 111.2, 84.3, 43.8, 31.3, 25.7, 21.3, 20.5, 19.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₆H₁₈BrNO₂Na 358.0413, found 358.0406.

2-(2-Bromophenyl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-o ne (7t)

Following the general procedure A, the reaction of secondary amide **5t** (121 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7t** (144 mg, yield: 86%) as a white solid; Mp 100-103 °C; IR (film) v_{max} : 2971, 2869, 1667, 1429, 1369, 1204, 1026, 930, 735 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (dd, J = 7.7, 1.3 Hz, 1H), 7.36 (dd, J = 7.6, 1.8 Hz, 1H), 7.30-7.21 (m, 2H), 6.65 (s, 1H), 4.83 (septet, J = 6.9 Hz, 1H), 2.73-2.58 (m, 1H), 2.53-2.39 (m, 2H), 2.25-2.12 (m, 1H), 1.99-1.85 (m, 1H), 1.83-1.71 (m, 1H), 1.83-1.71 (m, 1H), 1.30 (d, J = 6.9 Hz, 3H), 0.90 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.4, 162.1, 136.4, 133.5, 130.6, 129.3, 126.8, 123.0, 109.9, 84.6, 43.5, 31.2, 25.8, 20.8, 20.5, 19.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₆H₁₈BrNO₂Na 358.0413, found 358.0405.

2-(3-Bromophenyl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-o ne (7u)

Following the general procedure A, the reaction of secondary amide **5u** (121 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7u** (154 mg, yield: 91%) as a white solid; Mp 121-124 °C; IR (film) ν_{max} : 2971, 2924, 2868, 1658, 1446, 1421, 1299, 1222, 1203, 1129, 1041, 786 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (s, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.22 (t, J = 7.9 Hz, 1H), 6.33 (s, 1H), 4.88 (septet, J = 6.9 Hz, 1H), 2.66-2.56 (m, 1H), 2.53-2.42 (m, 1H), 2.41-2.31 (m, 1H), 2.29-2.17 (m, 1H), 1.85-1.84 (m, 1H), 1.82-1.70 (m, 1H), 1.28 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.9, 161.8, 141.0, 131.9, 129.9, 129.6, 125.5, 122.4, 111.2, 84.1, 43.9, 31.2, 25.7, 21.3, 20.5, 19.3 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₆H₁₈BrNO₂Na 358.0413, found 358.0407.

2-(4-Chlorophenyl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-o ne (7v)

Following the general procedure A, the reaction of secondary amide **5v** (99 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7v** (135 mg, yield: 93%) as a white solid; Mp 98-101 °C; IR (film) v_{max} : 2972, 2869, 1659, 1488, 1443, 1224, 1091, 929, 809, 755 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 6.34 (s, 1H), 4.88 (septet, J = 6.7 Hz, 1H), 2.68- 2.56 (m, 1H), 2.53-2.40 (m, 1H), 2.40-2.30 (m, 1H), 2.25-2.12 (m, 1H), 1.97-1.82 (m, 1H), 1.81-1.67 (m, 1H), 1.28 (d, J = 6.7 Hz, 3H), ppm; ¹³C NMR

(100 MHz, CDCl₃): δ 165.9, 162.0, 137.2, 134.7, 128.4 (2C), 128.3 (2C), 111.1, 84.3, 43.8, 31.2, 25.7, 21.3, 20.5, 19.4 ppm; HRMS (ESI) m/z: [M + Na]⁺ cacld for C₁₆H₁₈ClNO₂Na 314.0918, found 314.0913.

2-(3,4-Dichlorophenyl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5 H)-one (7w)

Following the general procedure A, the reaction of secondary amide **5w** (116 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7w** (148 mg, yield: 90%) as a white solid; Mp 129-132 °C; IR (film) v_{max} : 2973, 2869, 1656, 1442, 1407, 1390, 1372, 1299, 1221, 1202, 1131, 1031, 932, 899, 872, 852, 821, 755, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (s, 1H), 7.43 (d, J = 8.3 Hz, 1H), 7.27 (d, J = 6.6 Hz, 1H), 6.30 (s, 1H), 4.89 (septet, J = 6.7 Hz, 1H), 2.69-2.56 (m, 1H), 2.55-2.43 (m, 1H), 2.42-2.30 (m, 1H), 2.29-2.17 (m, 1H), 2.00-1.85 (m, 1H), 1.85-1.71 (m, 1H), 1.27 (d, J = 6.7 Hz, 3H), 1.06 (d, J = 6.7 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 161.8, 139.2, 133.2, 132.7, 130.2, 129.0, 126.3, 111.5, 83.7, 44.0, 31.3, 25.8, 21.4, 20.6, 19.4 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₆H₁₈Cl₂NO₂ 326.0709, found 326.0703.

2-(4-Fluorophenyl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7x)

Following the general procedure A, the reaction of secondary amide 5x (91 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone 7x (107 mg, yield: 78%) as S18

a white solid; Mp 106-109 °C; IR (film) v_{max} : 2973, 2871, 1655, 1508, 1443, 1370, 1226, 1157, 827, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.46-7.32 (m, 2H), 7.07-6.94 (m, 2H), 6.31 (s, 1H), 4.84 (septet, J = 6.9 Hz, 1H), 2.66-2.53 (m, 1H), 2.50-2.38 (m, 1H), 2.38-2.28 (m, 1H), 2.23-2.10 (m, 1H), 1.93-1.81 (m, 1H), 1.79-1.67 (m, 1H), 1.25 (d, J = 6.9 Hz, 3H), 1.02 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 162.9 (d, $J_{\text{C-F}} = 248.5$ Hz), 162.1, 134.5 (d, $J_{\text{C-F}} = 3.0$ Hz), 128.9 (d, $J_{\text{C-F}} = 8.3$ Hz, 2C), 115.1 (d, $J_{\text{C-F}} = 21.7$ Hz, 2C), 111.1, 84.5, 43.9, 31.3, 25.8, 21.3, 20.5, 19.4 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld forC₁₆H₁₉FNO₂ 276.1394, found 276.1392.

3-Isopropyl-2-(4-(trifluoromethyl)phenyl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazi n-4(5H)-one (7y)

Following the general procedure A, the reaction of secondary amide **5y** (116 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7y** (135 mg, yield: 83%) as a white solid; Mp 110-113 °C; IR (film) ν_{max} : 2974, 2874, 1659, 1444, 1337, 1164, 1127, 1068, 1017, 825, 759 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H) 6.36 (s, 1H), 4.88 (septet, J = 6.9 Hz, 1H), 2.64-2.53 (m, 1H), 2.51-2.39 (m, 1H), 2.37-2.26 (m, 1H), 2.23-2.10 (m, 1H), 1.95-1.80 (m, 1H), 1.78-1.65 (m, 1H), 1.27 (d, J = 6.9 Hz, 3H), 1.04 (d, J = 6.9 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 162.0, 166.1, 142.7, 131.0 (q, J_{C-F} = 32.4 Hz), 127.4 (2C), 125.2 (q, J_{C-F} = 3.8 Hz, 2C), 123.8 (q, J_{C-F} = 272.1 Hz, 2C), 111.5, 84.2, 43.9, 31.3, 25.8, 21.4, 20.6, 19.4 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₇H₁₉F₃NO₂ 326.1362, found 326.1361.

Methyl 4-(3-isopropyl-4-oxo-2,3,4,5,6,7-hexahydrocyclopenta[e][1,3]oxazin-2-yl) benzoate (7z)

$$O$$
 N
 CO_2Me

Following the general procedure A, the reaction of secondary amide 5z (111 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone 7z (142 mg, yield: 90%) as a white solid; Mp 121-124 °C; IR (film) v_{max} : 2972, 2873, 1725, 1659, 1540, 1442, 1279, 1203, 1108, 1019, 816, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 7.7 Hz, 2H) , 7.53 (d, J = 7.7 Hz, 2H), 6.40 (s, 1H), 4.91 (septet, J = 6.5 Hz, 1H), 2.69-2.56 (m, 1H), 3.92 (s, 3H), 2.53-2.42 (m, 1H), 2.39-2.28 (m, 1H), 2.26-2.13 (m, 1H), 1.97-1.82 (m, 1H), 1.80-1.66 (m, 1H) , 1.30 (d, J = 6.5 Hz, 3H), 1.07 (d, J = 6.8 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 166.0, 161.9, 143.5, 130.6, 129.3 (2C), 127.0 (2C), 111.3, 84.4, 52.0, 43.8, 31.2, 25.7, 21.3, 20.5, 19.3 ppm; HRMS (ESI) m/z: $[M + H]^+$ cacld for $C_{18}H_{22}NO_4$ 316.1543, found 316.1538.

3-Isopropyl-2-(naphthalen-2-yl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-o ne (7aa)

Following the general procedure A, the reaction of secondary amide **5aa** (107 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7aa** (130 mg, yield: 84%) as a white solid; Mp 138-141 °C; IR (film) ν_{max} : 2970, 2869, 1656, 1447, 1430, 1370, 1295, 1200, 1041, 861, 821, 785, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.90-7.70 (m, 4H) 7.57 (d, J = 8.5 Hz, 1H), 7.54-7.45 (m, 2H), 6.52 (s, 1H), 4.95 (septet, J = 6.6 Hz, 1H), 2.70-2.57 (m, 1H), 2.52-2.40 (m, 1H), 2.39-2.29 (m, 1H), 2.21-2.10 (m, 1H), 1.92-1.79 (m, 1H), 1.73-1.59 (m, 1H), 1.32 (d, J = 6.6 Hz, 3H), 1.08 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 162.3, 135.7, 133.3, 132.5, 128.3, 128.2, 127.4, 126.6, 126.5, 126.4, 124.5, 111.1, 85.1, 43.9, 31.2,

25.8, 21.4, 20.5, 19.3 ppm; HRMS (ESI) m/z: $[M + H]^+$ cacld for $C_{20}H_{22}NO_2$ 308.1645, found 308.1638.

3-Isopropyl-2-(thiophen-2-yl)-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7ab)

Following the general procedure A, the reaction of secondary amide **5ab** (85 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7ab** (100 mg, yield: 76%) as a white solid; Mp 82-85 °C; IR (film) v_{max} : 2969, 2917, 1656, 1636, 1436, 1369, 1291, 1200, 1127, 1034, 736 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.23 (m, 1H), 7.09 (br. s, 1H), 6.93 (br. s, 1H), 6.55 (s, 1H), 4.81 (septet, J = 6.6 Hz, 1H), 2.74- 2.58 (m, 1H), 2.55-2.38 (m, 2H), 2.39-2.26 (m, 1H), 2.04-1.75 (m, 2H), 1.28 (d, J = 6.6 Hz, 3H), 1.13 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 161.5, 142.9, 127.2, 126.3, 126.2, 111.3, 82.3, 44.0, 31.4, 25.8, 21.1, 20.8, 19.5 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₄H₁₈NO₂S 264.1053, found 264.1049.

2-(Furan-2-yl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7ac)

Following the general procedure A, the reaction of secondary amide **5ac** (104 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7ac** (87 mg, yield: 70%) as a white solid; Mp 90-93 °C; IR (film) ν_{max} : 2964, 2867, 1743, 1663, 1439, 1373, 1208, 1013, 859, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.40 (s, 1H), 6.38-6.30 (m, 3H), 4.79 (septet, J = 6.6 Hz, 1H), 2.72-2.58 (m, 1H), 2.55-2.40 (m, 2H), 2.39-2.28

(m, 1H), 2.02-1.78 (m, 2H), 1.26 (d, J = 6.6 Hz, 3H), 1.08 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.5, 161.7, 151.2, 143.1, 110.9, 110.4, 110.3, 79.8, 43.7, 31.2, 26.0, 21.0, 20.8, 19.7 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₄H₁₈NO₃ 248.1281, found 248.1276.

2-(tert-Butyl)-3-isopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7ad)

Following the general procedure A, the reaction of secondary amide **5ad** (72 mg, 0.50

mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7ad** (97 mg, yield: 82%) as a white solid; Mp 80-83 °C; IR (film) ν_{max} : 2951, 2864, 1663, 1634, 1482, 1417, 1303, 1185, 1096, 960, 757 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 4.92 (s, 1H), 3.62 (septet, J = 6.8 Hz, 1H), 2.65- 2.54 (m, 1H), 2.54-2.42 (m, 2H), 2.41-2.32 (m, 1H), 2.00-1.82 (m, 2H), 1.52 (d, J = 6.8 Hz, 3H), 1.33 (d, J = 6.8 Hz, 3H), 0.99 (s, 9H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 163.9, 110.0, 97.8, 53.9, 39.4, 30.9, 26.3 (3C), 25.4, 21.5, 20.6, 19.5 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₄H₂₄NO₂ 238.1802, found 238.1798.

2,3-Diisopropyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7ae)

7ae

Following the general procedure A, the reaction of secondary amide **5ae** (65 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7ae** (73 mg, yield: 65%) as a yellow oil; IR (film) v_{max} : 2967, 2875, 1757, 1654, 1444, 1367, 1215, 1127, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 4.96 (d, J = 7.3 Hz, 1H), 4.37 (septet, J = 6.6 Hz, 522

1H), 2.69-2.57 (m, 1H), 2.55-2.40 (m, 3H), 2.39-2.29 (m, 1H), 2.00-1.89 (m, 2H), 1.26 (d, J = 6.5 Hz, 3H), 1.23 (d, J = 6.7 Hz, 3H), 0.98 (t, J = 7.7 Hz, 6H), ppm; ¹³C NMR (100 MHz, CDCl₃): δ 166.7, 163.0, 110.1, 92.5, 47.3, 31.5, 31.1, 25.9, 21.7, 21.2, 19.6, 19.0, 18.6 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₃H₂₂NO₂ 224.1645, found 224.1641.

