Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Tandem imine generation/N-cyclization/C-alkylation sequence to access N-functionalized indoles featuring an *aza*-quaternary carbon

Jun-Song Tian,^a Zhi Tu,^a Feng Zhou,^a Jin-Sheng Yu^a and Jian Zhou*^{a,b}

^a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663N Zhongshan Road, Shanghai 200062, China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

E-mail: jzhou@chem.ecnu.edu.cn

Supporting Information

(Part I)

Table of Contents					
1. General information	1				
2. General procedure for the synthesis of starting materials	2				
3. Condition optimization	3-8				
4. General procedure for one-pot tandem sequence of isatins	9-23				
5. General procedure for one-pot tandem sequence of keto esters	24-31				
6. Product transformation	32-36				
7. X-ray crystallography data of 70	37-42				
8. References	43				
9. NMR spectra	44-187				

1. General information

Reactions were monitored by thin layer chromatography using UV light to visualize the course of reaction. Purification of reaction products was carried out by flash chromatography on silica gel. Chemical yields refer to pure isolated substances. Infrared (IR) spectra were obtained using a Nicolet Nexus 670 FT-IR spectrometer with KBr pellets in the range 4000-400 cmm⁻¹. Low resolution mass spectra are determined on GCMS-QP2010 (Shimadzu) or Agilent 5975C MSD. High resolution mass spectra are determined on Agilent Technologies 6224 TOF LC-MS or Agilent 6545 QTOF LC-MS. ¹H, ¹³C and ¹⁹F NMR spectra were obtained using a Bruker DPX-400 and Bruker DPX-300 spectrometer. Chemical shifts are reported in ppm from CDCl₃ with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, h = heptet, m = multiplet, br = broad.

Unless noted, all the reactions were carried out under an atmosphere of N_2 . Anhydrous CH_2Cl_2 and MeCN are prepared by first distillation over P_2O_5 and then from CaH_2 . Anhydrous THF, dioxane, and toluene are freshly distilled from sodium/benzophenone, and MeOH from Mg. Anhydrous DMSO, DMA and DMF were prepared by drying over Na_2SO_4 , distillation again from CaSO₄ and storing over MS 4Å.

Entry	Chemical name	Abbreviation
1	Petroleum ether	PE
2	Ethyl acetate	EtOAc
3	Tetrahydrofuran	THF
4	Dichloromethane	CH_2Cl_2
5	Acetonitrile	MeCN
6	Dimethylsulfoxide	DMSO
7	N,N-dimethylacetamide	DMA
8	N,N-dimethylformamide	DMF
9	Methanol	MeOH
10	Toluene	PhMe

List of abbreviation:

2. General procedure for the synthesis of starting materials

The **4a** and **4m** are commercially available. **4b**-**4g**,¹ **4h**,² **4i**,³ **4j**,⁴ **4k**,⁵ **4l**,² **4n**,³ **5a**-**5g**,⁶ **9a**,⁷ **9b**,⁸ **9c**,⁹ and **9d**,⁷ are known compounds and synthesized accordingly.

The synthesis of 3-iodopropanenitrile.

To a solution of PPh₃ (7.87 g, 30.0 mmol) in dry CH₂Cl₂ (90 mL) was added I₂ (7.61 g, 30.0 mmol). The reaction mixture was stirred at room temperature for 10 min and imidazole (3.40 g, 50.0 mmol) was added. After stirred for another 10 min, 3-hydroxypropanenitrile (1.42 g, 20.0 mmol) was added and stirred for 2 h, and then quenched with saturated aqueous Na₂S₂O₃ solution (30 mL). Then extracted the aqueous layer with CH₂Cl₂ (3 × 30 mL) followed by drying of the combined organic layers over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by distillation (101 °C, 23 Torr) to afford 3-iodopropanenitrile as colorless oil in 54% yield. ¹H NMR (400 MHz, CDCl₃): δ 3.28 (t, *J* = 7.2 Hz, 2H), 3.01 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 118.26, 22.67, 6.74. Spectral data was in agreement with that reported in literature.¹⁰

3. Condition optimization

The condition optimization for the one-pot tandem *N*-cyclization/*C*-benzylation reaction of isatin ketimine **1a** and BnBr **2a** was conducted as follows. To a 25-mL Schlenk tube were added **1a** (30.9 mg, 0.1 mmol), BnBr **2a** and MeOH (1.0 mL), followed by the addition of specific bases at 0 °C. The resulting mixture was stirred at specific temperature till the full consumption of **1a**, and then filtered through short silica gel and washed with CH₂Cl₂. The filtrate was concentrated and purified by column chromatography (PE/EtOAc, 10/1, v/v) to afford the desired product **3a**.

Table S1 Condition	optimization for	the N-cyclization/C-b	enzylation of isatin ketimine.

