Tandem imine generation/N-cyclization/C-alkylation sequence to access

N -functionalized indoles featuring an $a z a$-quaternary carbon

Jun-Song Tian, ${ }^{\text {a }}$ Zhi Tu, ${ }^{\text {a }}$ Feng Zhou, ${ }^{\text {a }}$ Jin-Sheng Yu ${ }^{\text {a }}$ and Jian Zhou*a,b
${ }^{\text {a }}$ Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.
${ }^{\text {b }}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
E-mail: jzhou@chem.ecnu.edu.cn

Supporting Information

Table of Contents	Page
1. General information	1
2. General procedure for the synthesis of starting materials	2
3. Condition optimization	$3-8$
4. General procedure for one-pot tandem sequence of isatins	$9-23$
5. General procedure for one-pot tandem sequence of keto esters	$24-31$
6. Product transformation	$32-36$
7. X-ray crystallography data of 7o	$37-42$
8. References	43
9. NMR spectra	$44-187$

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. Infrared (IR) spectra were obtained using a Nicolet Nexus 670 FT-IR spectrometer with KBr pellets in the range $4000-400 \mathrm{cmm}^{-1}$. Low resolution mass spectra are determined on GCMS-QP2010 (Shimadzu) or Agilent 5975C MSD. High resolution mass spectra are determined on Agilent Technologies 6224 TOF LC-MS or Agilent 6545 QTOF LC-MS. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were obtained using a Bruker DPX-400 and Bruker DPX-300 spectrometer. Chemical shifts are reported in ppm from CDCl_{3} with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.

Unless noted, all the reactions were carried out under an atmosphere of N_{2}. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN are prepared by first distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$ and then from CaH_{2}. Anhydrous THF, dioxane, and toluene are freshly distilled from sodium/benzophenone, and MeOH from Mg . Anhydrous DMSO, DMA and DMF were prepared by drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, distillation again from CaSO_{4} and storing over MS $4 \AA$.

List of abbreviation:

Entry	Chemical name	Abbreviation
1	Petroleum ether	PE
2	Ethyl acetate	EtOAc
3	Tetrahydrofuran	THF
4	Dichloromethane	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
5	Acetonitrile	MeCN
6	Dimethylsulfoxide	DMSO
7	N, N-dimethylacetamide	DMA
8	N, N-dimethylformamide	DMF
9	Methanol	MeOH
10	Toluene	PhMe

2. General procedure for the synthesis of starting materials

The $\mathbf{4 a}$ and $\mathbf{4 m}$ are commercially available. $\mathbf{4 b} \mathbf{- 4 g},{ }^{1} \mathbf{4 h},{ }^{2} \mathbf{4 i},{ }^{3} \mathbf{4 j},{ }^{4} \mathbf{4 k},{ }^{5} \mathbf{4 l},{ }^{2} \mathbf{4 n},{ }^{3} \mathbf{5 a} \mathbf{- 5 g},{ }^{\mathbf{6}} \mathbf{9 a},{ }^{7} \mathbf{9 b},{ }^{8}$ $\mathbf{9 c},{ }^{9}$ and $\mathbf{9 d},{ }^{7}$ are known compounds and synthesized accordingly.

4a

4b

4c

4d

$4 e$

$4 f$

4n

5c

5d

5e

5a

$5 f$

5g

9a

9b

9c

9d

The synthesis of 3-iodopropanenitrile.

To a solution of $\mathrm{PPh}_{3}(7.87 \mathrm{~g}, 30.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was added $\mathrm{I}_{2}(7.61 \mathrm{~g}, 30.0$ mmol). The reaction mixture was stirred at room temperature for 10 min and imidazole (3.40 g , 50.0 mmol) was added. After stirred for another 10 min , 3-hydroxypropanenitrile ($1.42 \mathrm{~g}, 20.0$ mmol) was added and stirred for 2 h , and then quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution $(30 \mathrm{~mL})$. Then extracted the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ followed by drying of the combined organic layers over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by distillation ($101^{\circ} \mathrm{C}$, 23 Torr) to afford 3-iodopropanenitrile as colorless oil in 54% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 118.26,22.67,6.74$. Spectral data was in agreement with that reported in literature. ${ }^{10}$

3. Condition optimization

The condition optimization for the one-pot tandem N-cyclization/ C-benzylation reaction of isatin ketimine 1a and $\mathrm{BnBr} \mathbf{2 a}$ was conducted as follows. To a $25-\mathrm{mL}$ Schlenk tube were added $\mathbf{1 a}(30.9 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{BnBr} \mathbf{2 a}$ and $\mathrm{MeOH}(1.0 \mathrm{~mL})$, followed by the addition of specific bases at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at specific temperature till the full consumption of $\mathbf{1 a}$, and then filtered through short silica gel and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated and purified by column chromatography (PE/EtOAc, 10/1, v/v) to afford the desired product 3a.

Table S1 Condition optimization for the N-cyclization/ C-benzylation of isatin ketimine.

		 2a (x equiv)	$\frac{\text { base }(\mathrm{y} \mathrm{e}}{\mathrm{MeOH}(0.1 \mathrm{M}), t}$		 3a
entry	BnBr (\times equiv)	base (y equiv))	temp. (${ }^{\circ} \mathrm{C}$)	time (h)	yield (\%) ${ }^{\text {a }}$
1	2.0	$\mathrm{Na}_{2} \mathrm{CO}_{3}(2.0)$	0	24	29
2	2.0	$\mathrm{K}_{2} \mathrm{CO}_{3}(2.0)$	0	4	63
3	2.0	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0)$	0	3	68
4	2.0	кон (2.0)	0	2	64
5	2.0	$\mathrm{NaOH}(2.0)$	0	2	61
6	2.0	$\mathrm{K}_{3} \mathrm{PO}_{4}(2.0)$	0	24	54
7	2.0	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.0)$	0	3	73
8	2.0	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.0)$	20	1.0	66
9	2.0	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.0)$	-20	6	45
10	2.0	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.5)$	0	${ }^{24}$	46
11	2.0	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.5)$	0	2.5	75
12	2.0	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(3.0)$	0	1.5	66
13	1.0	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.5)$	0	${ }^{24}$	65
14	1.2	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.5)$	0	9	72
15	1.5	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.5)$	0	5	75
$16^{\text {b }}$	1.5	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.5)$	0	4	72
17°	1.5	$\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.5)$	0	10	79

[^0]As shown in Table S 1 , the properties of base greatly influenced the reaction outcome, and $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ proved to be the best choice, giving 3a in 73% yield within 3 hours at $0{ }^{\circ} \mathrm{C}$ (entries 1-7). The influence on reaction temperature was also evaluated, and the best result was obtained by running the reaction at $0{ }^{\circ} \mathrm{C}$ (entries $8-9$). The study of the usage of $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and BnBr (entries $10-15$) showed that when 2.5 equivs $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and 1.5 equivs BnBr were used, product 3a could be obtained in 75% yield within 5 hours (entry 15), which was further increased to 79% if decreasing the concentration of the reaction from 0.1 to 0.05 M (entry 17).

Based on these results, we further tried extending this protocol to a sequential imine formation $/ N$-cyclization $/ C$-benzylation process. The reaction of N-methylisatin 4a, 2-(2-nitroethyl)aniline 5a and $\mathrm{BnBr} \mathbf{2 a}$ was selected for condition optimization and conducted as follows. To a $25-\mathrm{mL}$ Schlenk tube were added N-methylisatin 4 a ($40.3 \mathrm{mg}, 0.25 \mathrm{mmol}$), 2-(2-nitroethyl)aniline $\mathbf{5 a}(49.9 \mathrm{mg}, 0.3 \mathrm{mmol})$, MS $5 \AA(250.0 \mathrm{mg})$ and anhydrous $\mathrm{PhMe}(1.0$ $\mathrm{mL})$, followed by the addition of $p-\mathrm{TsOH}(2.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred at specific temperature till the full consumption of N-methylisatin $\mathbf{4 a}$, and then cooled down to room temperature and concentrated under vacuum. The residue was dissolved in anhydrous $\mathrm{MeOH}(5.0$ $\mathrm{mL})$ followed by the addition of $\mathrm{BnBr} \mathbf{2 a}(64.1 \mathrm{mg}, 0.375 \mathrm{mmol})$ and $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(104.9 \mathrm{mg}$, 0.625 mmol) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 12 h , and then filtered through short silica gel and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The filtrate was concentrated and purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}, 10 / 1, \mathrm{v} / \mathrm{v}$) to afford the desired product 3a.

As shown in Table S2, We first tried running the condensation of N-methylisatin 4a with 2-(2-nitroethyl)aniline 5a in MeOH , the solvent for the N-cyclization and C-benzylation reaction, to simplify the operation. However, by screening the temperature (entries 1-2), the proportion of $\mathbf{4 a}$ and $\mathbf{5 a}$ (entry 3), and the amount of $p-\mathrm{TsOH}$ (entry 4) and addition of MS $5 \AA$ (entry 5), no promising results were obtained. To our delight, the desired product $\mathbf{3 a}$ could be obtained in 64% yield using PhMe as solvent (entry 6). When PhMe is removed after the condensation of $\mathbf{4 a}$ and 5a, the yield of 3a could be obtained in 68% yield (entry 7), which was further increased to 73% if lowering the temperature of condensation process to $60^{\circ} \mathrm{C}$ (entry 8).

Table S2 Condition optimization for imine formation/ N-cyclization/ C-benzylation of isatin.

5a (1.2 equiv) $\mathbf{2 a}$ (1.5 equiv)

entry	$\mathbf{4 a : 5 a}$	solvent	temp. $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield $(\%)^{a}$
1	$1: 1.2$	MeOH	75	3	56
2	$1: 1.2$	MeOH	90	3	55
3	$1.2: 1$	MeOH	75	3	46
4^{b}	$1: 1.2$	MeOH	75	3	51
5^{c}	$1: 1.2$	MeOH	75	3	49
6^{d}	$1: 1.2$	PhMe	75	3	64
8^{d}	$1: 1.2$	PhMe	60	35	73

${ }^{a}$ Isolated yield. ${ }^{b} 10 \mathrm{~mol} \%$ of $p-\mathrm{TsOH}$ was added. ${ }^{c} 500 \mathrm{mg}$ of MS $5 \AA$ was added. ${ }^{d} \mathrm{PhMe}$ was removed in the second step.

The success for the synthesis of C3-quaternary amino-oxindoles encouraged us to probe whether other types of N -functionalized indoles could be accessed via this sequence. Accordingly, α-ketoester derived imine 6a was subjected to the reaction. Considering the steric congestion of the enolate, with a tetrasubstituted carbon-carbon double bond, the less sterically demanding MeI was employed as the alkylating reagent.

The conditions for the reaction of α-ketoester derived imine $\mathbf{6 a}$ and MeI $\mathbf{2 b}$ was conducted as follows. To a $25-\mathrm{mL}$ Schlenk tube were added imine $\mathbf{6 a}(34.7 \mathrm{mg}, 0.1 \mathrm{mmol}$), specific solvent (1.0 mL) and TBAB ($3.2 \mathrm{mg}, 10 \mathrm{~mol} \%$), followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min or 12 h , and then concentrated under vacuum. The residue was dissolved in specific solvent, followed by the addition of MeI and specific base at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for specific time, and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(3 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, then dried over
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}, 20 / 1, \mathrm{v} / \mathrm{v}$) to afford the desired product 7a.