3-Isopropyl-2-phenethyl-2,3,6,7-tetrahydrocyclopenta[e][1,3]oxazin-4(5H)-one (7af)

Following the general procedure A, the reaction of secondary amide **5af** (96 mg, 0.50 mmol) gave, after FC (eluent: EA / PE = 1: 3), oxazinone **7af** (60 mg, yield: 42%) as a yellow oil; IR (film) v_{max} : 2964, 2871, 1744, 1661, 1452, 1369, 1304, 1216, 1042, 848, 756 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.25-7.16 (m, 3H), 7.35-7.28 (m, 2H), 5.28 (d, J = 8.0 Hz, 1H), 4.62 (septet, J = 6.6 Hz, 1H), 2.82-2.68 (m, 3H), 2.67-2.58 (m, 1H), 2.55-2.43 (m, 2H), 2.39-2.28 (m, 1H), 2.00-1.87 (m, 2H), 1.76-1.61 (m, 1H), 1.11 (d, J = 6.6 Hz, 3H), 1.06 (d, J = 6.6 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 161.3, 140.4, 128.5, 128.4 (2C), 126.2 (2C), 109.8, 85.2, 43.5, 34.6, 31.5, 31.1, 26.0, 21.3, 20.7, 19.7 ppm; HRMS (ESI) m/z: [M + H]⁺ cacld for C₁₈H₂₄NO₂ 286.1802, found 286.1795.

3-Isopropyl-2-phenyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9a)

Following the general procedure B, the reaction of secondary amide **5a** (82 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9a** (117 mg, yield: 86%) as a white solid; Mp 103-105 °C; IR (film) v_{max} 2926, 2854, 1663, 1639, 1457, 1435, 1228, 1215, 762, 732 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.30 (m, 5H), 6.17 (s, 1H), 4.83 (septet, J = 6.9 Hz, 1H), 2.41-2.28 (m, 1H), 2.18-2.02 (m, 2H), 1.82-1.72 (m, 1H), 1.70-1.55 (m, 2H), 1.56-1.43 (m, 1H), 1.30 (d, J = 6.9 Hz, 3H), 1.22-1.16 (m, 1H), 1.04 (d, J = 6.9 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.0, 158.9, 138.7, 128.7, 128.1 (2C), 127.0 (2C), 109.3, 82.7, 44.3, 27.4, 21.8, 21.7, 21.3, 21.2, 20.2 ppm; HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{17}H_{21}NO_2Na$ 294.1465, found 294.1471.

3-Isopropyl-2-(4-methoxyphenyl)-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9b)

Following the general procedure B, the reaction of secondary amide **5p** (97 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9b** (128 mg, yield: 85%) as a white solid; Mp 102-104 °C; IR (film) v_{max} 2956, 2925, 2854, 1721, 1667, 1614, 1586, 1463, 1378, 1252 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.28 (m, 2H), 6.95-6.78 (m, 2H), 6.17 (s, 1H), 4.77 (hept, J = 6.9 Hz, 1H), 3.81 (s, 3H), 2.41-2.28 (m, 1H), 2.21-2.01 (m, 2H), 1.88-1.69 (m, 2H), 1.70-1.55 (m, 2H), 1.55-1.39 (m, 1H), 1.29 (d, J = 6.9 Hz, 3H), 1.03 (d, J = 6.9 Hz, 3H) ppm; ¹³C{ ¹H} NMR (100 MHz, CDCl₃) δ 163.0, 159.9, 158.7, 130.8, 128.3 (2C), 113.4 (2C), 109.0, 82.6, 55.2, 44.2, 27.4, 21.9, 21.7, 21.2, 21.2, 20.2 ppm; HRMS (ESI) m/z: [M + Na] calcd for C₁₈H₂₃NO₃Na 324.1570 found 324.1571.

3-Isopropyl-2-(4-(trifluoromethyl)phenyl)-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]o xazin-4-one (9c)

Following the general procedure B, the reaction of secondary amide **5y** (116 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9c** (115 mg, yield: 68%) as a white solid; Mp 110-112 °C; IR (film) v_{max} 2937, 2860, 1662, 1640, 1442, 1411, 1326, 1166, 1128, 1112 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.48 (m, 4H), 6.24 (s, 1H), 4.87 (septet, J = 6.9 Hz, 1H), 2.42-2.23 (m, 1H), 2.20-2.00 (m, 2H), 1.85-1.73 (m, 1H), 1.72-1.57 (m, 2H), 1.57-1.43 (m, 1H), 1.31 (d, J = 6.9 Hz, 3H), 1.27-1.17 (m, 1H), 1.05 (d, J = 6.9 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.7, 159.2, 142.9, 131.0 (q, J_{C-F} = 32.5 Hz), 127.3 (2C), 125.2 (q, J_{C-F} = 3.7 Hz, 2C), 123.9 (q, J_{C-F} = 272.2 Hz), 109.6, 81.8, 44.3, 27.4, 21.7, 21.6, 21.4, 21.2, 20.3 ppm; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₂₀F₃NO₂Na 362.1338, found 362.1338.

Methyl 4-(3-isopropyl-4-oxo-3,4,5,6,7,8-hexahydro-2H-benzo[e] [1,3]oxazin-2-yl) benzoate (9d)

Following the general procedure B, the reaction of secondary amide 5z (111 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone 9d (140 mg, yield: 85%) as a white solid; Mp 106-108 °C; IR (film) v_{max} 2956, 2926, 2854, 1726, 1663, 1644, 1494, 1438, 1311, 1278 cm⁻¹; ¹H NMR

(400 MHz, CDCl₃) δ 8.01 (d, J = 7.7 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 6.23 (s, 1H), 4.87 (septet, J = 7.0 Hz, 1H), 3.92 (s, 3H), 2.39-2.27 (m, 1H), 2.16-2.03 (m, 2H), 1.83-1.70 (m, 1H), 1.66-1.56 (m, 2H), 1.55-1.44 (m, 1H), 1.30 (d, J = 7.0 Hz, 3H), 1.23-1.11 (m, 1H), 1.05 (d, J = 7.0 Hz, 3H) ppm; 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 166.6, 162.8, 159.1, 143.8, 130.6, 129.4 (2C), 127.0 (2C), 109.6, 82.0, 52.2, 44.2, 27.5, 21.8, 21.6, 21.4, 21.2, 20.2 ppm; HRMS (ESI) m/z [M + Na]+ calcd for C₁₉H₂₃NO₄Na 352.1519, found 352.1519.

2-(4-Chlorophenyl)-3-isopropyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-on e (9e)

Following the general procedure B, the reaction of secondary amide $5\mathbf{v}$ (99 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone $9\mathbf{e}$ (127 mg, yield: 83%) as a white solid; Mp 116-118 °C; IR (film) v_{max} 2924, 2852, 1661, 1634, 1441, 1404, 1310, 1291, 1227, 1214 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 4H), 6.17 (s, 1H), 4.83 (septet, J = 6.9 Hz, 1H), 2.41-2.28 (m, 1H), 2.18-2.03 (m, 2H), 1.82-1.72 (m, 1H), 1.71-1.56 (m, 2H), 1.56-1.43 (m, 1H), 1.29 (d, J = 6.9 Hz, 3H), 1.27-1.16 (m, 1H), 1.03 (d, J = 6.9 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.8, 158.9, 137.4, 134.7, 128.4 (2C), 128.4 (2C), 109.4, 81.9, 44.2, 27.4, 21.8, 21.7, 21.3, 21.2, 20.2 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₇H₂₀ClNO₂Na 328.1075, found 328.1081.

2-(tert-Butyl)-3-isopropyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9f)

Following the general procedure B, the reaction of secondary amide **5ad** (72 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9f** (60 mg, yield: 48%) as a white solid; Mp 66-68 °C; IR (film) v_{max} 2959, 2931, 2869, 1674, 1640, 1479, 1457, 1398, 1380, 1309 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.74 (s, 1H), 3.44 (septet, J = 6.8 Hz, 1H), 2.38-2.26 (m, 1H), 2.21-2.01 (m, 3H), 1.79-1.69 (m, 2H), 1.68-1.58 (m, 1H), 1.56 (d, J = 6.8 Hz, 3H), 1.50-1.39 (m, 1H), 1.36 (d, J = 6.8 Hz, 3H), 0.99 (s, 9H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.3, 159.8, 107.9, 95.3, 54.7, 39.5, 26.9, 26.5 (3C), 22.1, 21.9, 21.5, 20.8, 20.3 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₅H₂₅NO₂Na 274.1778, found 274.1778.

2,3-Diisopropyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9g)

Following the general procedure B, the reaction of secondary amide **5ae** (65 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9g** (56 mg, yield: 47%) as colorless oil; IR (film) v_{max} 2960, 2929, 2873, 2857, 1659, 1641, 1450, 1398, 1393, 1210 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.81 (d, J = 7.3 Hz, 1H), 4.26 (septet, J = 6.9 Hz, 1H), 2.41-2.26 (m, 2H), 2.22-2.06 (m, 3H), 1.81-1.69 (m, 2H), 1.65-1.53 (m, 1H), 1.53-1.43 (m, 1H), 1.30 (d, J = 6.9 Hz, 3H), 1.24 (d, J = 6.9 Hz, 3H), 0.97 (t, J = 6.6 Hz, 6H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.4, 159.6, 108.0, 89.8, 47.9, 31.6, 27.1, 22.1, 21.9, 21.3, 21.2, 21.1, 18.9,

18.5 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₄H₂₃NO₂Na 260.1621, found 260.1621.

3-Isopropyl-2-phenethyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9h)

Following the general procedure B, the reaction of secondary amide **5af** (96 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9h** (37 mg, yield: 25%) as colorless oil; IR (film) v_{max} 2932, 2858, 1772, 1716, 1662, 1637, 1586, 1495, 1460, 1442 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.27 (m, 2H), 7.25-7.10 (m, 3H), 5.15 (dd, J = 9.6, 2.7 Hz, 1H), 4.58 (septet, J = 6.9 Hz, 1H), 2.81-2.61 (m, 3H), 2.41-2.30 (m, 1H), 2.26-2.11 (m, 2H), 2.08-1.97 (m, 1H), 1.83-1.71 (m, 2H), 1.67-1.46 (m, 3H), 1.13 (d, J = 6.9Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 161.9, 158.2, 140.6, 128.6 (2C), 128.4 (2C), 126.2, 107.8, 82.5, 43.8, 34.4, 31.6, 27.2, 22.1, 22.0, 21.3, 21.0, 20.6 ppm; HRMS (ESI) m/z [M + Na]+ calcd for C₁₉H₂₅NO₂Na 322.1778, found 322.1778.

3-Ethyl-2-phenyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9i)

Following the general procedure B, the reaction of secondary amide **5ag** (75 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9i** (106 mg, yield: 82%) as colorless oil; IR (film) v_{max} 2923, 2851, 1664, 1646, 1470, 1446, 1417, 762, 733, 670 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ

7.50-7.35 (m, 5H), 6.08 (s, 1H), 3.76 (dq, J = 14.1, 7.2 Hz, 1H), 2.95 (dq, J = 14.1, 7.1 Hz, 1H), 2.38-2.28 (m, 1H), 2.28-2.12 (m, 2H), 2.05-1.95 (m, 1H), 1.67-1.55 (m, 3H), 1.55-1.44 (m, 1H), 1.08 (t, J = 7.1 Hz, 3H) ppm; $^{13}C\{^{1}H\}$ NMR (100 MHz, CDCl₃) δ 164.0, 160.6, 136.6, 129.4, 128.5 (2C), 127.3 (2C), 108.1, 87.6, 38.5, 27.3, 21.9, 21.8, 21.3, 13.6 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for $C_{16}H_{19}NO_{2}Na$ 280.1308 found 280.1314.

3-Benzyl-2-phenyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9i)

Following the general procedure B, the reaction of secondary amide **5i** (106 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9j** (142 mg, yield: 89%) as colorless oil; IR (film) v_{max} 2956, 2926, 2855, 1664, 1495, 1435, 1414, 1184, 965, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.31 (m, 3H), 7.30-7.26 (m, 3H), 7.25-7.19 (m, 2H), 7.15-7.10 (m, 2H), 6.02 (s, 1H), 5.29 (d, J = 15.5 Hz, 1H), 3.84 (d, J = 15.5 Hz, 1H), 2.43-2.25 (m, 2H), 2.23-2.09 (m, 1H), 2.05-1.94 (m, 1H), 1.69-1.58 (m, 3H), 1.57-1.42 (m, 1H) ppm; 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 164.1, 161.0, 137.1, 135.9, 129.4, 128.4 (4C), 127.8 (2C), 127.4 (2C), 127.2, 107.7, 87.0, 46.4, 27.3, 21.9, 21.8, 21.4 ppm; HRMS (ESI) m/z [M + Na] $^{+}$ calcd for C₂₁H₂₁NO₂Na 342.1465, found 342.1465.