O ₂ N N ^M +		Br	base (y equi MeOH (0.1 M), ten	N N Me		
1a (0.1	mmol)	2a (x equiv)			3a	
entry	BnBr (x equiv)	base (y equiv))	temp. (°C)	time (h)	yield (%) ^a	
1	2.0	Na ₂ CO ₃ (2.0)	0	24	29	
2	2.0	K ₂ CO ₃ (2.0)	0	4	63	
3	2.0	Cs ₂ CO ₃ (2.0)	0	3	68	
4	2.0	KOH (2.0)	0	2	64	
5	2.0	NaOH (2.0)	0	2	61	
6	2.0	K ₃ PO ₄ (2.0)	0	24	54	
7	2.0	CsOH•H ₂ O (2.0)	0	3	73	
8	2.0	CsOH•H ₂ O (2.0)	20	1.0	66	
9	2.0	CsOH•H ₂ O (2.0)	-20	6	45	
10	2.0	CsOH•H ₂ O (1.5)	0	24	46	
11	2.0	CsOH•H ₂ O (2.5)	0	2.5	75	
12	2.0	CsOH•H ₂ O (3.0)	0	1.5	66	
13	1.0	CsOH•H ₂ O (2.5)	0	24	65	
14	1.2	CsOH•H ₂ O (2.5)	0	9	72	
15	1.5	CsOH•H ₂ O (2.5)	0	5	75	
16 ^b	1.5	CsOH•H ₂ O (2.5)	0	4	72	
17 ^c	1.5	CsOH•H ₂ O (2.5)	0	10	79	

^alsolated yield. ^bThe reaction mixture was performed at 0.2 M. ^cThe reaction mixture was performed at 0.05 M.

As shown in Table S1, the properties of base greatly influenced the reaction outcome, and CsOH·H₂O proved to be the best choice, giving **3a** in 73% yield within 3 hours at 0 °C (entries 1-7). The influence on reaction temperature was also evaluated, and the best result was obtained by running the reaction at 0 °C (entries 8-9). The study of the usage of CsOH·H₂O and BnBr (entries 10-15) showed that when 2.5 equivs CsOH·H₂O and 1.5 equivs BnBr were used, product **3a** could be obtained in 75% yield within 5 hours (entry 15), which was further increased to 79% if decreasing the concentration of the reaction from 0.1 to 0.05 M (entry 17).

Based on these results, we further tried extending this protocol to a sequential imine formation/N-cyclization/C-benzylation process. The reaction of N-methylisatin 4a. 2-(2-nitroethyl)aniline 5a and BnBr 2a was selected for condition optimization and conducted as follows. To a 25-mL Schlenk tube were added N-methylisatin 4a (40.3 mg, 0.25 mmol), 2-(2-nitroethyl)aniline 5a (49.9 mg, 0.3 mmol), MS 5Å (250.0 mg) and anhydrous PhMe (1.0 mL), followed by the addition of p-TsOH (2.2 mg, 5 mol%). The reaction mixture was stirred at specific temperature till the full consumption of N-methylisatin 4a, and then cooled down to room temperature and concentrated under vacuum. The residue was dissolved in anhydrous MeOH (5.0 mL) followed by the addition of BnBr 2a (64.1 mg, 0.375 mmol) and CsOH·H₂O (104.9 mg, 0.625 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 12 h, and then filtered through short silica gel and washed with CH₂Cl₂ (30 mL). The filtrate was concentrated and purified by column chromatography (PE/EtOAc, 10/1, v/v) to afford the desired product **3a**.

As shown in Table S2, We first tried running the condensation of *N*-methylisatin **4a** with 2-(2-nitroethyl)aniline **5a** in MeOH, the solvent for the *N*-cyclization and *C*-benzylation reaction, to simplify the operation. However, by screening the temperature (entries 1-2), the proportion of **4a** and **5a** (entry 3), and the amount of *p*-TsOH (entry 4) and addition of MS 5Å (entry 5), no promising results were obtained. To our delight, the desired product **3a** could be obtained in 64% yield using PhMe as solvent (entry 6). When PhMe is removed after the condensation of **4a** and **5a**, the yield of **3a** could be obtained in 68% yield (entry 7), which was further increased to 73% if lowering the temperature of condensation process to 60 °C (entry 8).

Table S2 Condition optimization for imine formation/*N*-cyclization/*C*-benzylation of isatin.

^aIsolated yield. ^b10 mol% of p-TsOH was added. ^c500 mg of MS 5Å was added. ^dPhMe was removed in the second step.

The success for the synthesis of C3-quaternary amino-oxindoles encouraged us to probe whether other types of *N*-functionalized indoles could be accessed via this sequence. Accordingly, α -ketoester derived imine **6a** was subjected to the reaction. Considering the steric congestion of the enolate, with a tetrasubstituted carbon–carbon double bond, the less sterically demanding MeI was employed as the alkylating reagent.