Table S3 Condition optimization for N-cyclization/ C-methylation of α-ketoester derived ketimine.

${ }^{\text {a }}$ The reaction was performed at $-10^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ The reaction was performed at $10^{\circ} \mathrm{C}$.
As shown in Table S3, the nature of the solvent was found to play a crucial role. If the sequence was run in MeOH or toluene, only the N-cyclization product $\mathbf{8 a}$ was formed, with no detectable formation of adduct 7a (entries 1-2). However, if the solvent was removed after the N-cyclization step, and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 1.0 equivalent of KOBu^{t} were added for the following C-methylation
sequence, the desired product 7 a could be obtained in promising 45% yield (entry 3). Further optimization revealed that DMA was the most suitable solvent for the C-methylation, giving 7a in 58% yield (entries $4-7$). Further screening of other bases demonstrated that NaH was the best choice (entries 8-11). Evaluating the amount of NaH and MeI indicated that the desired product 7a was obtained in 90% yield within 12 hours at $0^{\circ} \mathrm{C}$, when using 1.5 equivs NaH and 2.0 equivs MeI (entries 12-15). Further decreasing the concentration from 0.1 to 0.05 M resulted in the improved 93% yield of product 7 a (entry 17). Varying the reaction temperature failed to afford better results (entries 18-19).

Next, we tried to combine the imine formation with the aforementioned process to form a sequential imine formation/ N-cyclization/ C-methylation sequence. The condition optimization of the reaction of α-ketoester 9a, 2-(2-nitroethyl)aniline 5a and MeI $\mathbf{2 b}$ was conducted as follows. To a $25-\mathrm{mL}$ Schlenk tube were added α-ketoester 9 a (0.25 mmol , 1.0 equiv), 2-(2 -nitroethyl) aniline $5 \mathbf{5}(0.3 \mathrm{mmol}, 1.2$ equiv), MS $5 \AA(250.0 \mathrm{mg})$ and anhydrous $\mathrm{PhMe}(1.0 \mathrm{~mL})$ or $\mathrm{MeOH}(1.0 \mathrm{~mL})$, followed by the addition of $p-\mathrm{TsOH}(2.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred at specific temperature till the full consumption of α-ketoester 9a, and then cooled down to room temperature for concentration under vacuum. The thus obtained residue was dissolved in anhydrous $\mathrm{MeOH}(2.5 \mathrm{~mL})$, followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}(69.1 \mathrm{mg}, 0.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , concentrated in vacuum, and then the residue was dissolved in anhydrous DMA (5.0 mL), followed by the addition of MeI ($71.0 \mathrm{mg}, 0.5 \mathrm{mmol}$) and $\mathrm{NaH}(15.0 \mathrm{mg}, 0.375 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 12 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(3 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the desired product $7 \mathbf{7 a}$.

As shown in Table S 4 , we first performed the condensation of α-ketoester 9 a with 2-(2-nitroethyl)aniline 5a in MeOH , the solvent previously identified for the N -cyclization reaction, to simplify the operation. However, by screening the proportion of 9a and 5a (entry 2), and the amount of p-TsOH (entry 3) and MS $5 \AA$ (entry 4), no satisfactory result was obtained. To our delight, when replacing MeOH by PhMe as the solvent for the condensation, the desired product 7a could be obtained in 85% isolated yield (entry 5). If lowering the temperature for the
imine formation step, the yield of 7a obviously decreased (entries 6-7).

Table S4 Condition optimization for imine formation/ N-cyclization/ C-methylation of α-ketoester.

[^1]
4. General procedure for one-pot tandem sequence of isatins.

To a $25-\mathrm{mL}$ Schlenk tube were added N-methylisatin 4 ($0.25 \mathrm{mmol}, 1.0$ equiv), anilines 5 (0.3 mmol, 1.2 equiv), MS $5 \AA$ (250.0 mg) and anhydrous toluene (1.0 mL), followed by the addition of $p-\mathrm{TsOH}(2.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 3 h till the full conversion of N-methylisatin 4, and then cooled down to room temperature and concentrated under vacuum. The residue was dissolved in anhydrous $\mathrm{MeOH}(5.0 \mathrm{~mL})$, followed by the addition of alkyl bromides ($0.375 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{CsOH} \cdot \mathrm{H}_{2} \mathrm{O}(104.9 \mathrm{mg}, 0.625 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h , and then filtered through short silica gel and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The filtrate was concentrated and purified by column chromatography (PE/EtOAc, 10/1, v/v) to afford the desired product 3a-3ap.

3a

Product 3a was obtained in 73% yield as white solid; Mp: 179-180 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.13\left(\mathrm{dd}, J_{1}=17.2 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.06-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98,3.76(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.21,143.10,135.83,132.46,130.39,129.90,128.37,127.61,127.31,125.26$, 124.24, 123.21, 122.00, 121.18, 120.13, 111.24, 108.37, 102.77, 68.00, 43.61, 26.05; IR (neat): 3030, 1720, 1612, 1492, 1469, 1456, 1087, 1020, 752, 733, 698; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 375.1468$, Found: 375.1476.

3b

Product 3b was obtained in 75% yield as white solid; Mp: 180-182 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.03$ $(\mathrm{m}, 4 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99,3.74(\mathrm{AB}, J$ $=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.97,159.56(\mathrm{~d}, J=241.0 \mathrm{~Hz}$), $139.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 135.72,132.02,130.31,130.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 129.89,127.75,127.51$, $125.02,122.18,121.33,120.32,116.24(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 112.23(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 110.85,109.04$ (d, $J=8.0 \mathrm{~Hz}$), 103.10, 68.11, 43.61, 26.19; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-118.99$; IR (neat): 2929, 1718, 1612, 1492, 1467, 1263, 1236, 1203, 1122, 1099, 1070, 750; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.1374, Found: 393.1376.

Product 3c was obtained in 76% yield as yellow solid; Mp: 192-194 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.92(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98,3.75(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 173.79,141.58,135.69,131.94,130.33,130.17,129.87,128.75,127.80,127.56$, $124.98,124.45,122.24,121.36,120.35,110.82,109.35,103.15,67.92,43.65,26.17$; IR (neat): 2931, 1722, 1610, 1489, 1456, 1234, 1136, 1099, 1018, 734; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 409.1078$, Found: 409.1089.

3d

Product 3d was obtained in 76% yield as white solid; Mp: 214-216 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.69(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 3.98,3.75(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.66$, $142.09,135.71,132.78,131.95,130.52,130.35,129.89,127.81,127.57,127.18,124.98,122.27$, 121.37, 120.37, 115.94, 110.83, 109.81, 103.18, 67.87, 43.70, 26.16; IR (neat): 2929, 1722, 1606, 1516, 1508, 1489, 1456, 1359, 1267, 1234, 1099, 736; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}: 453.0573\right.$, Found: 453.0581 .

Product 3e was obtained in 73% yield as yellow solid; Mp: 167-168 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$

$3 e$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.12 (m, 1H), 7.09-7.04 (m, 3H), $6.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.76(\mathrm{~m}$, $4 \mathrm{H}), 6.67$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.97,3.75(\mathrm{AB}, J=11.2$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), $2.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.87,156.49,136.55$, $135.87,132.45,130.39,129.87,129.58,127.64,127.32,125.19,122.04,121.15,120.14,114.48$, $111.25,111.12,108.91,102.78,68.28,55.89,43.60,26.12$; IR (neat): 2929, 2835, 1716, 1604, 1496, 1471, 1456, 1236, 1224, 1149, 1132, 1028, 731, 698; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1573$, Found: 405.1584.

Product 3f was obtained in 71% yield as white solid; Mp: 166-168 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.96,3.74$ $(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.09,140.71$, $135.81,132.83,132.52,130.39,130.14,129.81,128.31,127.57,127.26,125.23,124.80,121.97$, 121.12, 120.07, 111.28, 108.12, 102.63, 68.04, 43.60, 26.04, 21.21; IR (neat): 2926, 1718, 1604, 1500, 1456, 1361, 1315, 1265, 1238, 1099, 1018, 731; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1624$, Found: 389.1626.

Product $\mathbf{3 g}$ was obtained in 74% yield as white solid; Mp: 153-155 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.11$ (m, 1H), 7.07-6.99 (m, 3H), 6.97-6.86 (m, 4H), $6.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94,3.67(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}$, 3 H), $2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.93,140.84,135.80,133.41,132.55,130.37$, 129.82, 129.09, 127.48, 127.31, 125.24, 123.14, 121.94, 121.12, 120.10, 120.06, 111.27, 102.64, 67.59, 44.15, 29.46, 18.80; IR (neat): 2927, 1718, 1602, 1473, 1456, 1363, 1323, 1116, 1064, 738, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1624$, Found: 389.1630.

3h

Product 3h was obtained in 76% yield as yellow solid; $\mathrm{Mp}: 60-62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}$, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16-7.12(\mathrm{~m}$, $1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.92-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.69(\mathrm{~m}, 3 \mathrm{H}), 6.36\left(\mathrm{dd}, J_{1}=8.4\right.$ $\left.\mathrm{Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.99,3.73(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{q}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.19,140.90,135.58,131.56,131.31,130.04,129.86,127.80,127.78,127.60$ $(\mathrm{q}, J=6.0 \mathrm{~Hz}), 127.20,125.00,123.25(\mathrm{q}, ~ J=270.0 \mathrm{~Hz}), 122.62,122.35,121.38,120.42,112.91$ ($\mathrm{q}, J=33.0 \mathrm{~Hz}), 110.60,103.22,66.62,44.31,28.76(\mathrm{q}, J=7.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-53.69$; IR (neat): 2927, 1732, 1598, 1489, 1473, 1456, 1321, 1122, 1093, 1074, 1056, 732, 698; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 443.1342, Found: 443.1352.

Product 3i was obtained in 83% yield yellow solid; Mp: 174-176 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.18$ (m, 2H), $7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97,3.71$ $(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.56,138.95,135.65$, 132.01, 131.87, 131.39, 130.22, 129.82, 127.75, 127.72, 125.01, 123.99, 122.46, 122.23, 121.28, $120.31,115.96,110.89,103.03,67.65,44.13,29.47$; IR (neat): 2949, 1730, 1608, 1456, 1363, 1321, 1107, 738, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 409.1078, Found: 409.1088.

Product 3 j was obtained in 80% yield as white solid; Mp: $150-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H})$, $6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97,3.70(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.75,140.46,135.66,135.37,131.86,131.77,130.23,129.84$, 127.77, 125.01, 124.38, 122.98, 122.27, 121.30, 120.34, 110.93, 103.07, 102.84, 67.68, 44.26, 29.69; IR (neat): 2927, 1724, 1608, 1577, 1514, 1228, 1101, 1074, 1018, 1006, 731, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 453.0573$, Found: 453.0579 .

Product 3k was obtained in 83% yield as yellow solid; Mp: 162-163 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.66 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.95(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96,3.69(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 175.03, 143.50, 142.30, 135.65, 131.86, 131.71, 130.21, 129.83, 127.76, 127.74, 125.03, 124.87, $123.65,122.26,121.29,120.33,110.95,103.05,71.81,67.60,44.31,29.93$; IR (neat): 2926, 2854, 1724, 1602, 1571, 1516, 1454, 1317, 1228, 1097, 1072, 734, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 501.0434$, Found: 501.0441.