Methyl 2-(4-oxo-2-phenyl-5,6,7,8-tetrahydro-2H-benzo[e][1,3] oxazin-3(4H)-yl) acetate (9k)

$$\begin{array}{c|c}
O \\
N \\
CO_2Me
\end{array}$$
9k

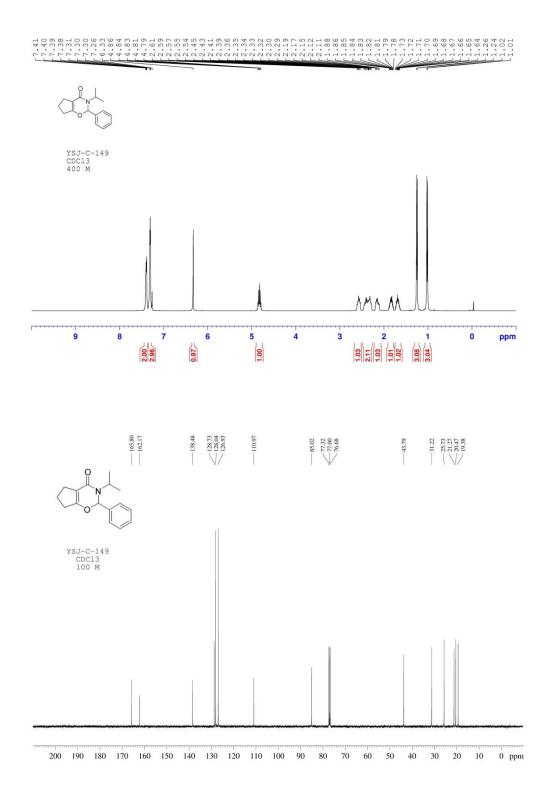
Following the general procedure B, the reaction of secondary amide **5h** (97 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **9k** (104 mg, yield: 69%) as a white solid; Mp 94-96 °C; IR (film) v_{max} 2922, 2851, 1748, 1664, 1458, 1420, 1397, 1210, 1182, 1159 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.46 (m, 2H), 7.46-7.40 (m, 3H), 6.27 (s, 1H), 4.48 (d, J = 17.7 Hz, 1H), 3.64 (s, 3H), 3.23 (d, J = 17.7 Hz, 1H), 2.40-2.32 (m, 2H), 2.28-2.15 (m, 2H), 1.84-1.73 (m, 2H), 1.65-1.49 (m, 2H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.2, 165.7, 163.7, 134.6, 130.3, 128.9 (2C), 128.0 (2C), 107.3, 89.3, 52.0, 44.1, 27.2, 21.9 (2C), 21.5 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₇H₁₉NO₄Na 324.1206, found 324.1207.

3-Cyclohexyl-2-phenyl-2,3,5,6,7,8-hexahydro-4H-benzo[e][1,3]oxazin-4-one (9l)

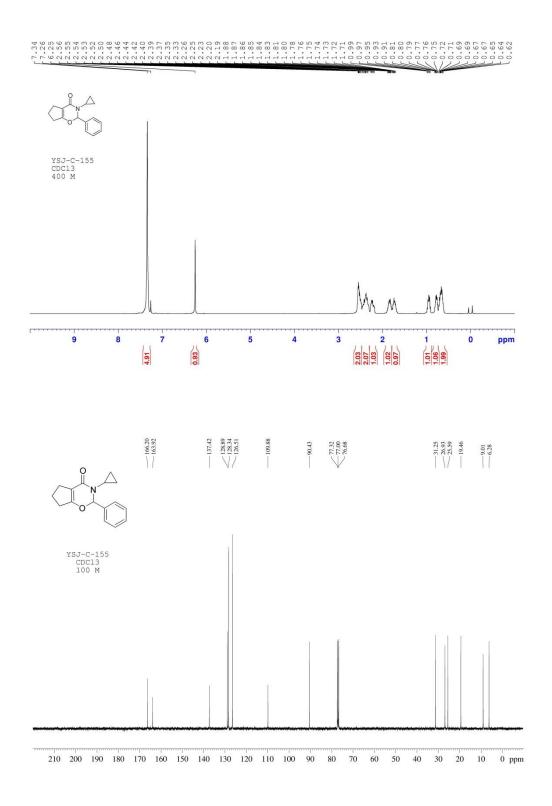
Following the general procedure B, the reaction of secondary amide $\mathbf{5c}$ (102 mg, 0.5 mmol) with pimeloyl chloride (654 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone $\mathbf{9l}$ (117 mg, yield: 75%) as a white solid; Mp 154-156 °C; IR (film) v_{max} 2922, 2851, 1663, 1636, 1493, 1433, 1392, 761, 735, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.40 (m, 2H), 7.39-7.30 (m, 3H), 6.38 (s, 1H), 4.49 (tt, J = 12.2, 3.7 Hz, 1H), 2.69-2.54 (m, 1H), 2.52-2.39 (m, 1H), 2.39-2.29 (m, 1H), 2.24-2.11 (m, 1H), 2.10-1.14 (m, 12H), 1.13-0.93 (m, 2H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.9, 158.7, 138.9, 128.6, 128.0 (2C), 127.0 (2C), 109.3, 82.9, 52.0, 31.5, 30.9, 27.4,

25.8, 25.8, 25.4, 21.8, 21.7, 21.2 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for $C_{20}H_{25}NO_2Na$ 334.1778, found 334.1780.

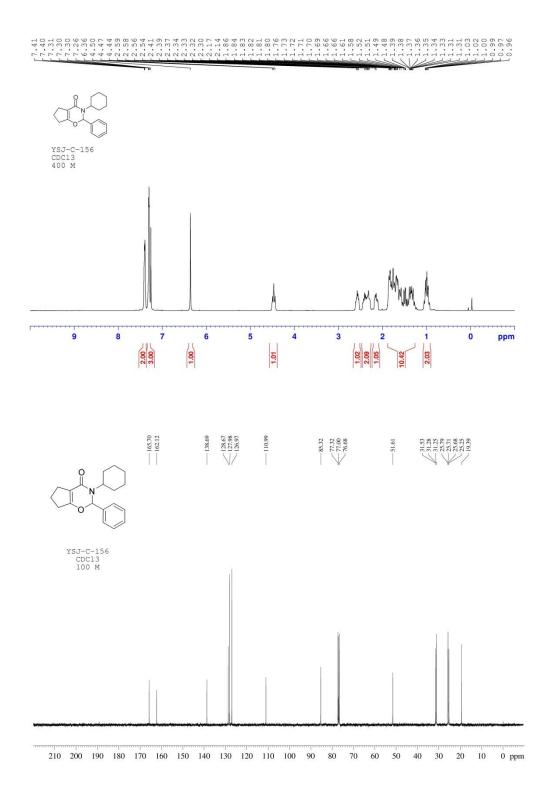
3-Benzyl-6-methyl-2-phenyl-2,3-dihydro-4H-1,3-oxazin-4-one (13a)

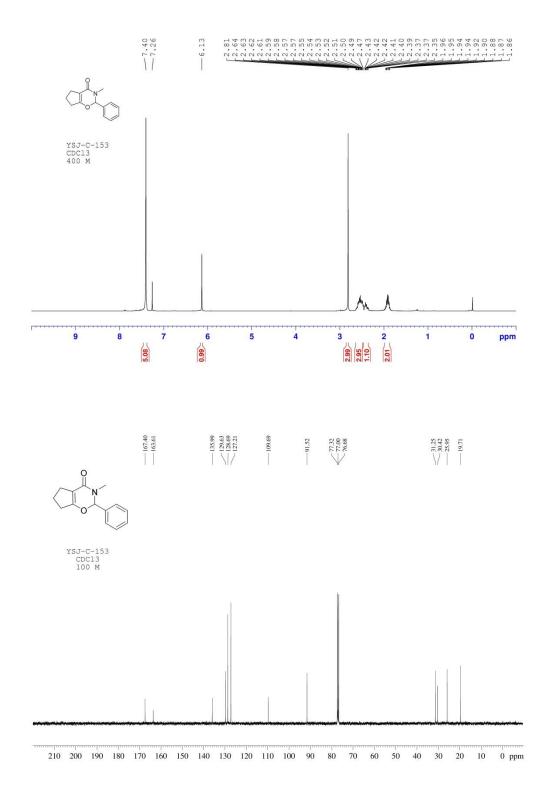

Following the general procedure C, the reaction of secondary amide **5i** (106 mg, 0.5 mmol) with acetyl chloride (284 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE = 1: 20), oxazinone **13a** (117 mg, yield: 84%) as colorless oil; IR (film) v_{max} 2920, 2850, 1669, 1633, 1470, 1429, 1389, 1357, 729, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 3H), 7.32-7.24 (m, 5H), 7.16-7.10 (m, 2H), 6.08 (s, 1H), 5.36 (d, J = 15.4 Hz, 1H), 5.33 (s, 1H), 3.80 (d, J = 15.4 Hz, 1H), 1.87 (s, 3H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.8, 163.5, 136.8, 135.5, 129.6, 128.6 (2C), 128.5 (2C), 127.8 (2C), 127.5, 127.4 (2C), 100.1, 87.7, 46.2, 19.7 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for C₁₈H₁₇NO₂Na 302.1151, found 302.1155.

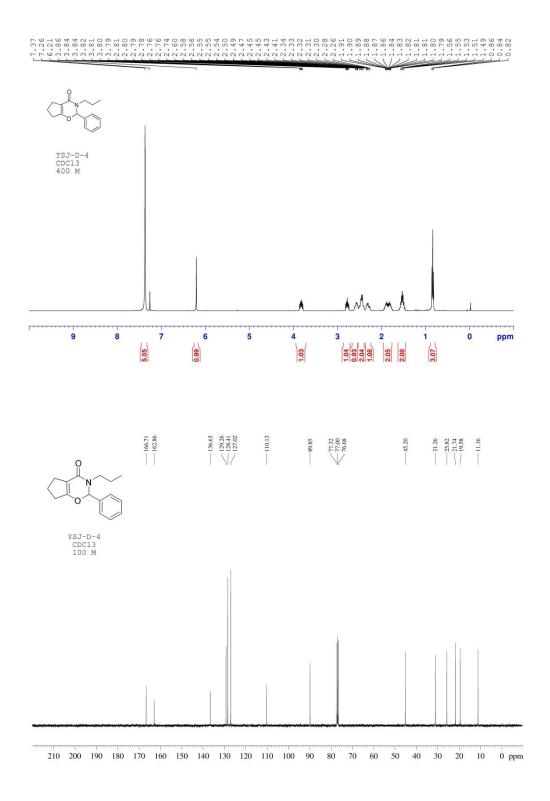
3,6-Dibenzyl-2,5-diphenyl-2,3-dihydro-4H-1,3-oxazin-4-one (13b)

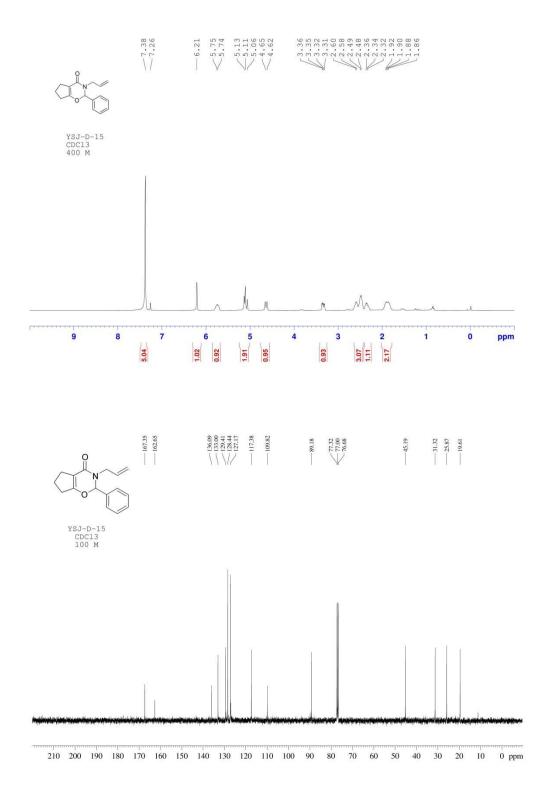

Following the general procedure C, the reaction of secondary amide $\bf 5i$ (106 mg, 0.5 mmol) with phenylacetyl chloride (529 μ L, 4.0 mmol) gave, after FC (eluent: EA / PE

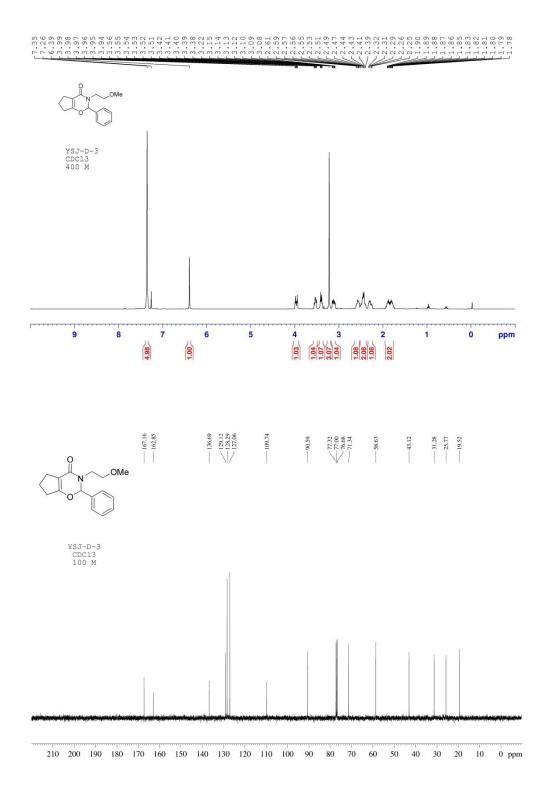
= 1: 20), oxazinone **13b** (196 mg, yield: 91%) as light yellow oil; IR (film) v_{max} 2920, 2850, 1656, 1495, 1454, 1443, 1427, 781, 744, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 3H), 7.31-7.20 (m, 10H), 7.18-7.07 (m, 5H), 6.88-6.77 (m, 2H), 6.12 (s, 1H), 5.39 (d, J = 15.2 Hz, 1H), 3.88 (d, J = 15.2 Hz, 1H), 3.44-3.31 (dd, 2H) ppm; ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.2, 160.9, 136.7, 135.8, 135.3, 133.2, 131.0 (2C), 129.3, 128.7 (2C), 128.6 (2C), 128.29 (2C), 128.26 (2C), 128.1 (4C), 127.5 (2C), 127.3 (2C), 126.4, 114.6, 86.9, 47.0, 37.5 ppm; HRMS (ESI) m/z [M + Na]⁺ calcd for C₃₀H₂₅NO₂Na 454.1778, found 454.1778.