The conditions for the reaction of α -ketoester derived imine **6a** and MeI **2b** was conducted as follows. To a 25-mL Schlenk tube were added imine **6a** (34.7 mg, 0.1 mmol), specific solvent (1.0 mL) and TBAB (3.2 mg, 10 mol%), followed by the addition of K₂CO₃ (27.6 mg, 0.2 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 30 min or 12 h, and then concentrated under vacuum. The residue was dissolved in specific solvent, followed by the addition of MeI and specific base at 0 °C. The resulting mixture was stirred at 0 °C for specific time, and then quenched with saturated aqueous NH₄Cl (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with water (3 × 20 mL) and brine (20 mL), then dried over

anhydrous Na_2SO_4 and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the desired product **7a**.

O ₂	Ŭ Į		0 equiv)			(y equiv)				
ĺ	OMe	·	x mol%) → 0 °C, time		D ₂ Me solvent	z equiv) , 0 °C, time		+ • •Me		₂Me
	CI 6a (0.1 mmol)		L	CI I	3a		CI 7a		 CI 8a 	
entry	N-alkylation					Met	hylation		Isolate	ed yield
	base	TBAB (x)	solvent (conc. M)	time (h)	base (y)	Mel (z)	solvent (conc. M)	time (h)	7a	8a
1	K ₂ CO ₃	0	MeOH (0.1)	0.5	K ₂ CO ₃ (1.0)	1.5	MeOH (0.1)	24	0	65%
2	K ₂ CO ₃	10	PhMe (0.1)	10	^t BuOK (1.0)	1.5	PhMe (0.1)	24	0	91%
3	K ₂ CO ₃	10	PhMe (0.1)	10	^t BuOK (1.0)	1.5	CH ₂ Cl ₂ (0.1)	24	45%	10%
4	K ₂ CO ₃	10	PhMe (0.1)	10	^t BuOK (1.0)	1.5	DMF (0.1)	24	53%	45%
5	K ₂ CO ₃	10	PhMe (0.1)	10	^t BuOK (1.0)	1.5	THF (0.1)	24	37%	41%
6	K ₂ CO ₃	10	PhMe (0.1)	10	^t BuOK (1.0)	1.5	MeCN (0.1)	24	41%	54%
7	K ₂ CO ₃	10	PhMe (0.1)	10	^t BuOK (1.0)	1.5	DMA (0.1)	24	58%	40%
8	K ₂ CO ₃	0	MeOH (0.1)	0.5	Cs ₂ CO ₃ (1.0)	1.5	DMA (0.1)	24	16%	70%
9	K ₂ CO ₃	0	MeOH (0.1)	0.5	CsOH•H ₂ O (1.0)	1.5	DMA (0.1)	24	73%	trace
10	K ₂ CO ₃	0	MeOH (0.1)	0.5	KOH (1.0)	1.5	DMA (0.1)	24	6%	61%
11	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.0)	1.5	DMA (0.1)	24	80%	trace
12	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.5)	1.5	DMA (0.1)	12	86%	trace
13	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (2.0)	1.5	DMA (0.1)	5	87%	0
14	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.5)	2.0	DMA (0.1)	12	90%	0
15	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.5)	2.5	DMA (0.1)	12	90%	0
16	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.5)	2.0	DMA (0.2)	5	83%	0
17	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.5)	2.0	DMA (0.05)	12	93%	0
18 ^a	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.5)	2.0	DMA (0.05)	12	69%	0
19 ^b	K ₂ CO ₃	0	MeOH (0.1)	0.5	NaH (1.5)	2.0	DMA (0.05)	5	75%	0

^aThe reaction was performed at -10 °C. ^bThe reaction was performed at 10 °C.

As shown in Table S3, the nature of the solvent was found to play a crucial role. If the sequence was run in MeOH or toluene, only the *N*-cyclization product **8a** was formed, with no detectable formation of adduct **7a** (entries 1-2). However, if the solvent was removed after the *N*-cyclization step, and then CH_2Cl_2 and 1.0 equivalent of KOBu^t were added for the following *C*-methylation

sequence, the desired product **7a** could be obtained in promising 45% yield (entry 3). Further optimization revealed that DMA was the most suitable solvent for the *C*-methylation, giving **7a** in 58% yield (entries 4-7). Further screening of other bases demonstrated that NaH was the best choice (entries 8-11). Evaluating the amount of NaH and MeI indicated that the desired product **7a** was obtained in 90% yield within 12 hours at 0 °C, when using 1.5 equivs NaH and 2.0 equivs MeI (entries 12-15). Further decreasing the concentration from 0.1 to 0.05 M resulted in the improved 93% yield of product **7a** (entry 17). Varying the reaction temperature failed to afford better results (entries 18-19).