Product 31 was obtained in 70% yield as yellow solid; Mp: 128-130 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73$ ($\mathrm{d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.17-7.16 (m, 1H), 7.12-7.04 (m, 3H), 6.98-6.94 (m, 1H), 6.82-6.78 (m, 4H), $6.69(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96,3.70(\mathrm{AB}, J=11.2 \mathrm{~Hz}$, 2H), $3.13(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 174.80, 138.41, 135.77, $133.88,132.67,132.61,130.39,129.74,129.10,127.46,127.27,125.21,122.40,121.94,121.07$, 120.02, 119.79, 111.33, 102.51, 67.65, 44.16, 29.40, 20.91, 18.66; IR (neat): 2924, 1716, 1602, 1508, 1483, 1473, 1456, 1323, 1230, 1099, 738, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 403.1781$, Found: 403.1790 .

Product $\mathbf{3 m}$ was obtained in 54% yield as white solid; Mp: 218-220 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.20\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 4 \mathrm{H})$, 6.93-6.84 (m, 3H), 6.70-6.57 (m, 3H), 4.00, $3.80(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.67,140.25,135.85,132.28,130.57,129.94,129.86,128.70,127.89$, $127.42,125.20,124.65,123.24,122.12,121.21,120.23,111.36,110.63,102.89,68.21,43.42$; IR (neat): 2926, 2852, 1722, 1620, 1516, 1489, 1471, 1456, 1263, 1220, 732, 698; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 361.1311$, Found: 361.1312.

3n

Product 3 n was obtained in 75% yield as white solid; Mp: $148-150{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.12$ $(\mathrm{m}, 6 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dd}$, $\left.J_{1}=14.4 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.75,4.50(\mathrm{AB}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.08,3.80(\mathrm{AB}, J$ $=11.6 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.36,142.72,135.83,135.08,132.58,130.75$, 129.96, 129.92, 128.78, 128.36, 128.01, 127.67, 127.52, 127.41, 125.26, 124.45, 123.27, 121.92, 121.20, 120.16, 111.56, 109.77, 102.81, 67.91, 44.27, 43.31; IR (neat): 2926, 2852, 1722, 1610, 1516, 1489, 1467, 1454, 1193, 1029, 1018, 731, 696; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 451.1781$, Found: 451.1788 .

30

Product 30 was obtained in 68% yield as white solid; Mp: 192-194 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.10(\mathrm{~m}$, $2 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 3 \mathrm{H}), 6.40\left(\mathrm{dd}, J_{1}\right.$ $\left.=9.2 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.96,3.73(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.05,159.19(\mathrm{~d}, J=234.0 \mathrm{~Hz}$), 143.03, 132.34, 132.25, 130.34, 130.32 ($\mathrm{d}, ~ J=10.0 \mathrm{~Hz}$), 130.09, 128.04, 127.66, 127.40, 126.99, 124.20, 123.32, 111.85 (d, $J=$ $9.0 \mathrm{~Hz}), 110.30(\mathrm{~d}, J=25.0 \mathrm{~Hz}), 108.50,105.93(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 102.75(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 68.04$, 43.52, 26.10; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-124.69; IR (neat): 2927, 2850, 1720, 1612, 1508, 1490, 1448, 1371, 1124, 1020, 1001, 736, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 393.1374$, Found: 393.1383.

3p

Product 3p was obtained in 61% yield as yellow solid; Mp: $175-176{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.05\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}\right.$, $3 \mathrm{H}), 6.85\left(\mathrm{dd}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61-6.59$ (m, 2H), $6.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95,3.73(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.97,143.07,134.17,132.22,130.98,130.35,130.16,127.98,127.69,127.44$, $126.73,125.95,124.24,123.34,122.30,120.55,112.26,108.55,102.42,68.07,43.50,26.12$; IR (neat): 2927, 1720, 1612, 1508, 1492, 1469, 1456, 1126, 1089, 1020, 729, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 409.1078$, Found: 409.1085.

Product $3 q$ was obtained in 70% yield as yellow solid; $\mathrm{Mp}: 160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.26 (m, 1H), 7.13-7.11 (m, 2H), 7.05 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.98\left(\mathrm{dd}, J_{1}=8.8\right.$ $\left.\mathrm{Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.78(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.61-6.59(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95,3.73(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $173.91,143.00,134.40,132.15,131.57,130.32,130.16,127.89,127.67,127.43,126.56,124.83$, 124.19, 123.63, 123.33, 113.56, 112.67, 108.54, 102.30, 68.02, 43.45, 26.11; IR (neat): 2922, 1720, 1612, 1508, 1492, 1469, 1452, 1126, 1089, 1020, 1001, 750, 698; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 453.0573$, Found: 453.0580.

$3 r$

Product 3 r was obtained in 71% yield as yellow solid; Mp: 173-174 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}$, $1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58-6.56(\mathrm{~m}, 2 \mathrm{H}), 6.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96,3.72(\mathrm{AB}, J=$ $11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.25,143.08,134.16$, 132.51, 130.37, 130.15, 129.84, 129.31, 128.42, 127.58, 127.27, 125.33, 124.22, 123.58, 123.18, $120.89,110.81,108.32,102.24,67.92,43.48,26.02,21.31$; IR (neat): 2924, 2854, 1722, 1612, 1492, 1469, 1456, 1371, 1319, 750, 736, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 389.1624$, Found: 389.1630.

3s

Product 3s was obtained in 74% yield as yellow solid; Mp: 180-182 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.14 (m, 1H), 7.05-7.00 (m, 2H), 6.97-6.93 (m, 3H), $6.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.50-6.49(\mathrm{~m}, 2 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 3.87,3.65(\mathrm{AB}, J$ $=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.29,143.05,136.19$, $132.53,131.43,130.37,129.83,128.36,127.65,127.57,127.25,124.64,124.27,123.18,121.88$, 120.72, 111.35, 108.26, 102.51, 67.91, 43.50, 26.03, 22.19; IR (neat): 2927, 2858, 1722, 1612, 1508, 1492, 1469, 1456, 1373, 1325, 1238, 1089, 754, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1624$, Found: 389.1627.

Product 3t was obtained in 73% yield as yellow solid; Mp: 153-155 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H})$, 7.13-7.08 (m, 2H), 7.04-7.00 (m, 4H), $6.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58-6.53(\mathrm{~m}$, $3 \mathrm{H}), 6.37(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94,3.73(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 2.88 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.23,154.28,143.07,132.49,131.05,130.44$, $130.36,129.91,128.32,127.60,127.28,125.95,124.25,123.20,112.00,111.91,108.38,102.92$, 102.42, $67.95,55.78,43.45,26.05$; IR (neat): 2931, 2831, 1722, 1614, 1492, 1473, 1448, 1371, 1247, 767, 750, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 405.1573$, Found: 405.1582.

Product 3u was obtained in 68% yield as yellow solid; Mp: $149-151{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08-7.01 (m, 3H), 6.98-6.89 (m, 3H), 6.66-6.60 (m, 3H), 4.38, 3.98 (AB, $J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.10$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.71,142.86,135.79,133.02,132.95,131.18,130.13$, 129.02, 126.78, 126.42, 126.31, 125.80, 122.85, 122.02, 121.26, 120.19, 111.87, 108.09, 102.85, 67.87, 40.99, 26.34; IR (neat): 1720, 1612, 1471, 1456, 1263, 1234, 1029, 1020, 702, 538; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{ONa}\left[\mathrm{M}+\mathrm{Na}^{+}: 453.0573\right.$, Found: 453.0579 .

Product 3v was obtained in 77% yield as yellow solid; Mp: $150-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.30-7.26 (m, 1H), 7.07-6.96 (m, 5H), 6.91-6.88 (m, 2H), 6.71 (d, $J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.87,143.29,137.70,135.82,131.18,130.47,130.36,130.04$, 128.24, 127.40, 125.60, 125.11, 124.92, 122.88, 121.98, 121.21, 120.13, 111.64, 108.36, 102.75, 68.11, 39.04, 26.19, 20.07; IR (neat): 2931, 1722, 1612, 1490, 1469, 1456, 1371, 1328, 1128, 1020, 736, 538; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1624$, Found: 389.1633.

Product 3w was obtained in 84% yield as yellow solid; Mp: 144-146 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.22 (m, 2H), $7.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.88(\mathrm{~m}$, $3 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91,3.66(\mathrm{AB}, J=$ $11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.91,142.94,135.77,134.82$, $133.16,130.41,130.19,129.86,129.16,129.07,127.88,125.13,124.21,123.37,122.07,121.51$, 121.22, 120.21, 111.21, 108.55, 102.91, 67.75, 43.11, 26.08; IR (neat): 2933, 1720, 1612, 1490, 1471, 1456, 1327, 1263, 1126, 1072, 696, 688; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 453.0573$, Found: 453.0582.

Product 3x was obtained in 77% yield as yellow solid; Mp: 128-130 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28-7.23 (m, 1H), $7.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.87(\mathrm{~m}$, $3 \mathrm{H}), 6.66(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-6.58(\mathrm{~m}, 3 \mathrm{H}), 6.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94,3.71(\mathrm{AB}, J=$ $11.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.92(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.23,143.21,137.22$, 135.87, 132.36, 131.12, 129.91, 129.82, 128.54, 127.94, 127.50, 127.45, 125.31, 124.31, 123.12, $121.98,121.18,120.12,111.31,108.31,102.73,68.04,43.61,26.04,21.20$; IR (neat): 2928, 1720, 1687, 1612, 1490, 1469, 1456, 1328, 1126, 1093, 1018, 700, 692, 538; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 389.1624$, Found: 389.1631.

Product 3y was obtained in 77% yield as yellow solid; Mp : $190-192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.89-6.82 (m, 3H), 6.67-6.60 (m, 4H), $6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92,3.70(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.91(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.28,143.19,136.86,135.84,130.24$, 129.90, 129.83, 129.31, 128.50, 128.33, 125.31, 124.24, 123.14, 121.95, 121.15, 120.09, 111.29, 108.39, 102.69, 67.97, 43.19, 26.08, 21.13; IR (neat): 2926, 1720, 1612, 1514, 1490, 1469, 1456, 1328, 1126, 1020, 702, 692; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 389.1624, Found: 389.1630.

Product $\mathbf{3 z}$ was obtained in 71% yield as yellow solid; Mp: 156-158 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 4 \mathrm{H})$, $6.80(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84,3.63(\mathrm{AB}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.20,150.32,143.13,135.83,130.00,129.85,129.82,129.29$, $128.52,125.32,124.35,124.16,123.13,121.92,121.12,120.07,111.24,108.20,102.66,68.06$, $43.19,34.45,31.36,25.98$; IR (neat): 2960, 2868, 1722, 1612, 1492, 1469, 1456, 1371, 1236, 1128, 1020, 736; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 431.2094$, Found: 431.2105.