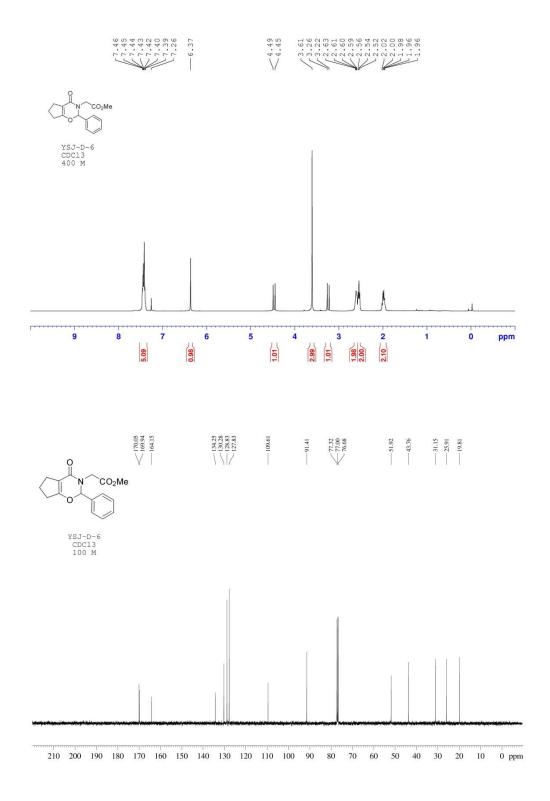

1H and ^{13}C NMR spectra of compound 7a $\,$

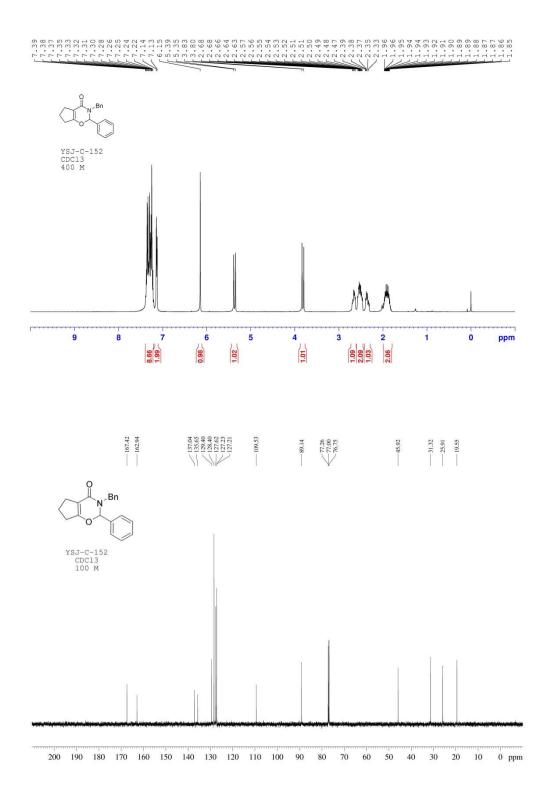

1H and ^{13}C NMR spectra of compound 7b

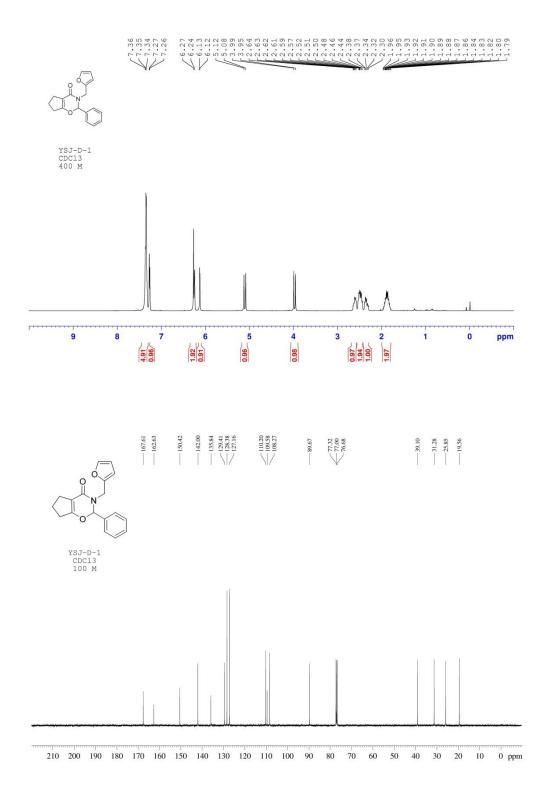

1H and ^{13}C NMR spectra of compound 7c


^{1}H and ^{13}C NMR spectra of compound 7d

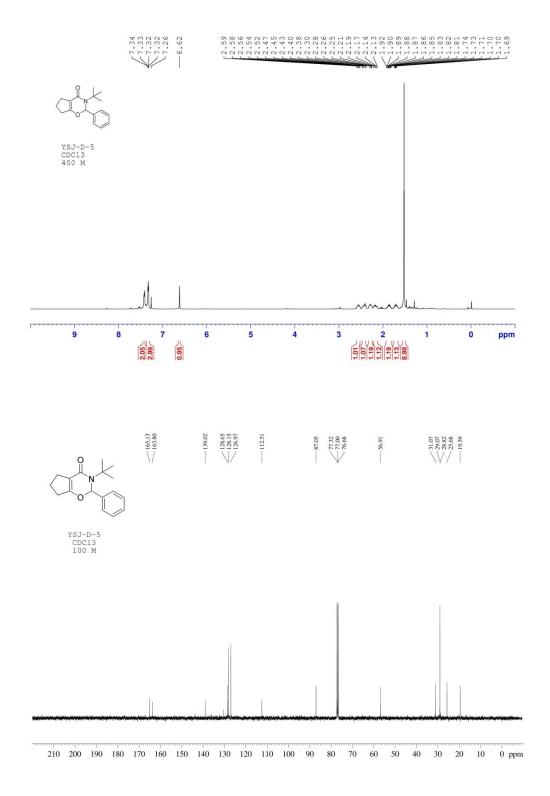

1H and ^{13}C NMR spectra of compound 7e $\,$

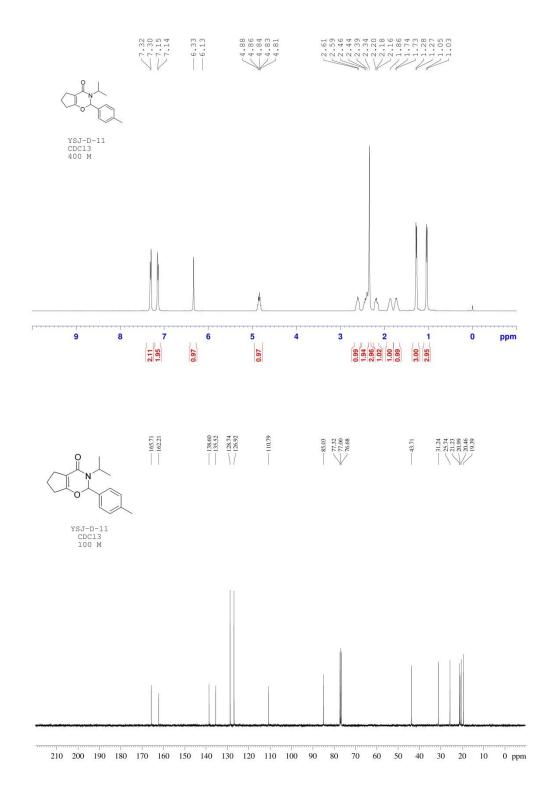

1H and ^{13}C NMR spectra of compound 7f

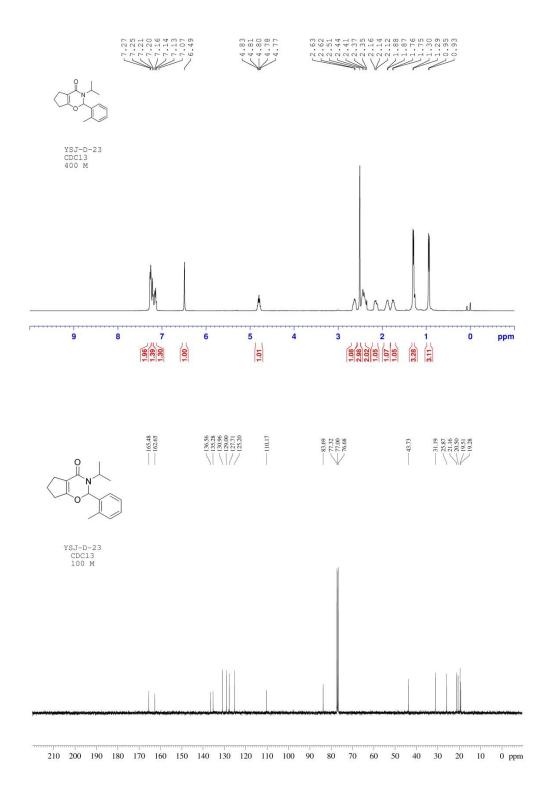

1H and ^{13}C NMR spectra of compound 7g

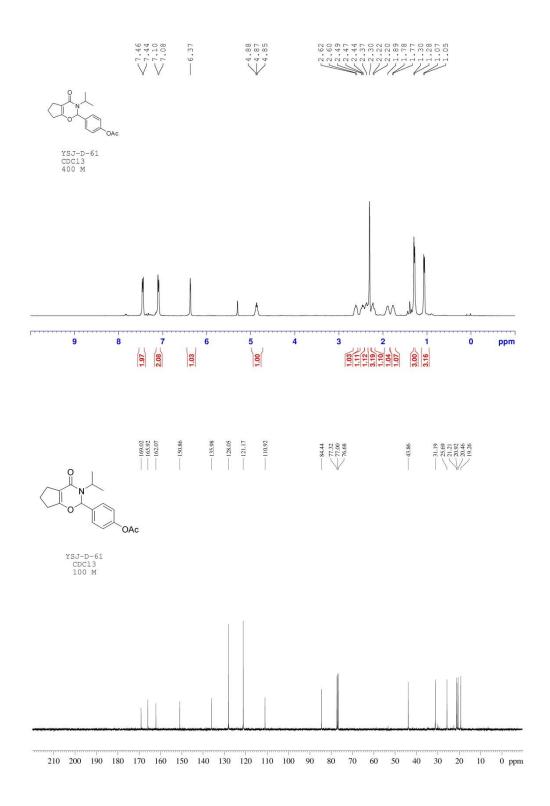

1H and ^{13}C NMR spectra of compound 7h $\,$

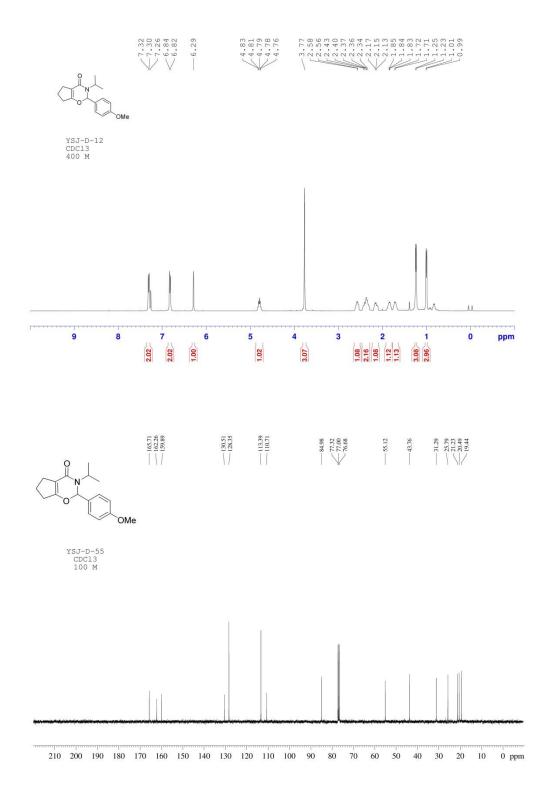
^{1}H and ^{13}C NMR spectra of compound 7i