Next, we tried to combine the imine formation with the aforementioned process to form a sequential imine formation/N-cyclization/C-methylation sequence. The condition optimization of the reaction of α-ketoester 9a, 2-(2-nitroethyl)aniline 5a and MeI 2b was conducted as follows. To a 25-mL Schlenk tube were added α-ketoester 9a (0.25 mmol, 1.0 equiv), 2-(2-nitroethyl)aniline 5a (0.3 mmol, 1.2 equiv), MS 5Å (250.0 mg) and anhydrous PhMe (1.0 mL) or MeOH (1.0 mL), followed by the addition of p-TsOH (2.2 mg, 5 mol%). The reaction mixture was stirred at specific temperature till the full consumption of α -ketoester 9a, and then cooled down to room temperature for concentration under vacuum. The thus obtained residue was dissolved in anhydrous MeOH (2.5 mL), followed by the addition of K₂CO₃ (69.1 mg, 0.5 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 30 min, concentrated in vacuum, and then the residue was dissolved in anhydrous DMA (5.0 mL), followed by the addition of MeI (71. 0 mg, 0.5 mmol) and NaH (15.0 mg, 0.375 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 12 h, and then quenched with saturated aqueous NH₄Cl (5 mL) and extracted with EtOAc (3 \times 10 mL). The combined organic layers were washed with water $(3 \times 20 \text{ mL})$ and brine (20 mL), then dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the desired product 7a.

As shown in Table S4, we first performed the condensation of α -ketoester **9a** with 2-(2-nitroethyl)aniline **5a** in MeOH, the solvent previously identified for the *N*-cyclization reaction, to simplify the operation. However, by screening the proportion of **9a** and **5a** (entry 2), and the amount of *p*-TsOH (entry 3) and MS 5Å (entry 4), no satisfactory result was obtained. To our delight, when replacing MeOH by PhMe as the solvent for the condensation, the desired product **7a** could be obtained in 85% isolated yield (entry 5). If lowering the temperature for the

imine formation step, the yield of 7a obviously decreased (entries 6-7).

Table S4 Condition optimization for imine formation/*N*-cyclization/*C*-methylation of α-ketoester.

^alsolated yield. ^b9a (1.2 equivs), 5a (0.25 mmol). ^c10 mol% of *p*-TsOH was added. ^d500 mg of MS 5Å was added.

4. General procedure for one-pot tandem sequence of isatins.

To a 25-mL Schlenk tube were added *N*-methylisatin **4** (0.25 mmol, 1.0 equiv), anilines **5** (0.3 mmol, 1.2 equiv), MS 5Å (250.0 mg) and anhydrous toluene (1.0 mL), followed by the addition of *p*-TsOH (2.2 mg, 5 mol%). The reaction mixture was stirred at 60 °C for 3 h till the full conversion of *N*-methylisatin **4**, and then cooled down to room temperature and concentrated under vacuum. The residue was dissolved in anhydrous MeOH (5.0 mL), followed by the addition of alkyl bromides (0.375 mmol, 1.5 equiv) and CsOH·H₂O (104.9 mg, 0.625 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 12 h, and then filtered through short silica gel and washed with CH₂Cl₂ (30 mL). The filtrate was concentrated and purified by column chromatography (PE/EtOAc, 10/1, v/v) to afford the desired product **3a-3ap**.

Product **3a** was obtained in 73% yield as white solid; Mp: 179-180 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 3.2 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.28-7.25 (m, 1H), 7.13 (dd, $J_1 = 17.2$ Hz, $J_2 = 7.6$ Hz, 2H), 7.06-7.02 (m, 4H), 6.89 (t, J = 8.0 Hz, 1H), 6.79 (d, J = 7.6 Hz, 2H), 6.66 (d, J = 2.8 Hz, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.49 (d, J = 8.4 Hz, 1H), 3.98, 3.76 (AB, J = 11.6 Hz, 2H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.21, 143.10, 135.83, 132.46, 130.39, 129.90, 128.37, 127.61, 127.31, 125.26, 124.24, 123.21, 122.00, 121.18, 120.13, 111.24, 108.37, 102.77, 68.00, 43.61, 26.05; IR (neat): 3030, 1720, 1612, 1492, 1469, 1456, 1087, 1020, 752, 733, 698; HRMS (ESI): Exact mass calcd for C₂₄H₂₀N₂ONa [M+Na]⁺: 375.1468, Found: 375.1476. Product **3b** was obtained in 75% yield as white solid; Mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 3.2 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.14-7.03 (m, 4H), 6.97-6.90 (m, 3H), 6.83 (d, J = 7.6 Hz, 2H), 6.68 (d, J = 3.2 Hz, 1H), 6.52 (dd, $J_1 = 8.4$ Hz, $J_2 = 4.0$ Hz, 1H), 6.44 (d, J = 8.4 Hz, 1H), 3.99, 3.74 (AB, J= 11.6 Hz, 2H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.97, 159.56 (d, J = 241.0 Hz), 139.00 (d, J = 2.0 Hz), 135.72, 132.02, 130.31, 130.09 (d, J = 7.0 Hz), 129.89, 127.75, 127.51, 125.02, 122.18, 121.33, 120.32, 116.24 (d, J = 23.0 Hz), 112.23 (d, J = 25.0 Hz), 110.85, 109.04 (d, J = 8.0 Hz), 103.10, 68.11, 43.61, 26.19; ¹⁹F NMR (376 MHz, CDCl₃): δ -118.99; IR (neat): 2929, 1718, 1612, 1492, 1467, 1263, 1236, 1203, 1122, 1099, 1070, 750; HRMS (ESI): Exact