Product 3aa was obtained in 74% yield as yellow solid; Mp: 228-230 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.67(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04\left(\mathrm{dd}, J_{1}=14.8\right.$ $\left.\mathrm{Hz}, J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97,3.73(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $174.10,162.20(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 143.06,135.81,131.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 130.07,129.88,128.24$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 128.18,125.14,124.20,123.34,122.07,121.22,120.20,114.54(\mathrm{~d}, J=21.0 \mathrm{~Hz})$, 111.19, 108.53, 102.88, 67.85, 42.70, 26.09; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-115.06$; IR (neat): 2918, 2849, 1724, 1610, 1508, 1490, 1469, 1456, 1236, 1219, 1097, 837, 752, 738; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.1374, Found: 393.1381.

Product 3ab was obtained in 73% yield as yellow solid; Mp: $230-232{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 4 \mathrm{H})$, $6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96, $3.73(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.00,143.08$, $135.80,133.42,131.72,131.08,130.16,129.91,128.04,127.84,125.13,124.24,123.36,122.10$, $121.25,120.23,111.23,108.64,102.93,67.75,42.83,26.14$; IR (neat): 2929, 1612, 1490, 1469, 1456, 1126, 1091, 1082, 1014, 763, 752; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{ONa}$
$[\mathrm{M}+\mathrm{Na}]^{+}: 409.1078$, Found: 409.1086.

Product 3ac was obtained in 80% yield as yellow solid; $\mathrm{Mp}: 210-212{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16\left(\mathrm{dd}, J_{1}=16.8 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.04$ $\left(\mathrm{dd}, J_{1}=12.4 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.65(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94,3.71(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.00$, $143.07,135.79,132.07,131.60,130.80,130.19,129.91,128.01,125.13,124.25,123.38,122.11$, 121.60, 121.25, 120.23, 111.23, 108.67, 102.94, 67.69, 42.88, 26.15; IR (neat): 2933, 1724, 1612, 1508, 1489, 1469, 1456, 1263, 1126, 1093, 808, 522; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 453.0573$, Found: 453.0581.

Product 3ad was obtained in 83% yield as yellow solid; Mp: 178-179 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07\left(\mathrm{dd}, J_{1}=15.2 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $6.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 2 \mathrm{H}), 6.71-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90,3.64(\mathrm{AB}$, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.65,142.81,136.50,135.72$, 132.94, 132.10, $130.45,129.85,127.46,125.01,124.25,123.51,122.15,121.85,121.27,120.31$, 111.19, 108.72, 103.05, 67.55, 42.71, 26.14; IR (neat): 2931, 1716, 1612, 1552, 1490, 1469, 1456, 1313, 1126, 1089, 1001, 732; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 530.9678, Found: 530.9684.

Product 3ae was obtained in 73% yield as yellow solid; Mp: $144-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69$ (d, $\left.J=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.26-7.22 (m, 1H), $7.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.38(\mathrm{~s}, 2 \mathrm{H}), 3.88,3.65(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.24,143.25,137.01,135.88,132.24,129.89,129.72,128.72,128.65,128.23$, $125.35,124.32,123.00,121.93,121.15,120.09,111.33,108.24,102.66,68.05,43.56,26.00$, 21.07; IR (neat): 2920, 2860, 1720, 1610, 1516, 1508, 1490, 1469, 1126, 1018, 702, 690, 538; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 403.1781, Found: 403.1790.

Product 3af was obtained in 85% yield as yellow solid; Mp: 190-192 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98-7.96(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72-7.69 (m, 1H), 7.63 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.15\left(\mathrm{dd}, J_{1}=\right.$ $\left.14.0 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.07-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ $\left(\mathrm{dd}, J_{1}=18.0 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.49,4.36(\mathrm{AB}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.77,142.92,135.95,133.40,132.26,129.98,129.73,128.98,128.93,128.35$, $128.20,128.17,125.56,125.41,124.93,124.43,124.21,122.85,121.99,121.21,120.14,111.51$, 108.09, 102.89, 68.16, 38.77, 25.93; IR (neat): 2933, 1720, 1612, 1514, 1490, 1469, 1454, 1126, 1089, 1016, 702, 692; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 425.1624$, Found: 425.1631.

Product 3ag was obtained in 83% yield as yellow solid; Mp: 208-210 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71-7.68$ (m, 2H), 7.61-7.57 (m, 2H), 7.49 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11,3.87(\mathrm{AB}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $174.20,143.06,135.84,132.93,132.43,130.03,129.92,129.45,128.30127 .76,127.51,126.97$, 125.97, 125.94, 125.31, 124.29, 123.18, 122.00, 121.19, 120.14, 111.30, 108.46, 102.79, 68.02, 43.63, 26.02; IR (neat): 2931, 1720, 1612, 1508, 1490, 1469, 1456, 1124, 1083, 1016, 1001, 734, 692; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 425.1624$, Found: 425.1634.

Product 3ah was obtained in 61% yield as yellow solid; Mp : $178-180{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.13-7.02 (m, 4H), $6.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.64(\mathrm{~m}$, $2 \mathrm{H}), 6.61(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19,4.04(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.03,143.73,135.90,133.99,130.31,129.98,128.35,128.17,126.31,125.48$, 125.36, 124.63, 123.40, 122.08, 121.21, 120.21, 111.58, 108.61, 102.92, 67.50, 37.58, 26.30; IR (neat): 2924, 1716, 1610, 1492, 1469, 1456, 1311, 1236, 1122, 1018, 732, 692; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSNa}[\mathrm{M}+\mathrm{Na}]^{+}: 381.1032$, Found: 381.1039.

Product 3ai was obtained in 60% yield as white solid; Mp: 200-202 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.30$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.62-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.30$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.05 (dd, $J_{1}=15.2 \mathrm{~Hz}, J_{2}=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96,3.73$ (AB, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.95 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.64$, $149.18,142.95,141.86,135.68,130.44,129.93,127.51,125.45,125.02,124.29,123.52,122.20$, 121.31, 120.32, 111.18, 108.76, 103.12, 67.36, 42.77, 26.08; IR (neat): 2929, 1716, 1612, 1600, $1490,1469,1456,1313,1234,1126,736,692$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{ONa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 376.1420$, Found: 376.1423.

Product 3aj was obtained in 37% yield as yellow solid; Mp: 110-112 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56$ (d, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.45\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}\right.$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.87\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.54\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.83,3.60(\mathrm{AB}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.92,168.58,144.52,135.60,130.82,130.30,127.34$, $125.85,125.31,123.30,122.11,121.32,120.27,112.18,109.02,102.96,64.05,52.15,41.23$, 26.77; IR (neat): 2920, 2848, 1724, 1612, 1492, 1469, 1454, 1238, 1199, 1128, 1087, 1018, 738; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 357.1210, Found: 357.1205.

Product 3ak was obtained in 27% yield as yellow solid; Mp: $66-68{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, 1 H), 4.01, 3.59 (AB, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.27 (s, 3H), 2.98 (s, 3H), 2.80 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.59,167.46,145.22,135.55,130.44,130.40,128.19,126.34,124.82,122.61$, $121.89,121.29,120.08,113.23,108.99,102.29,64.97,39.48,37.56,35.57,26.73$; IR (neat): 2929, 1722, 1647, 1610, 1492, 1469, 1452, 1165, 1147, 1126, 1087, 731; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 370.1526$, Found: 370.1527.

Product 3al was obtained in 65% yield as yellow solid; Mp: 80-82 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 3 \mathrm{H}), 6.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.40(\mathrm{~m}, 1 \mathrm{H}), \delta 5.15(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.25(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.53,143.27,135.78$, $129.99,129.94,129.61,128.65,125.60,124.42,123.41,121.94,121.24,121.14,120.07,111.19$, 108.70, 102.70, 66.41, 41.58, 26.45; IR (neat): 2918, 1720, 1610, 1490, 1469, 1456, 1369, 1234, 1078, 1018, 736, 692; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}[M]^{+}: 325.1311$, Found: 325.1310 .

Product 3am was obtained in 83% yield as yellow solid; Mp: 100-102 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-$ $7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.08-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.62$ $(\mathrm{d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.42(\mathrm{~m}, 2 \mathrm{H}), 5.83-5.76(\mathrm{~m}, 1 \mathrm{H}), 3.49\left(\mathrm{dd}, J_{1}=12.8 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.37\left(\mathrm{dd}, J_{1}=12.4 \mathrm{~Hz}, J_{2}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 174.57, 143.19, 136.83, 135.97, 135.86, 130.09, 129.95, 128.69, 128.63, 127.78, 126.33, 125.66, $124.48,123.47,121.98,121.18,120.81,120.12,111.23,108.76,102.83,66.80,40.75,26.53$; IR (neat): 1722, 1612, 1471, 1456, 1265, 1128, 968, 731, 692, 538; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 401.1624$, Found: 401.1632.

Product 3an was obtained in 85% yield as yellow solid; Mp: 133-135 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.36\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.89$ $(\mathrm{m}, 2 \mathrm{H}), 6.61\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04(\mathrm{~s}$, $1 \mathrm{H}), 5.57(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97,3.55(\mathrm{AB}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 174.26,166.98,143.36,135.69,133.83,130.28,129.99,129.42$, 126.87, 126.04, 125.43, 123.03, 122.03, 121.23, 120.17, 111.23, 108.71, 102.85, 67.10, 51.91, 37.84, 26.35; IR (neat): 2949, 2931, 1720, 1612, 1516, 1492, 1471, 1456, 1319, 1234, 1126, 1082, 738; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 383.1366$, Found: 383.1371.

Product 3ao was obtained in 84% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.05-7.00 (m, 2H), $6.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.34-3.30 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.18,143.26$, $135.79,131.70,130.40,130.01,128.45,128.39,126.32,125.20,123.58,122.79,122.06,121.20$, $120.20,111.05,108.81,102.91,84.92,82.75,65.39,29.20,26.75$; IR (neat): 2933, 1724, 1612, 1490, 1469, 1456, 1369, 1315, 754, 738; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{ONa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 399.1468$, Found: 399.1476.

Product 3ap was obtained in 64% yield as yellow solid; Mp: $138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.35,143.09,135.75,130.22,129.94,128.59,126.52,125.14,123.42,121.94$, 121.11, 120.08, 110.95, 108.70, 102.66, 80.71, 72.10, 65.26, 28.57, 26.67, 3.59; IR (neat): 2920, 1722, 1612, 1471, 1456, 1369, 1265, 1074, 731, 702, 536; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}: 337.1311$, Found: 337.1305.

5. General procedure for one-pot tandem sequence of keto esters.

To a $25-\mathrm{mL}$ Schlenk reaction tube were added α-ketoester 9 ($0.25 \mathrm{mmol}, 1.0$ equiv), aniline derivatives $5(0.3 \mathrm{mmol}, 1.2$ equiv), MS $5 \AA(250.0 \mathrm{mg})$ and anhydrous toluene (1.0 mL), followed by the addition of $p-\mathrm{TsOH}(2.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$. The reaction mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 2 h , and then cooled down to room temperature for concentration under vacuum. The thus obtained residue was dissolved in anhydrous $\mathrm{MeOH}(2.5 \mathrm{~mL})$, followed by the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(69.1 \mathrm{mg}, 0.5 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , concentrated in vacuum, and then the residue was dissolved in anhydrous DMA (5.0 mL), followed by the addition of alkyl iodides ($0.5 \mathrm{mmol}, 2.0$ equiv) or alkyl bromides ($0.5 \mathrm{mmol}, 2.0$ equiv) and NaH $(15.0 \mathrm{mg}, 0.375 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(3 \times 20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the desired product 7a-7t.