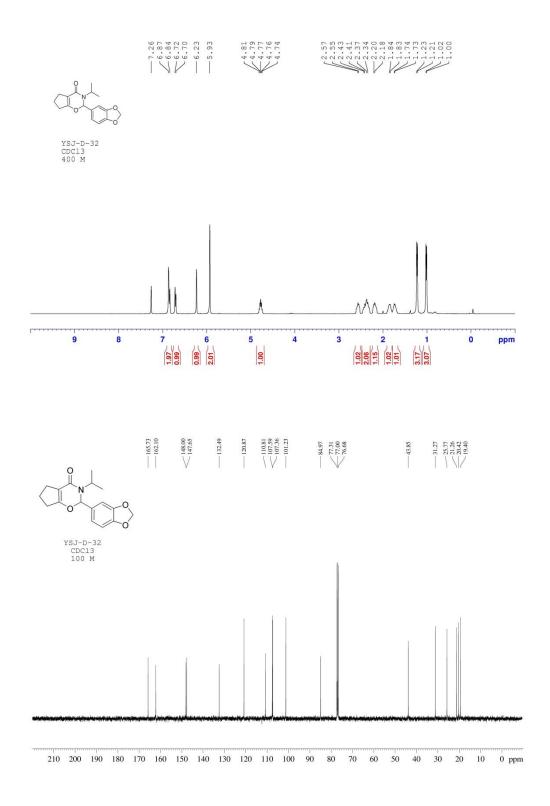

^{1}H and ^{13}C NMR spectra of compound 7j

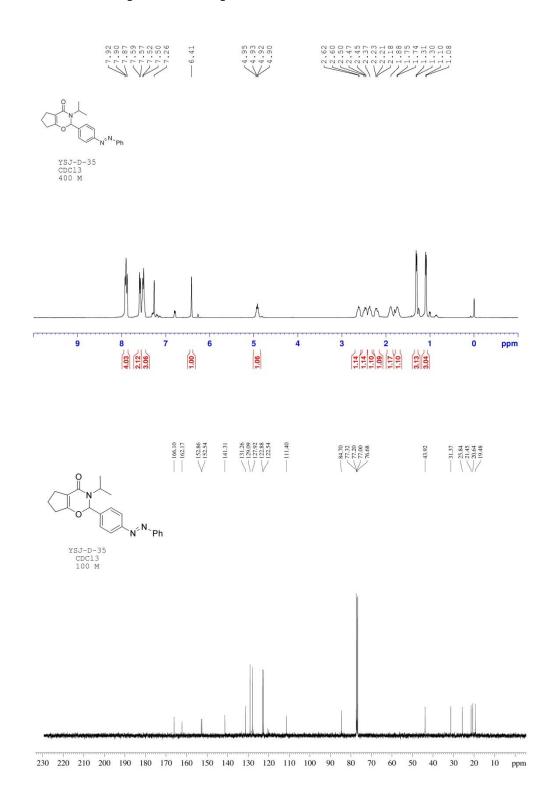

^{1}H and ^{13}C NMR spectra of compound 7k

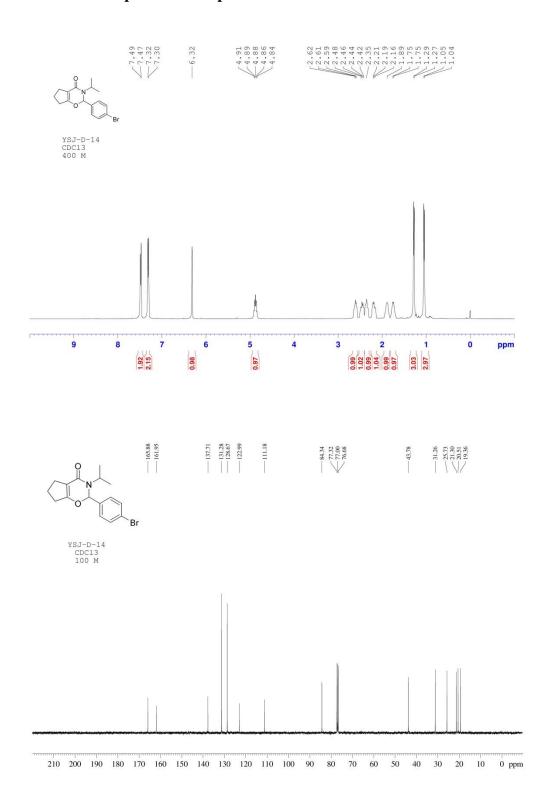

1H and ^{13}C NMR spectra of compound 7l

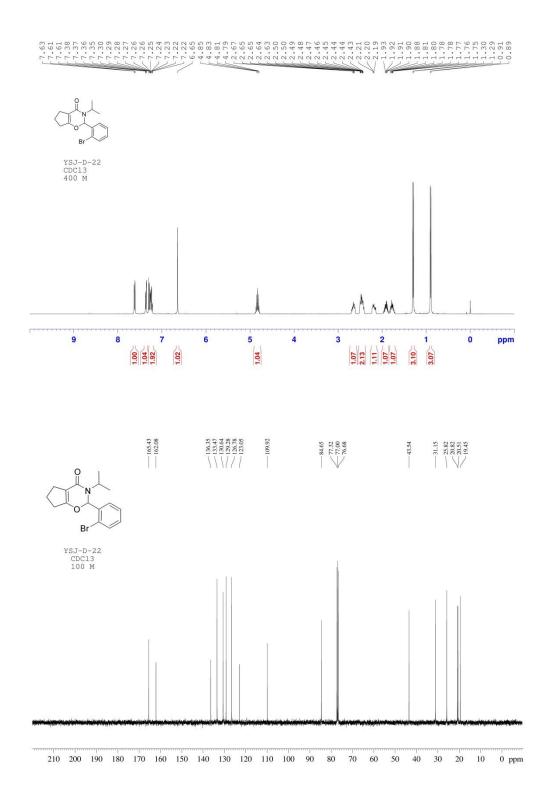

1H and ^{13}C NMR spectra of compound 7m $\,$

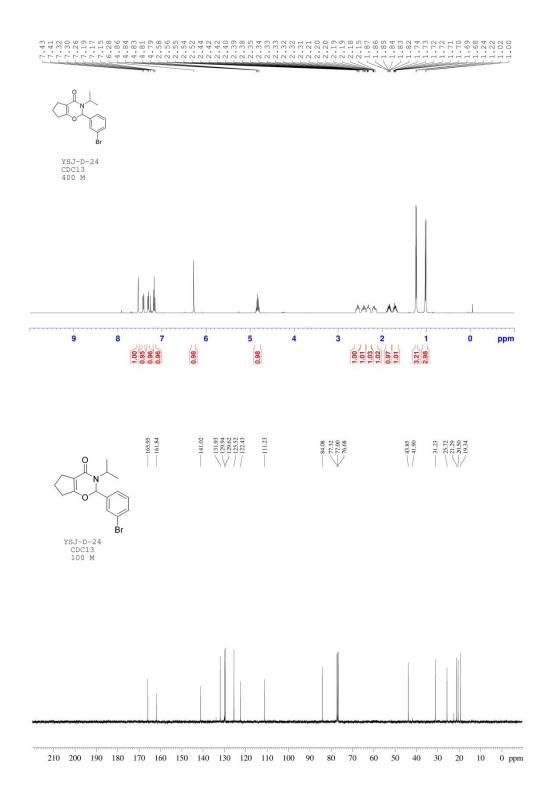

1H and ^{13}C NMR spectra of compound 7n $\,$

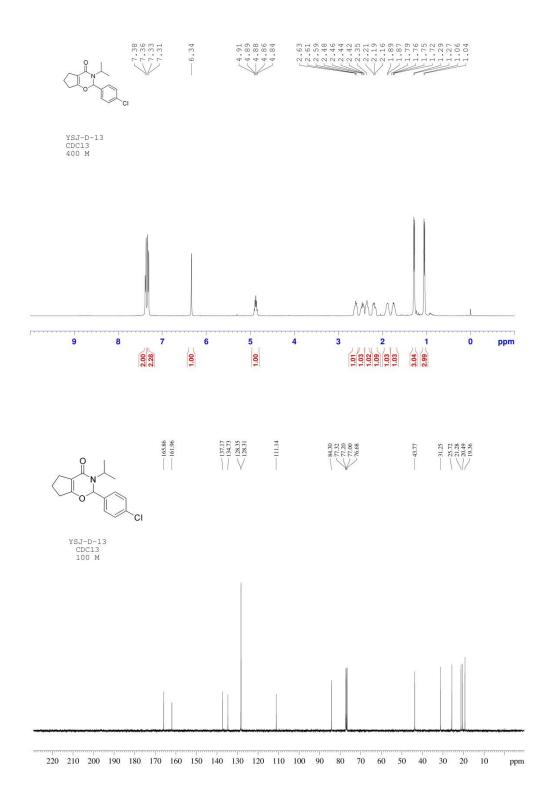

1H and ^{13}C NMR spectra of compound 70 $\,$

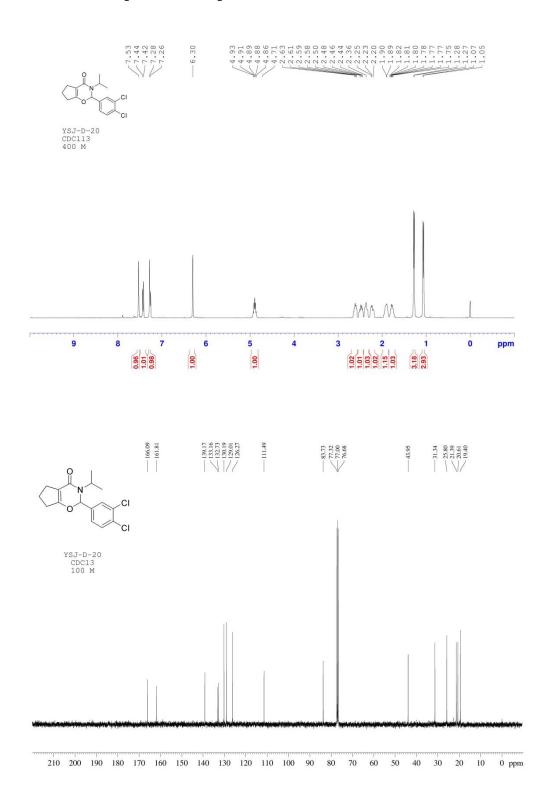

1H and ^{13}C NMR spectra of compound 7p

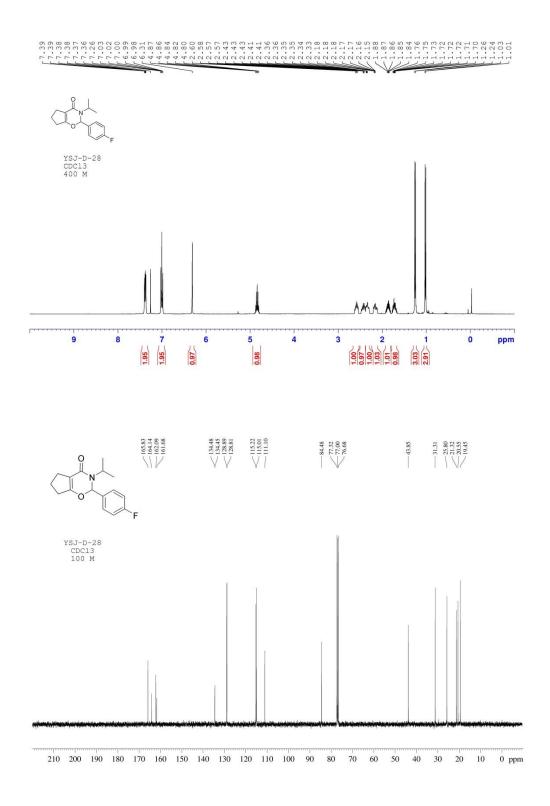

1H and ^{13}C NMR spectra of compound 7q

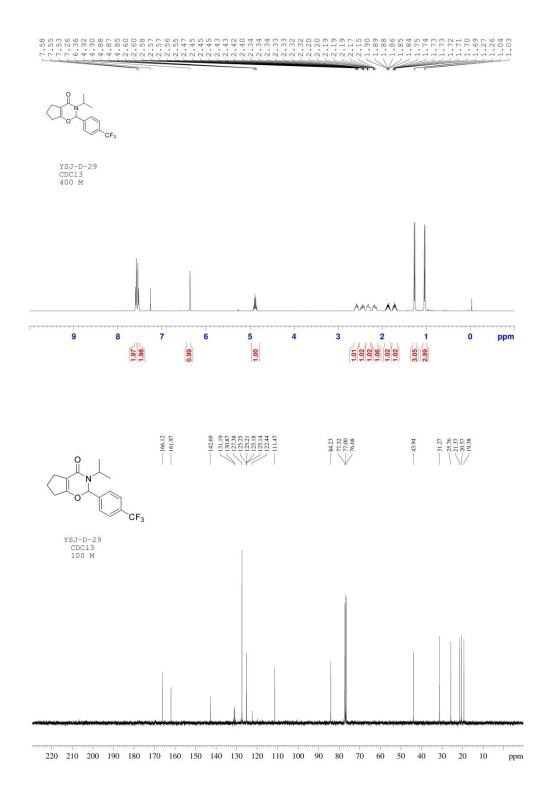

1H and ^{13}C NMR spectra of compound 7r

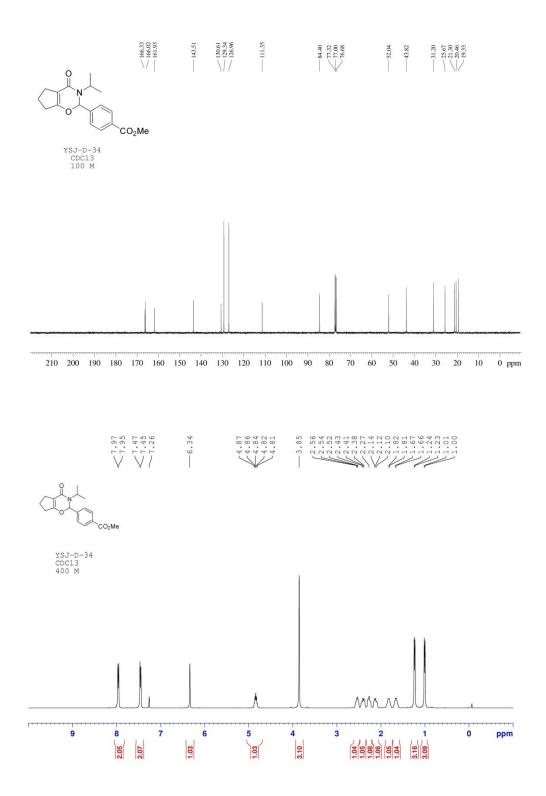