mass calcd for C₂₄H₁₉FN₂ONa [M+Na]⁺: 393.1374, Found: 393.1376.

CI N Me 3c

Product **3c** was obtained in 76% yield as yellow solid; Mp: 192-194 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 3.2 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.14-7.10 (m, 2H), 7.09-7.03 (m, 3H), 6.92 (t, J = 7.6Hz, 1H), 6.81 (d, J = 7.6 Hz, 2H), 6.68 (d, J = 2.8 Hz, 1H), 6.51 (d, J = 8.0 Hz,

1H), 6.44 (d, J = 8.4 Hz, 1H), 3.98, 3.75 (AB, J = 11.2 Hz, 2H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.79, 141.58, 135.69, 131.94, 130.33, 130.17, 129.87, 128.75, 127.80, 127.56, 124.98, 124.45, 122.24, 121.36, 120.35, 110.82, 109.35, 103.15, 67.92, 43.65, 26.17; IR (neat): 2931, 1722, 1610, 1489, 1456, 1234, 1136, 1099, 1018, 734; HRMS (ESI): Exact mass calcd for C₂₄H₁₉ClN₂ONa [M+Na]⁺: 409.1078, Found: 409.1089.

Product **3d** was obtained in 76% yield as white solid; Mp: 214-216 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 3.2 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 6.0 Hz, 1H), 7.13-7.06 (m, 4H), 6.94 (t, J = 7.6 Hz, 1H),

^{3d} 6.82 (d, J = 7.6 Hz, 2H), 6.69 (d, J = 3.6 Hz, 1H), 6.46 (dd, $J_1 = 8.0$ Hz, $J_2 = 4.0$ Hz, 2H), 3.98, 3.75 (AB, J = 11.6 Hz, 2H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.66, 142.09, 135.71, 132.78, 131.95, 130.52, 130.35, 129.89, 127.81, 127.57, 127.18, 124.98, 122.27, 121.37, 120.37, 115.94, 110.83, 109.81, 103.18, 67.87, 43.70, 26.16; IR (neat): 2929, 1722, 1606, 1516, 1508, 1489, 1456, 1359, 1267, 1234, 1099, 736; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂ONa [M+Na]⁺: 453.0573, Found: 453.0581.

Product **3e** was obtained in 73% yield as yellow solid; Mp: 167-168 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 3.6 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.14-7.12 (m, 1H), 7.09-7.04 (m, 3H), 6.92 (t, J = 7.6 Hz, 1H), 6.85-6.76 (m, 4H), 6.67 (d, J = 3.2 Hz, 1H), 6.51 (d, J = 8.4 Hz, 2H), 3.97, 3.75 (AB, J = 11.2

Hz, 2H), 3.72 (s, 3H), 2.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.87, 156.49, 136.55, 135.87, 132.45, 130.39, 129.87, 129.58, 127.64, 127.32, 125.19, 122.04, 121.15, 120.14, 114.48, 111.25, 111.12, 108.91, 102.78, 68.28, 55.89, 43.60, 26.12; IR (neat): 2929, 2835, 1716, 1604, 1496, 1471, 1456, 1236, 1224, 1149, 1132, 1028, 731, 698; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₂Na [M+Na]⁺: 405.1573, Found: 405.1584.