$7 a$

Product $7 \mathbf{a}$ was obtained in 85% yield as white solid; Mp: $93-95{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.27\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}\right.$, $\left.J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.14-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.77\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.64$ $\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 169.97,138.12,136.04,132.44,131.54,130.24,129.37,128.91,127.02,125.90$, $121.40,120.93,120.06,115.33,103.07,68.15,52.88,25.57$; IR (neat): 2951, 2922, 1739, 1517, 1471, 1452, 1292, 1230, 1112, 1091, 1018, 763, 742; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 336.0762$, Found: 336.0760.

Product 7b was obtained in 74% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.29\left(\mathrm{td}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.06\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.94-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.63\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}\right.$ $=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.04-2.98(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 1 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.93,135.87,135.22,132.73,131.48,131.13,130.10,129.34$, 126.86, 126.16, 121.17, 120.78, 119.99, 115.59, 103.13, 71.31, 52.64, 28.13, 8.98; IR (neat): 2949, 1737, 1508, 1471, 1452, 1433, 1192, 1180, 1018, 1004, 734, 688; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 350.0918$, Found: 350.0917 .

7c

Product $7 \mathbf{c}$ was obtained in 62% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.28\left(\mathrm{td}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.06-7.03 (m, 2H), 6.94-6.91 (m, 2H), $6.62\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.64$ $(\mathrm{s}, 3 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 3 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.90 , $135.92,135.53,132.70,131.44,130.94,130.10,129.30,126.73,126.19,121.18,120.79$, $119.99,115.60,103.16,70.97,52.64,34.73,26.43,22.81,13.96$; IR (neat): 2929, 1737, 1519, 1469, 1452, 1431, 1193, 1180, 1053, 1018, 763, 738; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 378.1231$, Found: 378.1238 .

7d

Product 7d was obtained in 65% yield as yellow solid; Mp : $83-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}$, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.29\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15-7.13(\mathrm{~m}$, $1 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, 2.94-2.87 (m, 2H), 1.62-1.50 (m, 1H), 1.31-1.25 (m, 1H), $0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.76-0.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.92$, 135.94, 135.46, 132.67, $131.44,131.03,130.11,129.30,126.73,126.15,121.17,120.79,120.00,115.65,103.17,71.04$, 52.64, 33.08, 32.92, 28.38, 22.71, 22.40; IR (neat): 2954, 2927, 1737, 1469, 1452, 1431, 1195, $1180,1055,1047,1018,734,704$; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 392.1388, Found: 392.1396.

7e

Product $7 \mathbf{e}$ was obtained in 76% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.28-7.26(\mathrm{~m}$, 2 H), 7.24-7.17 (m, 2H), 7.18-7.10 (m, 2H), 7.09-6.99 (m, 4H), 6.92-6.88 (m, 2H), $6.56\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.67-1.64 (m, 1H), 1.28-1.22 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.79$, $141.39,135.89,135.36,132.73,131.48,130.91,130.10,129.40,128.54,128.53,126.63,126.27$, 126.16, 121.21, 120.81, 120.02, 115.57, 103.22, 70.88, 52.66, 35.66, 34.29, 25.93; IR (neat): 2922, 1737, 1517, 1469, 1452, 1431, 1195, 1178, 1037, 1018, 734, 698; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 440.1388$, Found: 440.1398 .

Product 7 f was obtained in 53% yield as yellow solid; Mp: $98-100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dd, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.31\left(\mathrm{td}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.17\left(\mathrm{td}, J_{1}=\right.$ $\left.8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.07-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.90(\mathrm{~m}, 1 \mathrm{H})$, $6.64\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.46(\mathrm{~m}, 1 \mathrm{H})$, 3.23-3.13 (m, 1H), 3.03-2.92 (m, 1H), 1.84-1.81 (m, 1H), 1.42-1.36 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 169.58,135.89,135.17,132.73,131.66,130.73,130.14,129.65,126.56,126.45$, $121.35,120.92,120.16,115.54,103.56,70.51,52.83,44.74,32.72,27.61 ;$ IR (neat): 2951, 2920, 1735, 1519, 1469, 1452, 1431, 1197, 1180, 1089, 1018, 763, 736; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 398.0685$, Found: 398.0694.

79

Product 7 g was obtained in 50% yield as white solid; Mp: 58-60 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.36\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23\left(\mathrm{td}, J_{1}=8.0\right.$ $\left.\mathrm{Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.13-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.84\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}\right.$, $\left.J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.66\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.36(\mathrm{~m}, 1 \mathrm{H})$, 3.30-3.20 (m, 1H), 2.45-2.35 (m, 1H), 2.08-1.97 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.22$, $135.78,134.02,132.90,132.15,130.39,130.30,130.09,127.01,125.95,121.97,121.31,120.58$, $118.59,114.80,104.22,69.99,53.26,31.55,13.20$; IR (neat): 2954, 2254, 1737, 1452, 1433, 1265, 763; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 375.0871$, Found: 375.0874.

Product 7 h was obtained in 65% yield as yellow solid; Mp: 102-104 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, $\left.J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.32\left(\mathrm{td}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.14\left(\mathrm{td}, J_{1}=\right.$ $\left.8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.66(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94,3.77\left(\mathrm{ABd}, J_{1}=18.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.67(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 168.53,135.71,134.33,132.17,131.73,131.12,130.24,129.85$, 127.06, 126.18, 121.37, 120.89, 120.26, 115.70, 103.44, 78.35, 73.64, 69.86, 52.98, 27.41; IR (neat): 2951, 1735, 1508, 1471, 1454, 1431, 1242, 1193, 1058, 1047, 1020, 734, 690; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 360.0762$, Found: 360.0765 .

Product $7 \mathbf{i}$ was obtained in 70% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.43\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, $7.15\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.00\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}\right.$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.61(\mathrm{~m}, 1 \mathrm{H}), 5.59-5.52(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.06$ $(\mathrm{m}, 1 \mathrm{H}), 5.01-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.47,135.96,135.20,132.77,131.90,131.49,131.00,130.12,129.49,127.00,126.27,121.26$, $120.85,120.12,119.70,115.50,103.21,70.66,52.76,39.70$; IR (neat): 2953, 1737, 1473, 1454, 1433, 1265, 1020, 731, 702; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 362.0918, Found: 362.0919.

7j

Product $7 \mathbf{j}$ was obtained in 80% yield as white solid; Mp: $127-128{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, ~ J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}$, $2 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.64\left(\mathrm{dd}, J_{1}=3.6\right.$ $\left.\mathrm{Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $169.91,139.43,136.05,135.21,130.25,129.52,129.21,127.59,125.99,121.88,121.37,120.90$, 120.06, 115.40, 103.13, 69.21, 52.90, 25.80; IR (neat): 2949, 1737, 1517, 1467, 1452, 1429, 1193, 1111, 1089, 1039, 1018, 761, 740; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 380.0257, Found: 380.0257.

7k

Product $7 \mathbf{k}$ was obtained in 75% yield as yellow solid; Mp: $160-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.97\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.99\left(\mathrm{td}, J_{1}=\right.$ $\left.7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.96-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.85\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}\right.$, 1 H), $6.64\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 170.10,142.89,141.72,136.22,130.20,129.50,128.82,128.36,126.18,121.37$, 120.85, 120.01, 115.14, 103.21, 95.19, 70.58, 52.95, 26.12; IR (neat): 2922, 1735, 1562, 1517, 1508, 1489, 1452, 1193, 1126, 1087, 1008, 761, 740; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{INO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 428.0118$, Found: 428.0121.

Product $7 \mathbf{l}$ was obtained in 52% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.78\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=0.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.58\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 171.86,142.10,136.13,134.66,129.91,129.85,128.66,127.54$, $126.08,125.41,121.91,121.30,120.09,112.64,102.52,67.14,53.31,26.96$; IR (neat): 2953, 1737, 1516, 1508, 1475, 1456, 1433, 1263, 1195, 1111, 1072, 763, 702; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 336.0762$, Found: 336.0767.

Product 7 m was obtained in 50% yield as yellow solid; Mp: 103-105 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.63-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}$, $2 \mathrm{H}), 7.13(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08\left(\mathrm{td}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.05-6.99$ $(\mathrm{m}, 1 \mathrm{H}), 6.76\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.56\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 2.16 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.05,138.60,136.12$, $134.42,129.85,128.82,128.68,126.07,121.87,121.29,120.07,112.66,102.44,67.06,53.26$, 26.98; IR (neat): 2951, 2918, 1735, 1516, 1492, 1456, 1433, 1195, 1095, 1076, 1012, 765, 713; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 336.0762$, Found: 336.0767.

$7 n$

Product 7 n was obtained in 44% yield as yellow solid; Mp: 85-87 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 5 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H})$, 7.07-7.03 (m, 1H), $6.82\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.55\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}\right.$, $\left.J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $172.40,139.82,136.25,129.87,128.71,128.50,127.22,126.48,121.63,121.19,119.86,112.84$, 102.06, 67.55, 53.13, 26.49; IR (neat): 2951, 2922, 1735, 1514, 1494, 1473, 1454, 1433, 1195, 1107, 1074, 1018, 738, 696; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 302.1151, Found: 302.1147.

70

Product 7 o was obtained in 60% yield as yellow solid; Mp: $140-141{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.79(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.04\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 6.87(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.34,4.04(\mathrm{AB}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 169.31, 135.81, 135.45, 134.72, 133.80, 131.59, 130.94, 130.73, 129.92, 129.48, 127.94, 127.70, 127.15, 126.25, 121.11, 120.89, 119.89, 114.21, 102.47, 71.42, 52.80, 42.00; IR (neat): 2922, 1739, 1496, 1473, 1452, 1431, 1288, 1224, 1193, 1176, 1082, 1020, 740, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 412.1075$, Found: 412.1084 .

Product $7 \mathbf{p}$ was obtained in 51% yield as white solid; Mp: 151-153 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.24 (m, 3H), 7.18-7.16 (m, 1H), 7.07-7.02 (m, 3H), 6.93-6.86 (m, 1H), $6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.34$, $4.00(\mathrm{AB}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.30,135.85,135.26$, 133.83, 133.25, 133.21, 132.13, 131.72, 130.85, 129.96, 129.66, 128.07, 127.42, 126.45, 121.25, $120.99,120.01,114.24,102.76,71.37,52.84,41.49$; IR (neat): $1743,1735,1508,1490,1452$, 1433, 1274, 1259, 1193, 1016, 763, 748; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 446.0685$, Found: 446.0695.

79 Product $7 \mathbf{q}$ was obtained in 41% yield as white solid; Mp: $150-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.94$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78-7.71 (m, 1H), 7.61 $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.07-6.99 (m, 2H), 6.96-6.86 (m, 2H), $6.78\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.50\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.29-6.19(\mathrm{~m}, 1 \mathrm{H}), 4.50,4.37(\mathrm{AB}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.71$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.01,136.79,135.68,134.64,134.41,132.77,131.80$, 131.72, 130.01, 129.93, 129.61, 128.83, 127.12, 126.37, 126.34, 121.26, 121.12, 119.88, 113.23, 101.76, 70.24, 53.20, 40.79; IR (neat): 2951, 1745, 1473, 1452, 1433, 1253, 1197, 1178, 1066, 1022, 758, 738; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 490.0180, Found: 490.0193.