^{1}H and ^{13}C NMR spectra of compound 7s

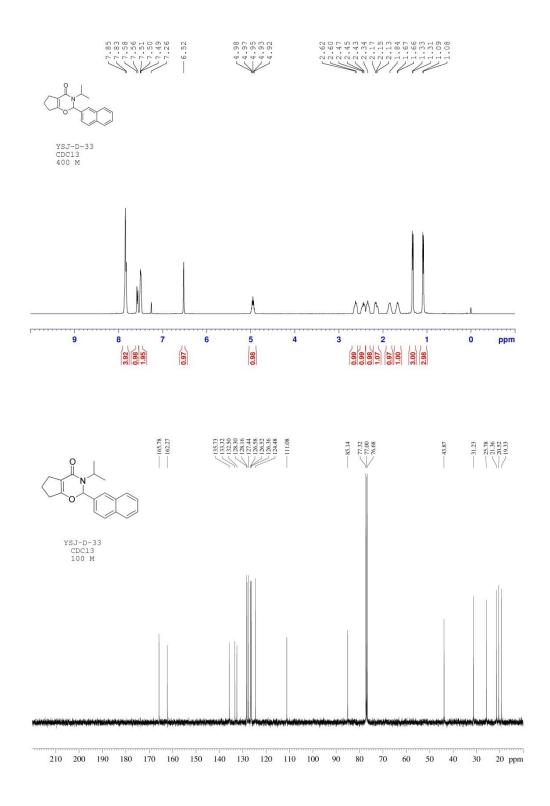

^{1}H and ^{13}C NMR spectra of compound 7t

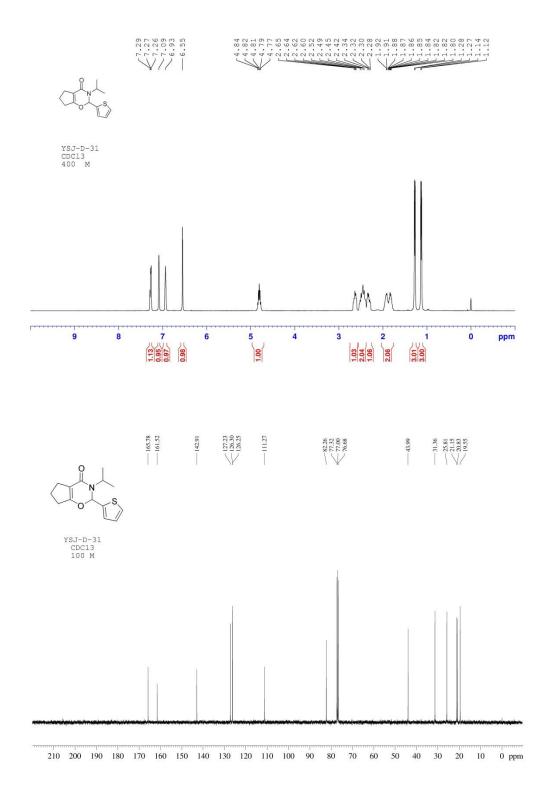

1H and ^{13}C NMR spectra of compound 7u $\,$

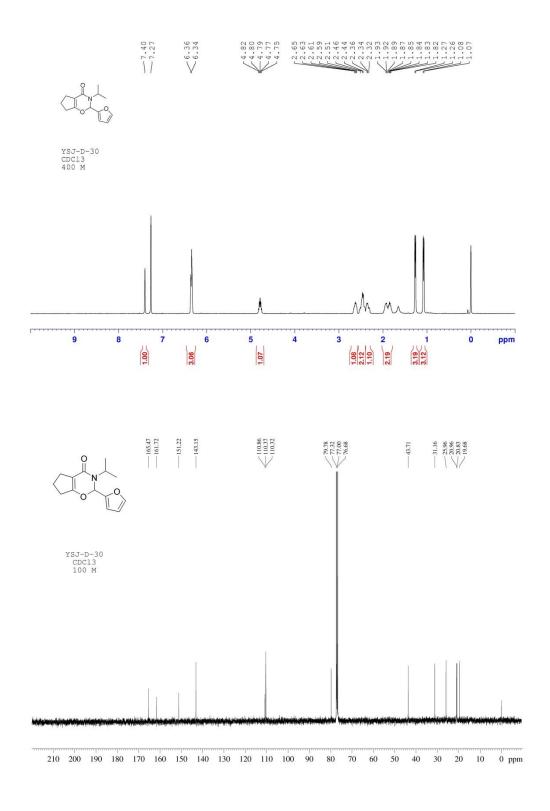

^{1}H and ^{13}C NMR spectra of compound 7v

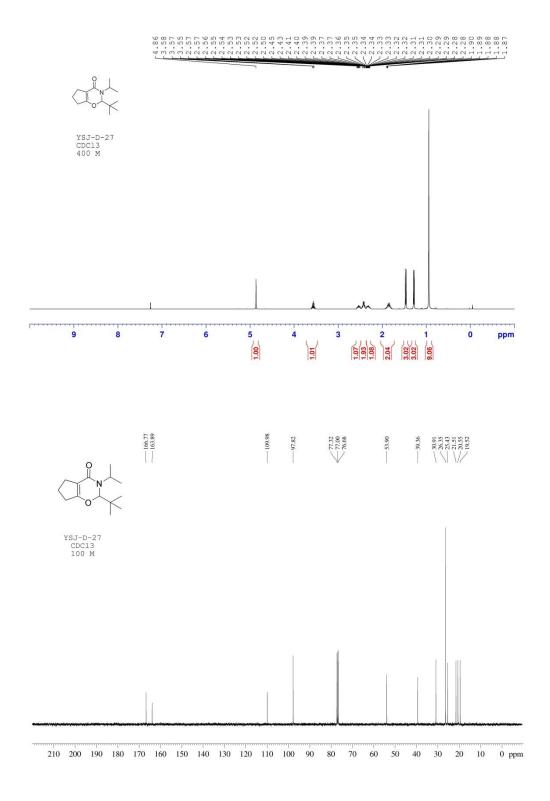

1H and ^{13}C NMR spectra of compound 7w

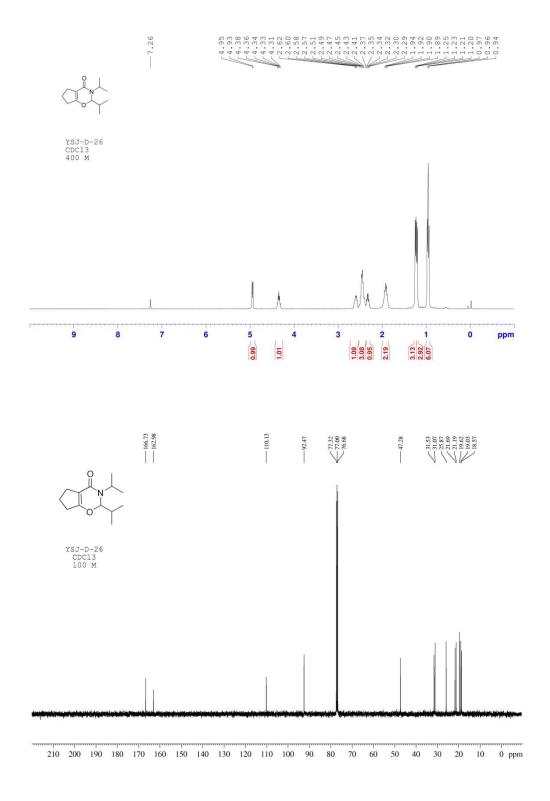

^{1}H and ^{13}C NMR spectra of compound 7x

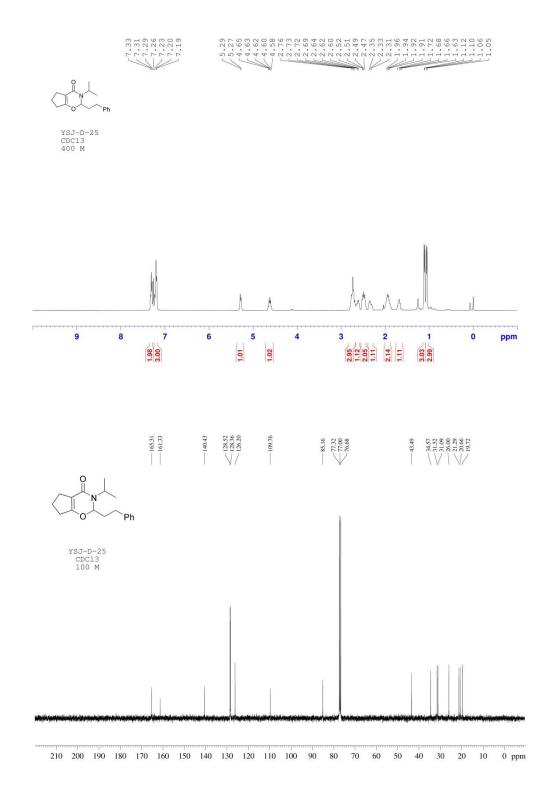

1H and ^{13}C NMR spectra of compound 7y

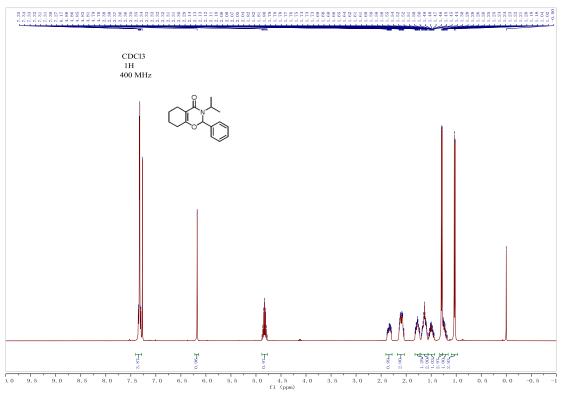

1H and ^{13}C NMR spectra of compound 7z

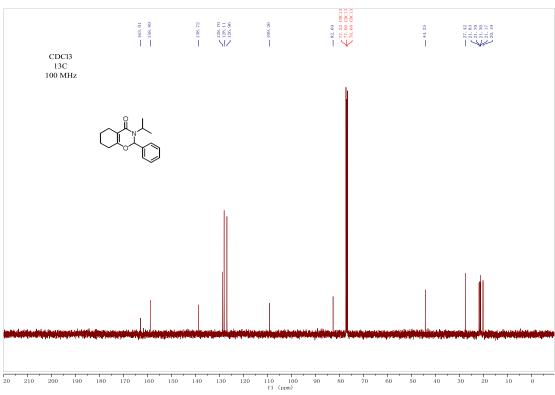

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7aa


$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7ab