Product **3f** was obtained in 71% yield as white solid; Mp: 166-168 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 3.2 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.12 (t, J = 7.2 Hz, 1H), 7.07-7.01 (m, 4H), 6.96 (s, 1H), 6.91 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 7.6 Hz, 2H), 6.66 (d, J = 2.8 Hz, 1H), 6.49 (t, J = 8.0 Hz, 2H), 3.96, 3.74

(AB, J = 11.6 Hz, 2H), 2.88 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.09, 140.71, 135.81, 132.83, 132.52, 130.39, 130.14, 129.81, 128.31, 127.57, 127.26, 125.23, 124.80, 121.97, 121.12, 120.07, 111.28, 108.12, 102.63, 68.04, 43.60, 26.04, 21.21; IR (neat): 2926, 1718, 1604, 1500, 1456, 1361, 1315, 1265, 1238, 1099, 1018, 731; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂ONa [M+Na]⁺: 389.1624, Found: 389.1626.

Product **3g** was obtained in 74% yield as white solid; Mp: 153-155 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 3.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.13-7.11 (m, 1H), 7.07-6.99 (m, 3H), 6.97-6.86 (m, 4H), 6.74 (d, J = 7.6 Hz, 2H), 6.64 (d, J = 3.2 Hz, 1H), 6.50 (d, J = 8.4 Hz, 1H), 3.94, 3.67 (AB, J = 11.2 Hz, 2H), 3.12 (s,

3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.93, 140.84, 135.80, 133.41, 132.55, 130.37, 129.82, 129.09, 127.48, 127.31, 125.24, 123.14, 121.94, 121.12, 120.10, 120.06, 111.27, 102.64, 67.59, 44.15, 29.46, 18.80; IR (neat): 2927, 1718, 1602, 1473, 1456, 1363, 1323, 1116, 1064, 738, 700; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂ONa [M+Na]⁺: 389.1624, Found: 389.1630.

Product **3h** was obtained in 76% yield as yellow solid; Mp: 60-62 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 3.6 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.55 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1H), 7.28 (dd, $J_1 = 7.2$ Hz, $J_2 = 0.4$ Hz, 1H), 7.16-7.12 (m, 1H), 7.10-7.03 (m, 4H), 6.92-6.71 (m, 1H), 6.70-6.69 (m, 3H), 6.36 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.4$ Hz, 1H), 3.99, 3.73 (AB, J = 11.2 Hz, 2H), 3.08 (q, J = 2.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.19, 140.90, 135.58, 131.56, 131.31, 130.04, 129.86, 127.80, 127.78, 127.60 (q, J = 6.0 Hz), 127.20, 125.00, 123.25 (q, J = 270.0 Hz), 122.62, 122.35, 121.38, 120.42, 112.91 (q, J = 33.0 Hz), 110.60, 103.22, 66.62, 44.31, 28.76 (q, J = 7.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ -53.69; IR (neat): 2927, 1732, 1598, 1489, 1473, 1456, 1321, 1122, 1093, 1074, 1056, 732, 698; HRMS (ESI): Exact mass calcd for C₂₅H₁₉F₃N₂ONa [M+Na]⁺: 443.1342, Found: 443.1352.

Product **3i** was obtained in 83% yield yellow solid; Mp: 174-176 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 3.6 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.20-7.18 (m, 2H), 7.11 (t, J = 7.4 Hz, 2H), 7.05-7.00 (m, 2H), 6.94 (q, J = 8.0 Hz, 2H), 6.77 (d, J = 7.6 Hz, 2H), 6.68 (d, J = 3.2 Hz, 1H), 6.48 (d, J = 8.4 Hz, 1H), 3.97, 3.71 (AB, J = 11.2 Hz, 2H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.56, 138.95, 135.65, 132.01, 131.87, 131.39, 130.22, 129.82, 127.75, 127.72, 125.01, 123.99, 122.46, 122.23, 121.28, 120.31, 115.96, 110.89, 103.03, 67.65, 44.13, 29.47; IR (neat): 2949, 1730, 1608, 1456, 1363, 1321, 1107, 738, 700; HRMS (ESI): Exact mass calcd for C₂₄H₁₉ClN₂ONa [M+Na]⁺: 409.1078,

Found: 409.1088.

Br

Product **3j** was obtained in 80% yield as white solid; Mp: 150-152 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 3.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.20 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.6 Hz, 2H), 7.07-7.03 (m, 2H),

³i 6.95 (t, J = 8.0 Hz, 1H), 6.87 (t, J = 8.0 Hz, 1H), 6.76 (d, J = 7.6 Hz, 2H), 6.67 (d, J = 3.2 Hz, 1H), 6.47 (d, J = 8.4 Hz, 1H), 3.97, 3.70 (AB, J = 11.6 Hz, 2H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.75, 140.46, 135.66, 135.37, 131.86, 131.77, 130.23, 129.84, 127.77, 125.01, 124.38, 122.98, 122.27, 121.30, 120.34, 110.93, 103.07, 102.84, 67.68, 44.26, 29.69; IR (neat): 2927, 1724, 1608, 1577, 1514, 1228, 1101, 1074, 1018, 1006, 731, 700; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂ONa [M+Na]⁺: 453.0573, Found: 453.0579.