7 r

Product $7 \mathbf{r}$ was obtained in 57% yield as yellow solid; Mp: 118-120 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.31-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95\left(\mathrm{dd}, J_{1}=9.2\right.$ $\left.\mathrm{Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29,4.03(\mathrm{AB}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $169.10,135.25,134.43,134.40,133.88,131.75,131.62$, $130.64,129.73,129.07,128.03,127.31$, $126.45,123.95,123.36,115.30,113.34,101.88,71.43,52.93,42.08$; IR (neat): 2951, 1739, 1564, 1516, 1508, 1496, 1471, 1446, 1192, 1082, 1056, 1026, 736, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{BrClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 490.0180$, Found: 490.0189 .

7s

Product 7s was obtained in 65% yield as yellow solid; Mp: 120-122 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78$ (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.24$ (m , $3 H), ~ 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.66-6.64(\mathrm{~m}$, $1 \mathrm{H}), 6.51-6.50(\mathrm{~m}, 1 \mathrm{H}), 4.35,4.06(\mathrm{AB}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.33,135.54,134.78,134.15,133.79,131.52,130.97$, $130.75,130.22,129.42,129.06,127.91,127.76,127.11,126.20,122.74,120.63,113.89,102.00$, $71.35,52.74,41.95,21.32$; IR (neat): 2920, 2856, 1737, 1496, 1471, 1456, 1431, 1225, 1192, 1176, 1082, 1028, 731, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 426.1231, Found: 426.1239.

Product $7 \mathbf{t}$ was obtained in 72% yield as white solid; Mp: $60-62{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.73(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ $\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25\left(\mathrm{td}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.19-7.12 (m, 2H), 7.09-7.05 (m, 2H), $6.90\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.52\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.35,4.08(\mathrm{AB}, J=$ $13.6 \mathrm{~Hz}, 2 \mathrm{H}$), $3.71(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.31,136.25,135.57$, 134.83, 133.81, 131.58, 130.97, 130.72, 130.60, 129.40, 127.91, 127.75, 127.25, 127.11, 126.15, 121.64, 120.40, 114.23, 102.20, 71.37, 52.77, 41.97, 22.13; IR (neat): 2920, 1737, 1516, 1496, 1471, 1456, 1433, 1192, 1176, 1082, 752, 700; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{ClNO}_{2} \mathrm{Na}[\mathrm{M}]^{+}: 426.1231$, Found: 426.1243.

6. Product transformation

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanoate $7 \mathbf{j}$ ($107.5 \mathrm{mg}, 0.3$ $\mathrm{mmol})$ in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(\mathrm{v} / \mathrm{v}=1: 1,3 \mathrm{~mL})$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(63.0 \mathrm{mg}, 1.5 \mathrm{mmol})$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 48 h , and then cooled down to room temperature, acidified with $\mathrm{HCl}(2 \mathrm{M}, 10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 20 / 1, \mathrm{v} / \mathrm{v}\right)$ to afford the title compound $\mathbf{1 0}$ in 84% yield as white solid; Mp: 186-188 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.64-7.61$ (m, 2H), 7.44 (d, $J=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.60-6.65(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.55,138.56,136.02,135.34,130.18,129.70,129.18,127.61$, 125.89, 121.94, 121.49, 120.93, 120.18, 115.36, 103.39, 69.12, 25.42; IR (neat): 2922, 1708, 1608, 1517, 1467, 1452, 1230, 1193, 1114, 1089, 1020, 738; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 366.0100$, Found: 366.0091 .

To a solution of $\mathrm{PhNH}_{2}(69.8 \mathrm{mg}, 0.75 \mathrm{mmol})$ in dry THF (2 mL) was added NaHMDS (0.6 mL , 1.0 M in THF, 0.6 mmol) dropwise at $0{ }^{\circ} \mathrm{C}$. Then the reaction mixture was stirred for 20 min before methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanoate $7 \mathbf{j}$ ($107.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) in THF $(1 \mathrm{~mL})$ was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for 12 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v / v) to afford the title compound $\mathbf{1 1}$ in 68% yield as yellow solid; $\mathrm{Mp}: 78-80^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.75\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55\left(\mathrm{dd}, J_{1}=\right.$
$\left.7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}$, $5 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.71\left(\mathrm{dd}, J_{1}=3.6 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.57\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.39,138.52,137.13$, $136.44,135.70,130.42,129.97,129.72,129.10,128.09,126.88,125.10,122.67,122.56,121.80$, 120.71, 120.33, 112.11, 103.93, 71.08, 25.12; IR (neat): 2924, 1683, 1597, 1498, 1465, 1440, 1313, 1242, 1138, 1078, 1020, 752, 692; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{ONa}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 441.0573$, Found: 441.0580.

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanoate $7 \mathbf{j}$ ($1.97 \mathrm{~g}, 5.5 \mathrm{mmol}$) in dry THF (55 mL) was added $\mathrm{LiAlH}_{4}(418.0 \mathrm{mg}, 11.0 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL), extracted with EtOAc ($2 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the aldehyde $\mathbf{1 2}$ in 77% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.36(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 2 \mathrm{H})$, $7.32-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.78\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.66\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.30$, $138.40,135.44,130.30,130.26,129.41,128.32,125.39,121.89,121.55,121.24,120.35,112.69$, 103.66, 70.47, 22.10; IR (neat): 1726, 1516, 1452, 1427, 1292, 1265, 1234, 1022, 731, 702; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNONa}[\mathrm{M}+\mathrm{Na}]^{+}: 350.0151$, Found: 350.0145.

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanal $\mathbf{1 2}$ ($98.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) in dry $\mathrm{MeOH}(3 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(28.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm to room temperature and stirred for 12 h before saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added. The aqueous layer was separated and extracted with $\mathrm{EtOAc}(3 \times 10$
mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, $5 / 1, \mathrm{v} / \mathrm{v}$) to afford the title compound 13 in 100% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.17\left(\mathrm{td}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.59\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.52\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.52(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.30(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.76,136.30,135.19,129.98,129.27,127.96,127.76,127.17,122.51$, $121.21,121.13,119.65,111.90,101.69,68.03,64.41,23.65$; IR (neat): 3502, 2981, 2887, 1512, 1473, 1454, 1055, 1037, 1018, 734; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNONa}[\mathrm{M}+\mathrm{Na}]^{+}$: 352.0307, Found: 352.0298.

To a $10-\mathrm{mL}$ sealed tube were added 2-(2-bromophenyl)-2-(1H-indol-1-yl)propan-1-ol $\mathbf{1 3}$ (99.1 $\mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{CuI}(5.7 \mathrm{mg}, 0.03 \mathrm{mmol}),{ }^{t} \mathrm{BuOLi}(72.1 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $1,4-$ dioxane $(3 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 5 min and then at $100{ }^{\circ} \mathrm{C}$ for 5 h , and then filtered through celite and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the title compound 14 in 93% yield as yellow solid; Mp: 68-70 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 1 \mathrm{H})$, 7.21-7.18 (m, 2H), 7.11-7.07 (m, 3H), 7.01-6.96 (m, 2H), 6.48 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04,4.57$ (AB, $J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.77,134.67,130.52,130.13$, $126.03,124.48,121.55,121.43,121.39,119.78,112.05,110.97,101.22,81.76,65.69,27.30$; IR (neat): 2933, 1598, 1479, 1454, 1244, 1220, 1199, 1178, 1149, 1107, 736, 711; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NONa}[\mathrm{M}+\mathrm{Na}]^{+}: 272.1046$, Found: 272.1049.

To a solution of methyltriphenylphosphonium bromide ($643.0 \mathrm{mg}, 1.8 \mathrm{mmol}$) in dry THF (2 $\mathrm{mL})$ was added ${ }^{n} \mathrm{BuLi}(0.6 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 1.5 mmol$)$ dropwise at $-78^{\circ} \mathrm{C}$, and then allowed to warm to room temperature and stirred for 1 h before aldehyde $12(98.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added dropwise at $-78^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and stirred for 7 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the title compound 15 in 70% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.64\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.17\left(\mathrm{td}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04-7.00(\mathrm{~m}$, $1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.55(\mathrm{~m}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.81,140.15,136.23,135.42,129.92,129.27$, $128.77,127.83,126.31,122.58,121.05,120.99,119.34,115.32,112.24,101.49,65.03,25.42$; IR (neat): 2987, 1512, 1467, 1454, 1425, 1292, 1263, 1230, 1018, 732, 702; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNNa}[\mathrm{M}+\mathrm{Na}]^{+}: 348.0358$, Found: 348.0351 .

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanal 12 ($98.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) in dry $\mathrm{MeOH}(3 \mathrm{~mL})$ were added $\mathrm{BnNH}_{2}(96.5 \mathrm{mg}, 0.9 \mathrm{mmol})$ and MS $5 \AA(600 \mathrm{mg})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h before $\mathrm{NaBH}_{3} \mathrm{CN}(56.5 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{AcOH}(45.1 \mathrm{mg}$, 0.75 mmol) were added at $0^{\circ} \mathrm{C}$. The resulting mixture was allowed to warm to room temperature and stirred for 4 h , and then quenched with saturated aqueous NaHCO_{3} solution (10 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography
(PE/EtOAc, 10/1, v/v) to afford the title compound $\mathbf{1 6}$ in 85% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.48-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.37\left(\mathrm{td}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.98(\mathrm{~m}$, $1 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.55\left(\mathrm{dd}, J_{1}=3.2 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.49\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=0.4 \mathrm{~Hz}\right.$, 1 H), 3.70-3.64 (m, 3H), $3.48(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 141.93, $140.28,136.19,135.11,129.98,128.99,128.44,127.99,127.88,127.74,127.35,126.99$, $122.45,120.97,120.90,119.45,111.88,101.12,63.58,55.89,53.75,25.06$; IR (neat): 2981, 1606, 1512, 1494, 1473, 1454, 1363, 1116, 1018, 734, 696; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{BrN}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 419.1117$, Found: 419.1125.

To a solution of N-benzyl-2-(2-bromophenyl)-2-(1H-indol-1-yl)propan-1-amine 16 (125.8 mg , 0.3 mmol) in dry DMSO (3 mL) were added $\mathrm{CuI}(11.4 \mathrm{mg}, 0.06 \mathrm{mmol})$ and CsOAc (115.2 mg , $0.9 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 24 h and filtered through celite, then extracted with saturated aqueous NaCl solution (10 mL) and EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layers were washed three times with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The resulting residue was purified by column chromatography ($\mathrm{PE} / \mathrm{EtOAc}$, 20/1, v / v) to afford the title compound $\mathbf{1 7}$ in 98% yield as yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49,4.30(\mathrm{AB}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.94,3.45(\mathrm{AB}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.83,137.85,134.93,132.36,130.49,129.72,128.74,127.94,127.49$, $126.35,124.15,121.20,120.97,119.40,118.20,112.97,107.95,100.76,65.02,64.44,52.54$, 27.60; IR (neat): 2924, 1606, 1508, 1489, 1473, 1454, 1313, 1292, 1220, 1159, 1026, 1018, 736, 698; HRMS (ESI): Exact mass calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 361.1675$, Found: 361.1666.