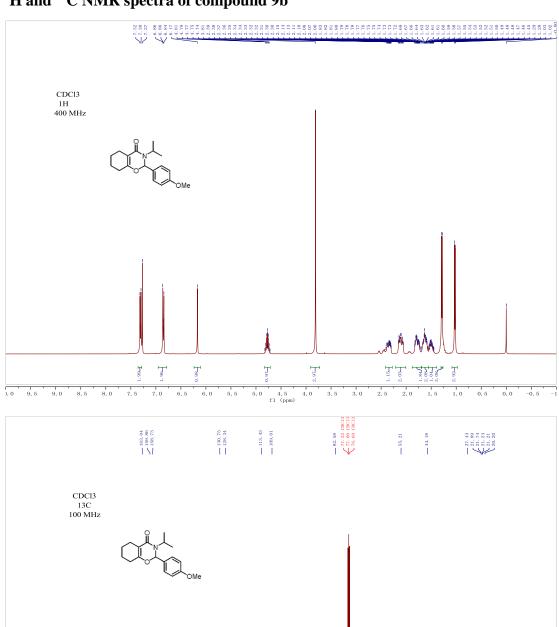

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7ac


$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7ad

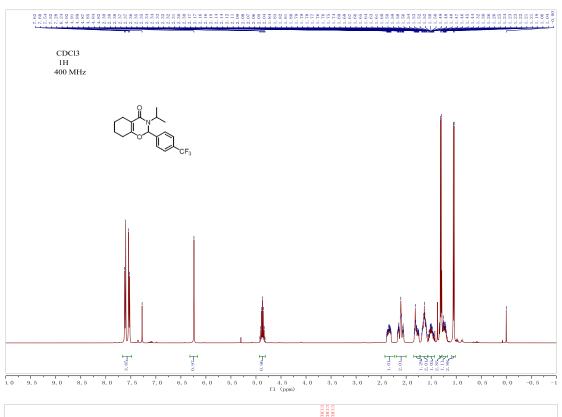

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 7ae

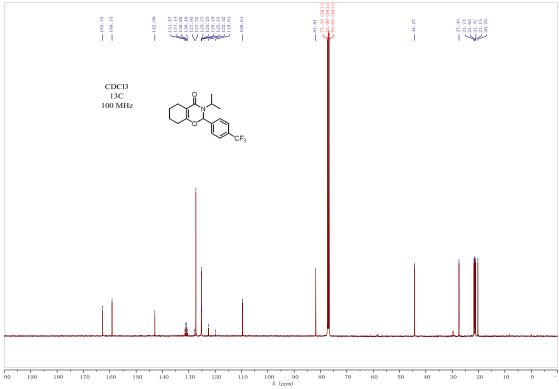


^{1}H and ^{13}C NMR spectra of compound 7af

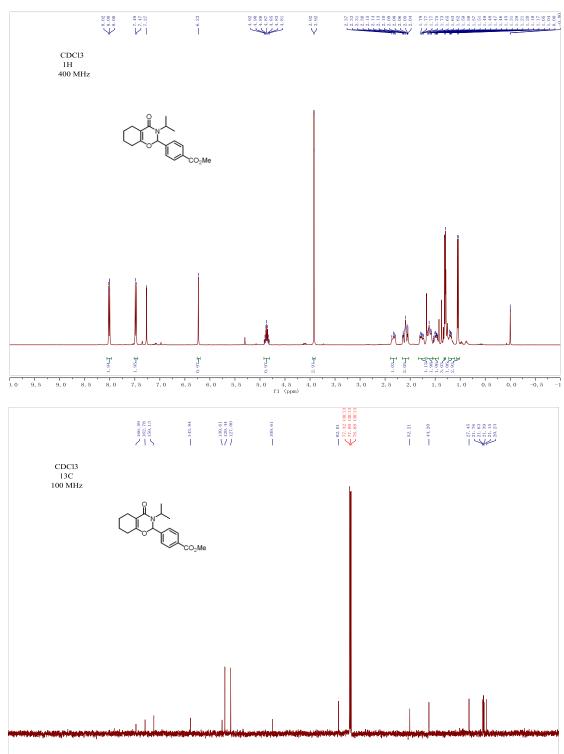


$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9a

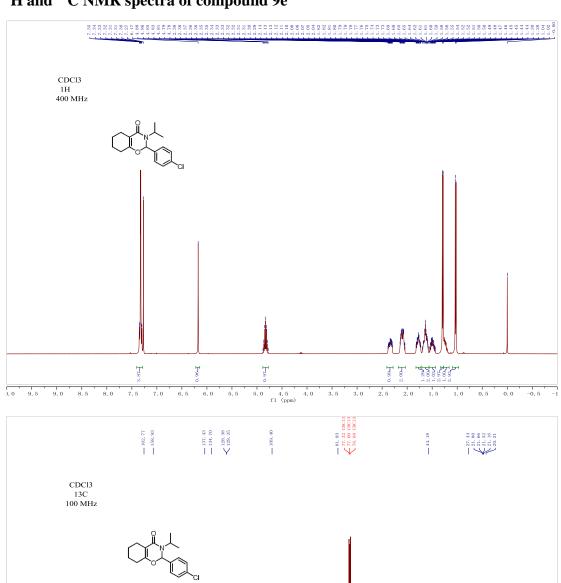

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9b

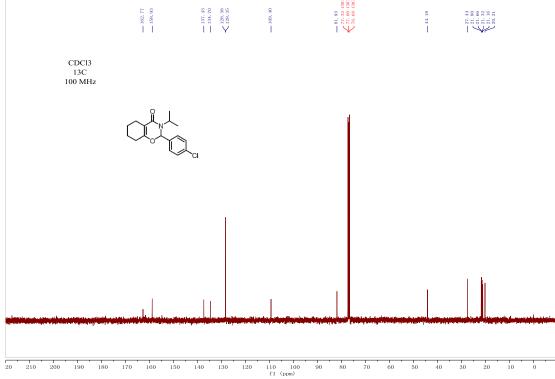


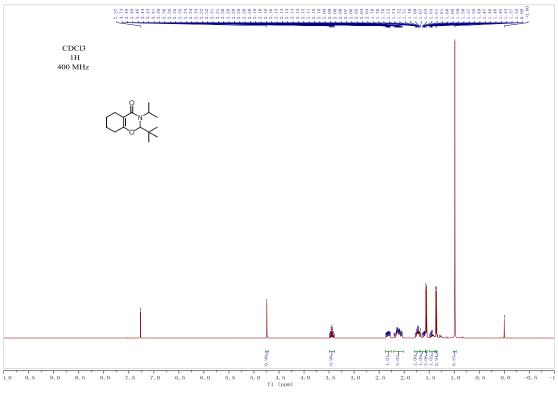
110 100 90 f1 (ppm)

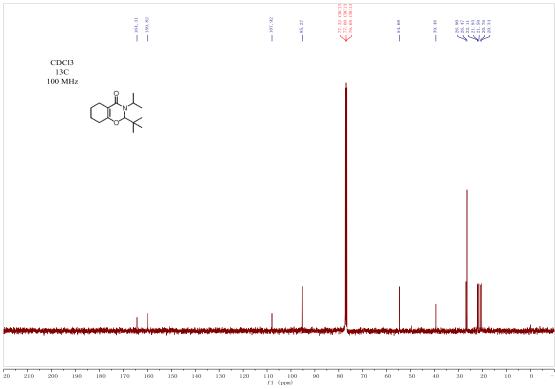

160 150 140 130 120

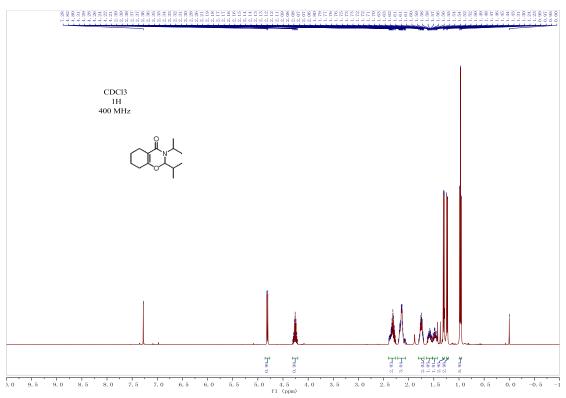
$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9c