Product **3k** was obtained in 83% yield as yellow solid; Mp: 162-163 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 3.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.6 Hz, 2H), 7.05 (t, J = 5.6 Hz, 2H), 6.95 (t, J = 8.0 Hz, 1H), 6.75-6.70 (m, 3H), 6.67 (d, J = 3.2 Hz, 1H), 6.45 (d, J = 8.4 Hz, 1H), 3.96, 3.69 (AB, J = 11.2 Hz, 2H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.03, 143.50, 142.30, 135.65, 131.86, 131.71, 130.21, 129.83, 127.76, 127.74, 125.03, 124.87, 123.65, 122.26, 121.29, 120.33, 110.95, 103.05, 71.81, 67.60, 44.31, 29.93; IR (neat): 2926, 2854, 1724, 1602, 1571, 1516, 1454, 1317, 1228, 1097, 1072, 734, 700; HRMS (ESI): Exact mass calcd for C₂₄H₁₉IN₂ONa [M+Na]⁺: 501.0434, Found: 501.0441.

Me Me Me Me

Product **31** was obtained in 70% yield as yellow solid; Mp: 128-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 3.6 Hz, 1H), 7.64 (d, J = 7.6 Hz, 1H), 7.17-7.16 (m, 1H), 7.12-7.04 (m, 3H), 6.98-6.94 (m, 1H), 6.82-6.78 (m, 4H),

³¹ 6.69 (d, J = 3.2 Hz, 1H), 6.58 (d, J = 8.4 Hz, 1H), 3.96, 3.70 (AB, J = 11.2 Hz, 2H), 3.13 (s, 3H), 2.31 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 174.80, 138.41, 135.77, 133.88, 132.67, 132.61, 130.39, 129.74, 129.10, 127.46, 127.27, 125.21, 122.40, 121.94, 121.07, 120.02, 119.79, 111.33, 102.51, 67.65, 44.16, 29.40, 20.91, 18.66; IR (neat): 2924, 1716, 1602, 1508, 1483, 1473, 1456, 1323, 1230, 1099, 738, 700; HRMS (ESI): Exact mass calcd for $C_{26}H_{24}N_2ONa [M+Na]^+$: 403.1781, Found: 403.1790.

Product **3m** was obtained in 54% yield as white solid; Mp: 218-220 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (s, 1H), 7.70 (d, J = 3.6 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.20 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.16-7.10 (m, 2H), 7.09-6.99 (m, 4H), 6.93-6.84 (m, 3H), 6.70-6.57 (m, 3H), 4.00, 3.80 (AB, J = 11.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 176.67, 140.25, 135.85, 132.28, 130.57, 129.94, 129.86, 128.70, 127.89, 127.42, 125.20, 124.65, 123.24, 122.12, 121.21, 120.23, 111.36, 110.63, 102.89, 68.21, 43.42; IR (neat): 2926, 2852, 1722, 1620, 1516, 1489, 1471, 1456, 1263, 1220, 732, 698; HRMS (ESI): Exact mass calcd for C₂₃H₁₈N₂ONa [M+Na]⁺: 361.1311, Found: 361.1312. Product **3n** was obtained in 75% yield as white solid; Mp: 148-150 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 3.2 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.22-7.12 (m, 6H), 7.08-7.00 (m, 4H), 6.88-6.81 (m, 5H), 6.65 (d, J = 3.2 Hz, 1H), 6.46 (dd, $J_1 = 14.4$ Hz, $J_2 = 7.6$ Hz, 2H), 4.75, 4.50 (AB, J = 15.6 Hz, 2H), 4.08, 3.80 (AB, J

= 11.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 174.36, 142.72, 135.83, 135.08, 132.58, 130.75, 129.96, 129.92, 128.78, 128.36, 128.01, 127.67, 127.52, 127.41, 125.26, 124.45, 123.27, 121.92, 121.20, 120.16, 111.56, 109.77, 102.81, 67.91, 44.27, 43.31; IR (neat): 2926, 2852, 1722, 1610, 1516, 1489, 1467, 1454, 1193, 1029, 1018, 731, 696; HRMS (ESI): Exact mass calcd for C₃₀H₂₄N₂ONa [M+Na]⁺: 451.1781, Found: 451.1788.