7. X-ray crystallography data of 70

Single-Crystal X-ray Crystallography of 70 (CCDC: 2235158)

Table 5 Crystal data and structure refinement for 70.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume $/$ A 3
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

70
$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClNO}_{2}$
389.86

190(20)
triclinic
P-1
6.8922(2)
10.1765(3)
14.9016(4)
109.628(2)
97.057(2)
93.235(2)
971.63(5)

2
1.333
1.892
408.0
$0.32 \times 0.25 \times 0.12$
$\mathrm{CuK} \alpha(\lambda=1.54184)$
6.37 to 134.158
$-8 \leqslant \mathrm{~h} \leqslant 8,-11 \leqslant \mathrm{k} \leqslant 12,-17 \leqslant 1 \leqslant$
17
19351
$3432\left[\mathrm{R}_{\mathrm{int}}=0.0370, \mathrm{R}_{\text {sigma }}=0.0224\right]$
3432/0/254
1.072
$\mathrm{R}_{1}=0.0346, \mathrm{wR}_{2}=0.0913$
$\mathrm{R}_{1}=0.0356, \mathrm{wR}_{2}=0.0920$
0.54/-0.34

Table 6 Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{7 0}$. Ueq is defined as $1 / 3$ of of the trace of the orthogonalised UiJ tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
C11	$9635.2(6)$	$1359.6(4)$	$6677.7(3)$	$39.90(14)$
O1	$6809.6(14)$	$5888.4(11)$	$9173.3(7)$	$27.8(2)$
O2	$4282.2(15)$	$4558.3(12)$	$8118.9(8)$	$36.3(3)$
N1	$7866.4(16)$	$2978.8(12)$	$8366.2(8)$	$22.3(3)$
C7	$9603.1(19)$	$5856.7(15)$	$7425.7(10)$	$24.4(3)$
C15	$9597.3(19)$	$4915.4(15)$	$8020.0(10)$	$24.0(3)$
C2	$6930.8(19)$	$3273.2(15)$	$6775.0(10)$	$22.8(3)$
C13	$6016.0(19)$	$4849.6(15)$	$8364.5(10)$	$22.7(3)$
C17	$6525(2)$	$1847.0(14)$	$8269.1(10)$	$22.7(3)$
C16	$7620.6(19)$	$4000.1(14)$	$7860.2(9)$	$20.8(3)$
C22	$7289(2)$	$1205.3(15)$	$8925.9(10)$	$26.7(3)$
C8	$8688(2)$	$7091.6(16)$	$7657.3(11)$	$29.5(3)$
C24	$9416(2)$	$3041.6(16)$	$9074.0(11)$	$29.0(3)$
C18	$4712(2)$	$1352.9(16)$	$7680.5(11)$	$28.1(3)$
C3	$5552(2)$	$3848.0(17)$	$6285.8(11)$	$28.9(3)$
C23	$9119(2)$	$1990.6(17)$	$9422.2(11)$	$32.0(3)$
C12	$10566(2)$	$5511.4(17)$	$6626.0(11)$	$32.7(3)$
C21	$6202(2)$	$40.5(16)$	$8989.1(11)$	$32.4(3)$
C14	$5412(2)$	$6688.9(17)$	$9726.7(12)$	$33.8(4)$
C6	$7008(3)$	$1440.0(18)$	$5227.9(12)$	$37.2(4)$
C19	$3690(2)$	$196.3(17)$	$7761.0(12)$	$35.0(4)$
C10	$9671(2)$	$7570.0(17)$	$6301.2(12)$	$35.2(4)$
C20	$4422(2)$	$-452.4(17)$	$8406.3(12)$	$36.2(4)$
C9	$8707(2)$	$7935.3(17)$	$7096.6(12)$	$34.1(4)$
C1	$7704(2)$	$2085.3(16)$	$6209.4(11)$	$28.3(3)$
C11	$10614(3)$	$6360.0(18)$	$6071.5(12)$	$37.9(4)$
C4	$4887(2)$	$3229.3(19)$	$5307.6(12)$	$37.5(4)$
C5	$5585(3)$	$2004(2)$	$4784.3(12)$	$41.4(4)$

Table 7 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 7o. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	$\mathbf{\mathbf { U } _ { 1 3 }}$	\mathbf{U}_{12}
C11	$42.3(2)$	$36.8(2)$	$44.8(2)$	$14.14(18)$	$13.94(18)$	$21.17(17)$
O1	$25.5(5)$	$28.7(5)$	$25.4(5)$	$2.9(4)$	$6.5(4)$	$5.2(4)$
O2	$18.5(5)$	$43.7(7)$	$39.8(6)$	$5.5(5)$	$3.4(4)$	$6.1(5)$
N1	$19.9(6)$	$22.7(6)$	$23.8(6)$	$8.4(5)$	$0.3(4)$	$3.4(4)$
C7	$18.1(6)$	$22.8(7)$	$28.6(7)$	$5.5(6)$	$1.5(5)$	$-2.0(5)$
C15	$16.2(6)$	$23.8(7)$	$29.7(7)$	$6.9(6)$	$1.9(5)$	$2.4(5)$
C2	$20.3(6)$	$23.8(7)$	$23.9(7)$	$8.5(6)$	$3.1(5)$	$-1.3(5)$
C13	$20.9(7)$	$23.6(7)$	$25.2(7)$	$10.2(6)$	$3.0(5)$	$4.6(5)$
C17	$24.5(7)$	$21.1(7)$	$22.0(7)$	$5.4(5)$	$6.5(5)$	$5.5(5)$
C16	$17.9(6)$	$20.8(7)$	$23.4(7)$	$7.4(5)$	$1.7(5)$	$3.8(5)$
C22	$30.8(7)$	$25.8(7)$	$25.2(7)$	$8.1(6)$	$8.3(6)$	$10.6(6)$
C8	$30.8(8)$	$26.4(8)$	$31.4(8)$	$8.2(6)$	$9.2(6)$	$4.4(6)$
C24	$23.6(7)$	$30.7(8)$	$30.3(8)$	$10.3(6)$	$-4.8(6)$	$3.9(6)$
C18	$26.5(7)$	$29.0(8)$	$27.9(7)$	$10.0(6)$	$2.3(6)$	$0.4(6)$
C3	$25.9(7)$	$30.8(8)$	$30.0(8)$	$12.2(6)$	$0.3(6)$	$1.5(6)$
C23	$32.2(8)$	$33.7(9)$	$31.3(8)$	$14.4(7)$	$-2.4(6)$	$9.1(6)$
C12	$29.5(8)$	$28.2(8)$	$38.0(8)$	$6.1(7)$	$12.2(6)$	$1.9(6)$
C21	$41.1(9)$	$28.6(8)$	$33.8(8)$	$15.2(7)$	$13.4(7)$	$11.6(7)$
C14	$37.7(9)$	$29.8(8)$	$35.0(8)$	$7.3(7)$	$17.5(7)$	$11.4(7)$
C6	$45.0(9)$	$31.7(9)$	$32.3(8)$	$5.0(7)$	$14.8(7)$	$-0.2(7)$
C19	$30.0(8)$	$32.9(9)$	$38.9(9)$	$10.3(7)$	$2.9(7)$	$-4.1(6)$
C10	$41.2(9)$	$30.8(8)$	$32.7(8)$	$12.7(7)$	$2.0(7)$	$-7.9(7)$
C20	$40.5(9)$	$27.6(8)$	$44.2(9)$	$14.8(7)$	$14.2(7)$	$1.7(7)$
C9	$38.1(9)$	$26.6(8)$	$38.4(9)$	$12.1(7)$	$6.3(7)$	$3.2(6)$
C1	$29.2(8)$	$26.0(8)$	$30.3(8)$	$9.2(6)$	$9.2(6)$	$1.7(6)$
C11	$42.7(9)$	$36.2(9)$	$31.8(8)$	$6.4(7)$	$14.3(7)$	$-4.9(7)$
C4	$34.7(8)$	$46.7(10)$	$31.1(8)$	$17.0(7)$	$-2.5(7)$	$-0.3(7)$
C5	$45.7(10)$	$48.6(11)$	$24.6(8)$	$8.9(7)$	$1.8(7)$	$-5.8(8)$

Table 8 Bond Lengths for 70.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C1	1.7414(16)	C17	C18	1.395(2)
O1	C13	$1.3365(17)$	C22	C23	1.427(2)
O1	C14	1.4503(17)	C22	C21	1.403(2)
O2	C13	1.1956(17)	C8	C9	1.385(2)
N1	C17	$1.3918(18)$	C24	C23	$1.352(2)$
N1	C16	1.4807(17)	C18	C19	$1.385(2)$
N1	C24	1.3883(18)	C3	C4	$1.385(2)$
C7	C15	1.507(2)	C12	C11	1.383(2)
C7	C8	1.396(2)	C21	C20	$1.374(2)$
C7	C12	1.387(2)	C6	C1	$1.395(2)$
C15	C16	1.5519(18)	C6	C5	$1.374(3)$
C2	C16	1.5350 (18)	C19	C20	1.400(2)
C2	C3	1.398(2)	C10	C9	$1.382(2)$
C2	C1	1.398(2)	C10	C11	$1.385(3)$
C13	C16	1.5527(18)	C4	C5	$1.379(3)$
C17	C22	1.415(2)			

Table 9 Bond Angles for 70.

Atom	Atom	Atom	Angle $^{\circ}$
C13	O1	C14	$115.20(11)$
C17	N 1	C 16	$126.23(11)$
C 24	N 1	C 17	$107.82(12)$
C 24	N 1	C 16	$125.81(12)$
C 8	C 7	C 15	$122.28(13)$
C 12	C 7	C 15	$119.75(13)$
C 12	C 7	C 8	$117.97(14)$
C 7	C 15	C 16	$114.27(11)$
C 3	C 2	C 16	$120.18(12)$
C 1	C 2	C 16	$123.49(12)$
C 1	C 2	C 3	$116.19(13)$
O 1	C 13	C 16	$111.20(11)$
O 2	C 13	O 1	$123.25(13)$
O 2	C 13	C 16	$125.27(13)$
N 1	C 17	C 22	$107.45(12)$
N 1	C 17	C 18	$130.77(13)$
C 18	C 17	C 22	$121.76(13)$
N 1	C 16	C 15	$109.60(10)$

Atom	Atom	Atom	Angle $^{\circ}$ C 2
C 16	C 13	$111.44(11)$	
C 17	C 22	C 23	$106.96(13)$
C 21	C 22	C 17	$119.37(14)$
C 21	C 22	C 23	$133.65(14)$
C 9	C 8	C 7	$121.14(14)$
C 23	C 24	N 1	$110.31(13)$
C 19	C 18	C 17	$117.08(14)$
C 4	C 3	C 2	$122.20(15)$
C 24	C 23	C 22	$107.46(13)$
C 11	C 12	C 7	$121.13(15)$
C 20	C 21	C 22	$118.95(15)$
C 5	C 6	C 1	$120.07(15)$
C 18	C 19	C 20	$121.96(15)$
C 9	C 10	C 11	$119.58(15)$
C 21	C 20	C 19	$120.87(15)$
C 10	C 9	C 8	$119.96(15)$
C 2	C 1	C 11	$122.09(11)$
C 6	C 1	C 11	$116.22(12)$

Table 9 Bond Angles for 70.

Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{\circ}$
N1	C 16	C 2	$112.00(11)$
N 1	C 16	C 13	$101.60(10)$
C 15	C 16	C 13	$112.67(11)$
C 2	C 16	C 15	$109.37(11)$

Atom	Atom	Atom	Angle $^{\circ}{ }^{\circ}$
C6	C 1	C 2	$121.66(14)$
C 12	C 11	C 10	$120.21(15)$
C 5	C 4	C 3	$119.94(16)$
C 6	C 5	C 4	$119.69(15)$

Table 10 Torsion Angles for 70.

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
O1	C13	C16	N1	85.37(13)	C22	C21	C20	C19	-0.3(2)
O1	C13	C16	C15	-31.81(15)	C8	C7	C15	C16	76.36(17)
O1	C13	C16	C2	-155.19(11)	C8	C7	C12	C11	-0.2(2)
O2	C13	C16	N1	-88.64(16)	C24	N1	C17	C22	-0.53(15)
O 2	C13	C16	C15	154.18(14)	C24	N1	C17	C18	178.18(14)
O2	C13	C16	C2	30.79(19)	C24	N1	C16	C15	15.68(18)
N1	C17	C22	C23	0.34(15)	C24	N1	C16	C2	137.26(13)
N1	C17	C22	C21	178.91(12)	C24	N1	C16	C13	-103.70(14)
N1	C17	C18	C19	-178.95(14)	C18	C17	C22	C23	-178.51(13)
N1	C24	C23	C22	-0.32(18)	C18	C17	C22	C21	0.1(2)
C7	C15	C16	N1	171.88(11)	C18	C19	C20	C21	0.0(3)
C7	C15	C16	C2	48.74(15)	C3	C2	C16	N1	140.99(13)
C7	C15	C16	C13	-75.79(15)	C3	C2	C16	C15	-97.31(14)
C7	C8	C9	C10	-1.0(2)	C3	C2	C16	C13	27.93(17)
C7	C12	C11	C10	-0.8(2)	C3	C2	C1	Cl1	172.43(11)
C15	C7	C8	C9	-179.72(14)	C3	C2	C1	C6	-5.5(2)
C15	C7	C12	C11	-179.38(14)	C3	C4	C5	C6	-3.1(3)
C2	C3	C4	C5	0.1(2)	C23	C22	C21	C20	178.41(16)
C17	N1	C16	C15	-169.28(12)	C12	C7	C15	C16	-104.53(15)
C17	N1	C16	C2	-47.70(17)	C12	C7	C8	C9	1.2(2)
C17	N1	C16	C13	71.34(15)	C21	C22	C23	C24	-178.29(16)
C17	N1	C24	C23	0.54(17)	C14	O1	C13	O2	-2.2(2)
C17	C22	C23	C24	-0.02(17)	C14	O1	C13	C16	-176.39(11)
C17	C22	C21	C20	0.3(2)	C9	C10	C11	C12	1.0(2)
C17	C18	C19	C20	0.4(2)	C1	C2	C16	N1	-43.45(17)
C16	N1	C17	C22	-176.31(12)	C1	C2	C16	C15	78.25(16)
C16	N1	C17	C18	2.4(2)	C1	C2	C16	C13	-156.51(13)
C16	N1	C24	C23	176.34(13)	C1	C2	C3	C4	4.1(2)
C16	C2	C3	C4	180.00(14)	C1	C6	C5	C4	1.7(3)
C16	C2	C1	Cl1	-3.3(2)	C11	C10	C9	C8	-0.1(2)

Table 10 Torsion Angles for 70.

A	\mathbf{B}	\mathbf{C}	\mathbf{D}	${\text { Angle } /{ }^{\circ}}$	A	B	C	D	Angle $/{ }^{\circ}$
C 16	C 2	C 1	C 6	$178.73(14)$	C 5	C 6	C 1	C 11	$-175.29(13)$
C 22	C 17	C 18	C 19	$-0.4(2)$	C 5	C 6	C 1	C 2	$2.8(2)$

Table 11 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for 70 .

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
H15A	9911.97	5503.59	8710.19	29
H15B	10650.62	4289.84	7865.42	29
H8	8040.02	7358.08	8208.86	35
H24	10526.5	3725.34	9283.81	35
H18	4201.15	1790.7	7243.59	34
H3	5055.15	4691.25	6636.27	35
H23	9972.82	1808.48	9908.09	38
H12	11204.36	4677.57	6456.18	39
H21	6689.46	-400.62	9428.1	39
H14A	4625.95	7127.09	9333.73	51
H14B	6122.57	7418.22	10306.07	51
H14C	4544.62	6062.28	9914.4	51
H6	7518.25	609.65	4866.07	45
H19	2454.57	-167.75	7366.67	42
H10	9686.63	8145.27	5914.37	42
H20	3678.8	-1243.79	8441.5	43
H9	8058.58	8764.55	7258.73	41
H11	11296.33	6112.18	5531.32	45
H4	3950.91	3648.63	4997.52	45
H5	5084.9	1552.45	4120.14	50

8. References

1. B.-X. Tang, R.-J. Song, C.-Y. Wu, Y. Liu, M.-B. Zhou, W.-T. Wei, G.-B. Deng, D.-L. Yin and J.-H. Li, J. Am. Chem. Soc., 2010, 132, 8900-8902.
2. D. Zetschok, L. Heieck and H. Wennemers, Org. Lett., 2021, 23, 1753-1757.
3. Q. Gui, F. Dai, J. Liu, P. Chen, Z. Yang, X. Chen and Z. Tan, Org. Biomol. Chem., 2014, 12, 3349-3353.
4. W. Zhuang, J. Zhang, C. Ma, J. S. Wright, X. Zhang, S.-F. Ni and Q. Huang, Org. Lett., 2022, 24, 4229-4233.
5. Y. Ferandin, K. Bettayeb, M. Kritsanida, O. Lozach, P. Polychronopoulos, P. Magiatis, A.-L. Skaltsounis and L. Meijer, J. Med. Chem., 2006, 49, 4638-4649.
6. Y.-H. Wang, J.-S. Tian, P.-W. Tan, Q. Cao, X.-X. Zhang, Z.-Y. Cao, F. Zhou, X. Wang and J. Zhou, Angew. Chem., Int. Ed., 2020, 59, 1634-1643.
7. Z. Zhang, J. Su, Z. Zha and Z. Wang, Chem. Eur. J., 2013, 19, 17711-17714.
8. A. Veerareddy, S. Gogireddy and P. K. Dubey, J. Heterocyclic Chem., 2014, 51, 1311-1321.
9. R. Liu, Q. Liu, H. Meng, H. Ding, J. Hao, Z. Ji, H. Yue and W. Wei, Org. Chem. Front., 2021, 8, 1970-1975.
10. M.-M. Wang and J. Waser, Angew. Chem., Int. Ed., 2019, 58, 13880-13884.

10	190																				
0	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \text { f1 } \end{array}$	90	80	70	60	50	40	30	20	10	0	-1

TJS-TK-38

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
																	30	2			

90	180	170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0	-10

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
																	30	2			

	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
)0	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \text { f1 } \end{array}$	90	80	70	60	50	40	30	20	10	0	-1

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
																	30	2			

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
J0	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 } \end{gathered}$	90 m)	80	70	60	50	40	30	20	10	0

TJS-TK-78

	1	1	1	1	1	1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	
10	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \text { f1 } \end{array}$	$\begin{gathered} 90 \\ \mathrm{~m}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-1

TJS-TK-76 ©

			,			,				1			I		1	,	1	1	1	1
10	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{f} 1 \end{array}$	$\begin{gathered} 90 \\ \mathrm{~m}) \end{gathered}$	80	70	60	50	40	30	20	10	0

TJS-TL-66
8
6
$\underset{1}{7}$
7

$\stackrel{\infty}{\stackrel{\infty}{\circ}}$

		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

TJS-TK-146

in
\%
1

$\stackrel{1}{\text { L̆ }}$
\rightarrow

			$\begin{aligned} & 1 \\ & \hline 1 \\ & \hline \\ & \hline \end{aligned}$							$\begin{aligned} & 1 \\ & \text { in } \\ & \text { N } \end{aligned}$		$\begin{aligned} & T_{1} \\ & \infty \\ & \underset{N}{N} \end{aligned}$							
	1	1	1	1	,	1	1	1	1	1	,	,	1	,	,	,	,	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{aligned} & 4.5 \\ & \text { f1 } \end{aligned}$	$\stackrel{4.0}{\mathrm{ppm})}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

$\stackrel{\infty}{\infty} \stackrel{\infty}{\circ}$
$\stackrel{\text { N }}{\substack{0 \\ \text { i } \\ 1 \\ \hline}}$

	,	1	1	1	1	1	1	1	1	,	,	1	1	1	1	1	1	1	1
)0	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{pom}) \end{gathered}$	90	80	70	60	50	40	30	20	10

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	(

TJS-TJ-133-4-1

N.

10																					
)	190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10	0	-1

TJS-TJ-133-1

TJS-TJ-133-2-1

$\stackrel{\underset{\sim}{\dot{\omega}}}{\stackrel{\text { ® }}{1}}$

		,	1	,		1	1	1	,	1	1	1	1	1		1	1		1	+
10	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

 Nை
 $\stackrel{\infty}{\sim}$

TJSmృ

皮 ∞

TJS-TK-10-4 $\underbrace{\infty}_{\text {m }}$

													1							
)0	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

																40	30	1		,	
)0	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 } \end{gathered}$		80	70	60	50	40	30	20	10	0	-1

 iom in

TJS-TJ-149-1

	1	,	1	1	I	1	1	1	1	1	1	,	1	1	1	1	1	I	1	1	
10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

DWG-2-137-P1A

TJS-2022-08-19

$\underbrace{\circ}$
$\left.\begin{array}{l}826^{\circ} \tau \\ \varsigma \varepsilon 6^{\circ} \tau \\ \tau \nleftarrow 6^{\circ} \tau\end{array}\right]$

白

	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	
70	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-1

TJSg Nை

	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
30	180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0	-1

| 30 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -1 |
| :--- |

N

$\stackrel{\sim}{\sim}$

30	170	160	150	140	130	120	110	100	0	80	70	60	50	40	30	20	10	0	-1
						120	110	100			70	60	50	40	30	20	10	0	-1

$\stackrel{\circ}{1}$

													1			1		,	
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{p} \end{gathered}$	80	70	60	50	40	30	20	10	0	-1

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
																	30	2			

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
		160	150														10		

30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	0	0

$\stackrel{N}{\stackrel{N}{\circ}}$

;0	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10	

[^0]: ${ }^{a}$ Isolated yield. ${ }^{b}$ The reaction mixture was performed at 0.2 M . ${ }^{\text {c }}$ The reaction mixture was performed at 0.05 M .

[^1]: ${ }^{\text {a }}$ Isolated yield. ${ }^{b} 9$ a (1.2 equivs), $\mathbf{5 a}(0.25 \mathrm{mmol}) .{ }^{c} 10 \mathrm{~mol} \%$ of p-TsOH was added. ${ }^{d} 500 \mathrm{mg}$ of MS $5 \AA$ was added.