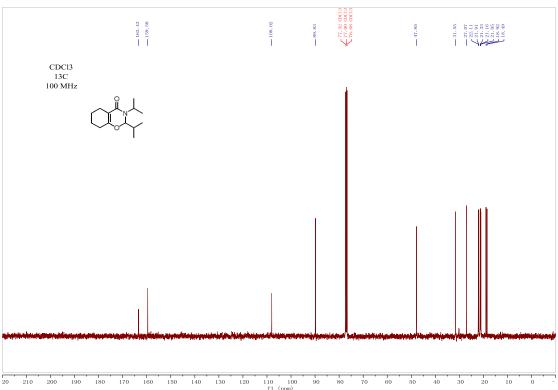


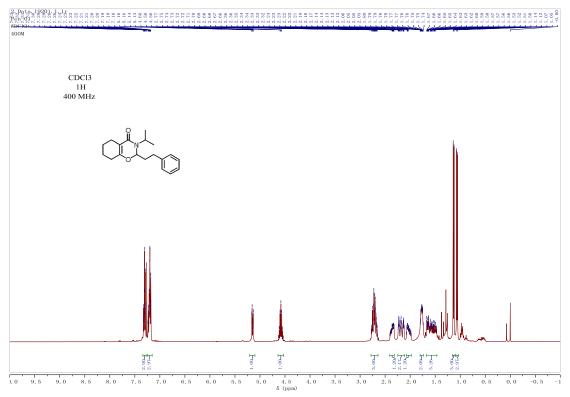

1H and ^{13}C NMR spectra of compound 9d

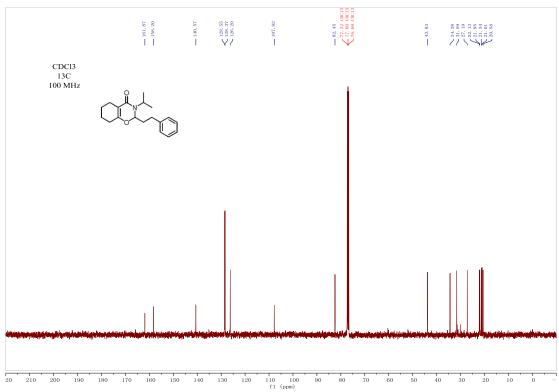

160 150 140 130 120

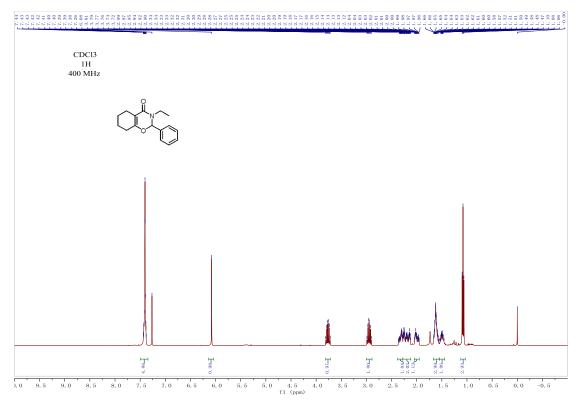

1H and ^{13}C NMR spectra of compound 9e $\,$

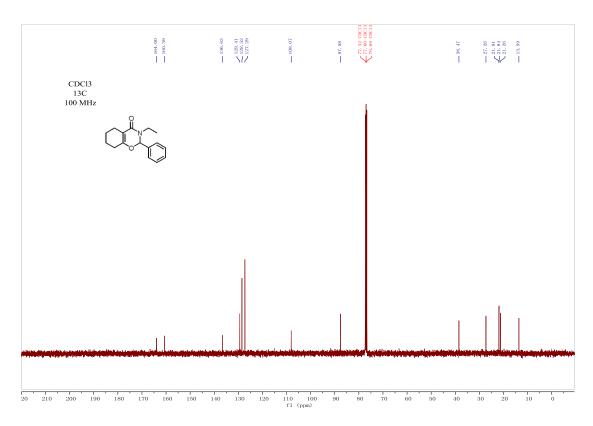


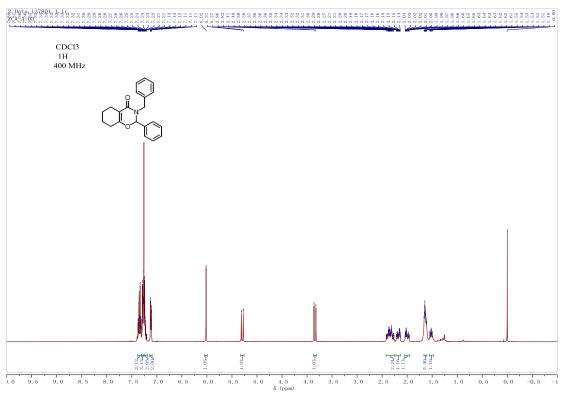

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9f

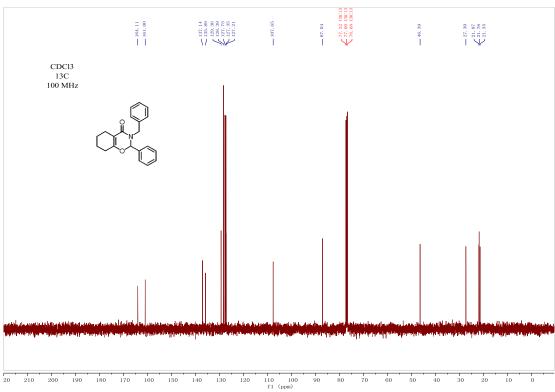


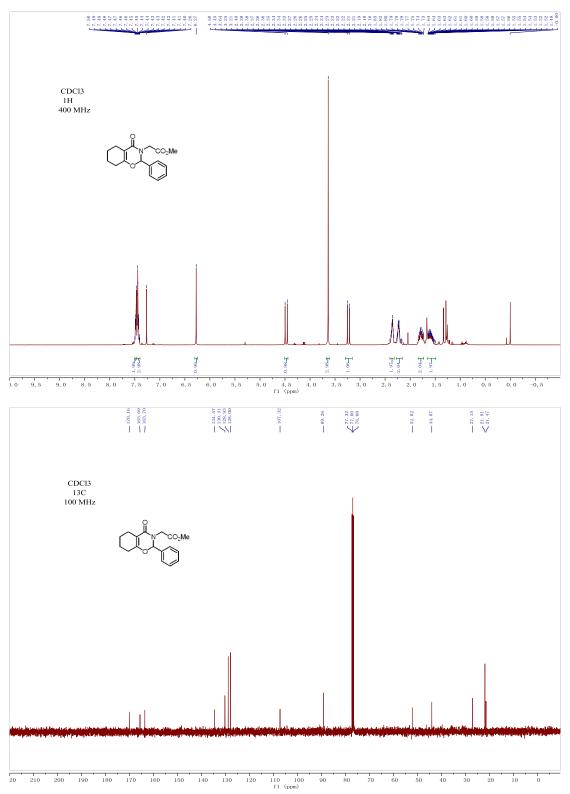

1H and ^{13}C NMR spectra of compound 9g



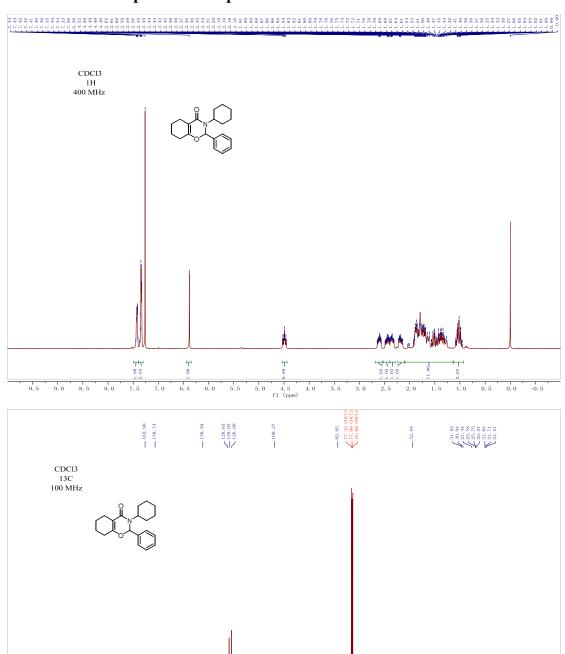

$^1 H$ and $^{13} C$ NMR spectra of compound 9h

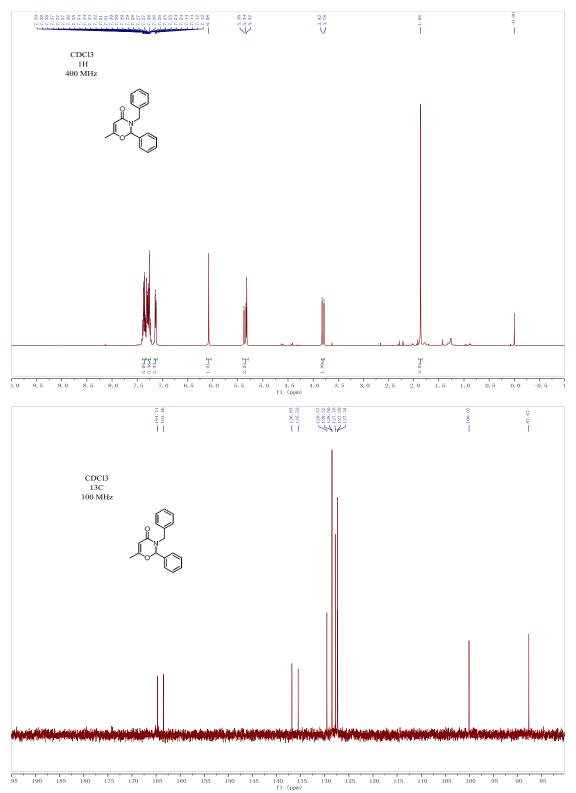


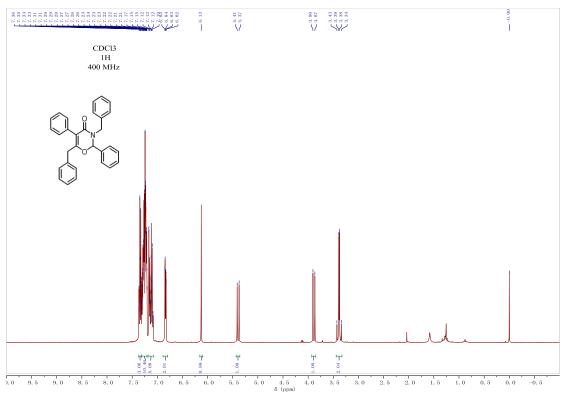

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9i

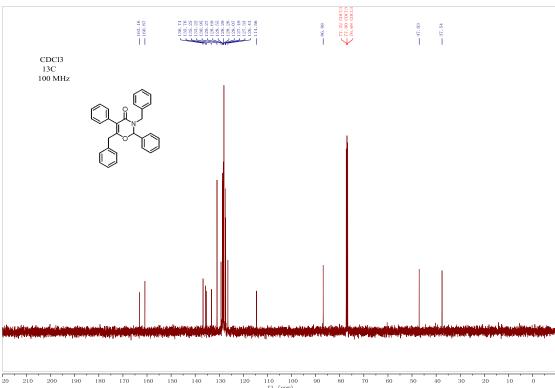


$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9j



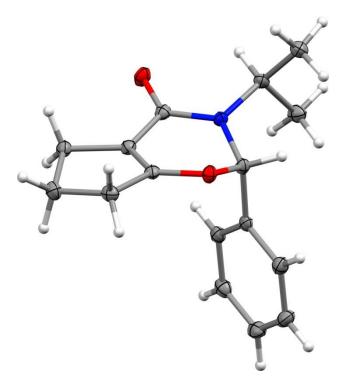

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9k


$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 9l



$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 13a

$^{1}\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound 13b



CCDC 2213238-2213241 contain the crystallographic data for compounds 7a, 7c, 9a, 9b. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Single crystals of C₁₆H₁₉NO₂ [exp_3599, CCDC 2213238] were obtained by slow evaporation of an AcOEt/*n*-hexane solution of **7a**. A suitable crystal was selected and mounted on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2^[1], the structure was solved with the SHELXT^[2] structure solution program using Intrinsic Phasing and refined with the SHELXL^[3] refinement package using Least Squares minimisation.

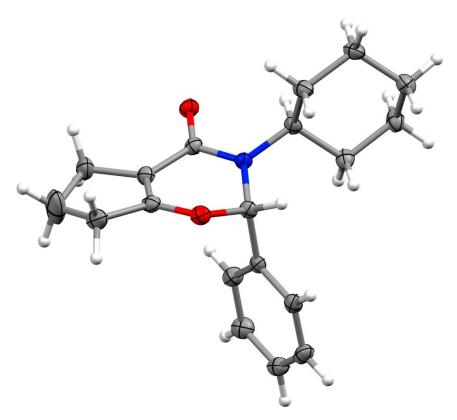

Crystal Data for $C_{16}H_{19}NO_2$ [exp_3599, CCDC 2213238] (M =257.32 g/mol): monoclinic, space group $P2_1/c$ (no. 14), a = 7.96412(10) Å, b = 13.49912(14) Å, c = 12.50563(16) Å, β = 103.1964(13) °, V = 1308.96(3) Å³, Z = 4, T = 100.00(10) K, μ (Cu K α) = 0.682 mm⁻¹, Dcalc = 1.306 g/cm³, 12781 reflections measured (9.782° \leq 2 $\Theta \leq$ 143.514°), 2487 unique (R_{int} = 0.0290, R_{sigma} = 0.0207) which were used in all calculations. The final R_1 was 0.0339 ($I > 2\sigma(I)$) and wR_2 was 0.0866 (all data).

Figure S1. The single crystal X-ray structure of compound **7a** [CCDC **2213238**]. Thermal ellipsoids are drawn at the 50% probability level.

Single crystals of C₁₉H₂₃NO₂ [exp_3588, CCDC 2213239] were obtained by slow evaporation of an AcOEt/*n*-hexane solution of 7c. A suitable crystal was selected and mounted on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2^[1], the structure was solved with the SHELXT^[2] structure solution program using Intrinsic Phasing and refined with the SHELXL^[3] refinement package using Least Squares minimisation.

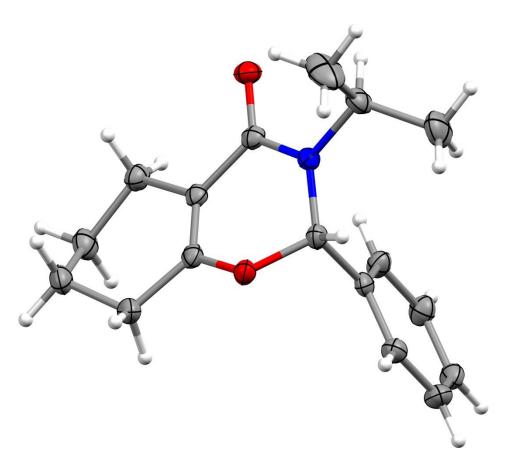

Crystal Data for C₁₉H₂₃NO₂ [**exp_3588, CCDC 2213239**] (M =297.38 g/mol): monoclinic, space group P2₁/c (no. 14), a = 15.8861(2) Å, b = 9.81570(10) Å, c = 10.53650(10) Å, β = 105.7530(10) °, V = 1581.28(3) Å³, Z = 4, T = 100.00(10) K, μ (Cu K α) = 0.633 mm⁻¹, Dcalc = 1.249 g/cm³, 15471 reflections measured (5.78° \leq 2 $\Theta \leq$ 143.644°), 3038 unique (R_{int} = 0.0460, R_{sigma} = 0.0300) which were used in all calculations. The final R_1 was 0.0429 ($I > 2\sigma(I)$) and wR_2 was 0.1118 (all data).

Figure S2. The single crystal X-ray structure of compound **7c** [CCDC **2213239**]. Thermal ellipsoids are drawn at the 50% probability level.

Single crystals of C₁₇H₂₁NO₂ [exp_1468_1, CCDC 2213240] were obtained by slow evaporation of a dichloromethane/petroleum ether solution of 9a. A suitable crystal was selected and mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2^[1], the structure was solved with the SHELXT^[2] structure solution program using Intrinsic Phasing and refined with the SHELXL^[3] refinement package using Least Squares minimisation.

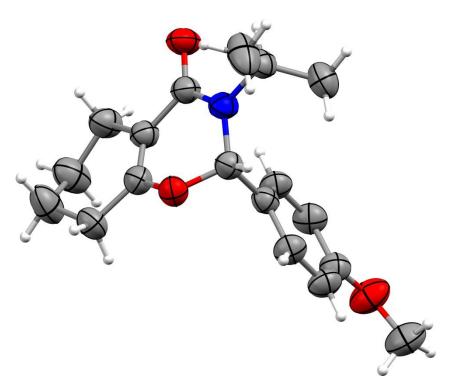

Crystal Data for $C_{17}H_{21}NO_2$ [**exp_1468_1, CCDC 2213240**] (M =271.362 g/mol): orthorhombic, space group Pbca (no. 61), a = 9.91528(16) Å, b = 10.40381(18) Å, c = 28.3425(4) Å, V = 2923.71(8) Å³, Z = 8, T = 100.00(10) K, μ (Cu K α) = 0.636 mm⁻¹, Dcalc = 1.233 g/cm³, 7062 reflections measured (10.9° \leq 2 Θ \leq 146.7°), 2852 unique (R_{int} = 0.0240, R_{sigma} = 0.0252) which were used in all calculations. The final R_1 was 0.0381 (I>=2u(I)) and wR_2 was 0.1023 (all data).

Figure S3. The single crystal X-ray structure of compound **9a** [CCDC **2213240**]. Thermal ellipsoids are drawn at the 50% probability level.

Single crystals of C₁₈H₂₃NO₃ [exp_1495_1, CCDC 2213241] were obtained by slow evaporation of a dichloromethane/petroleum ether solution of 9b. A suitable crystal was selected and mounted on a SuperNova, Dual, Cu at home/near, Atlas diffractometer. The crystal was kept at 293 K during data collection. Using Olex2^[1], the structure was solved with the SHELXT^[2] structure solution program using Intrinsic Phasing and refined with the SHELXL^[3] refinement package using Least Squares minimisation.

Crystal Data for $C_{18}H_{23}NO_3$ [**exp_1495_1, CCDC 2213241**] (M = 301.37 g/mol): monoclinic, space group C2/c (no. 15), a = 15.7240(3) Å, b = 12.93561(17) Å, c = 17.1001(3) Å, $\beta = 110.2436(19)$ °, V = 3263.31(9) Å³, Z = 8, T = 293 K, $\mu(Cu K\alpha) = 0.666$ mm⁻¹, Dcalc = 1.227 g/cm³, 6163 reflections measured (9.092° $\leq 2\Theta \leq 147.596$ °), 3209 unique ($R_{int} = 0.0117$, $R_{sigma} = 0.0141$) which were used in all calculations. The final R_1 was 0.0450 ($I > 2\sigma(I)$) and wR_2 was 0.1374 (all data).

Figure S4. The single crystal X-ray structure of compound **9b** [CCDC **2213241**]. Thermal ellipsoids are drawn at the 50% probability level.

- Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.