 $F \xrightarrow{N}_{Me} O$

3n

Product **30** was obtained in 68% yield as white solid; Mp: 192-194 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 3.6 Hz, 1H), 7.30-7.22 (m, 2H), 7.15-7.10 (m, 2H), 7.07-7.03 (m, 3H), 6.78 (d, J = 7.6 Hz, 2H), 6.65-6.59 (m, 3H), 6.40 (dd, J_1 = 9.2 Hz, J_2 = 4.4 Hz, 1H), 3.96, 3.73 (AB, J = 11.6 Hz, 2H), 2.91 (s, 3H); ¹³C

NMR (100 MHz, CDCl₃): δ 174.05, 159.19 (d, J = 234.0 Hz), 143.03, 132.34, 132.25, 130.34, 130.32 (d, J = 10.0 Hz), 130.09, 128.04, 127.66, 127.40, 126.99, 124.20, 123.32, 111.85 (d, J = 9.0 Hz), 110.30 (d, J = 25.0 Hz), 108.50, 105.93 (d, J = 23.0 Hz), 102.75 (d, J = 5.0 Hz), 68.04, 43.52, 26.10; ¹⁹F NMR (376 MHz, CDCl₃): δ -124.69; IR (neat): 2927, 2850, 1720, 1612, 1508, 1490, 1448, 1371, 1124, 1020, 1001, 736, 700; HRMS (ESI): Exact mass calcd for C₂₄H₁₉FN₂ONa [M+Na]⁺: 393.1374, Found: 393.1383.

Product **3p** was obtained in 61% yield as yellow solid; Mp: 175-176 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 3.6 Hz, 1H), 7.56 (d, J = 2.0 Hz, 1H), 7.30-7.26 (m, 1H), 7.12 (t, J = 7.6 Hz, 2H), 7.05 (td, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz, 3H), 6.85 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.4$ Hz, 1H), 6.77 (d, J = 7.2 Hz, 2H), 6.61-6.59

(m, 2H), 6.40 (d, J = 8.8 Hz, 1H), 3.95, 3.73 (AB, J = 11.6 Hz, 2H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.97, 143.07, 134.17, 132.22, 130.98, 130.35, 130.16, 127.98, 127.69, 127.44, 126.73, 125.95, 124.24, 123.34, 122.30, 120.55, 112.26, 108.55, 102.42, 68.07, 43.50, 26.12; IR (neat): 2927, 1720, 1612, 1508, 1492, 1469, 1456, 1126, 1089, 1020, 729, 700; HRMS (ESI): Exact mass calcd for C₂₄H₁₉ClN₂ONa [M+Na]⁺: 409.1078, Found: 409.1085.

Product **3q** was obtained in 70% yield as yellow solid; Mp: 160-162 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 1.6 Hz, 1H), 7.70 (d, J = 3.6 Hz, 1H), 7.30-7.26 (m, 1H), 7.13-7.11 (m, 2H), 7.05 (t, J = 7.6 Hz, 3H), 6.98 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.0$ Hz, 1H), 6.78 (d, J = 7.2 Hz, 2H), 6.61-6.59 (m, 2H), 6.36 (d, J = 8.8 Hz, 1H), 3.95, 3.73 (AB, J = 11.2 Hz, 2H), 2.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ

173.91, 143.00, 134.40, 132.15, 131.57, 130.32, 130.16, 127.89, 127.67, 127.43, 126.56, 124.83, 124.19, 123.63, 123.33, 113.56, 112.67, 108.54, 102.30, 68.02, 43.45, 26.11; IR (neat): 2922, 1720, 1612, 1508, 1492, 1469, 1452, 1126, 1089, 1020, 1001, 750, 698; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂ONa [M+Na]⁺: 453.0573, Found: 453.0580.

Product **3r** was obtained in 71% yield as yellow solid; Mp: 173-174 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 3.2 Hz, 1H), 7.37 (s, 1H), 7.26-7.22 (m, 1H), 7.14-7.08 (m, 2H), 7.04-6.99 (m, 3H), 6.78 (d, J = 7.6 Hz, 2H), 6.71 (d, J =

^{3r} 8.4 Hz, 1H), 6.58-6.56 (m, 2H), 6.35 (d, J = 8.4 Hz, 1H), 3.96, 3.72 (AB, J = 11.2 Hz, 2H), 2.89 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.25, 143.08, 134.16, 132.51, 130.37, 130.15, 129.84, 129.31, 128.42, 127.58, 127.27, 125.33, 124.22, 123.58, 123.18, 120.89, 110.81, 108.32, 102.24, 67.92, 43.48, 26.02, 21.31; IR (neat): 2924, 2854, 1722, 1612, 1492, 1469, 1456, 1371, 1319, 750, 736, 700; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂ONa [M+Na]⁺: 389.1624, Found: 389.1630.

Product **3s** was obtained in 74% yield as yellow solid; Mp: 180-182 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 3.6 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.19-7.14 (m, 1H), 7.05-7.00 (m, 2H), 6.97-6.93 (m, 3H), 6.77 (d, J = 8.0 Hz, 1H), 6.70 (d, J = 7.6 Hz, 2H), 6.50-6.49 (m, 2H), 6.19 (s, 1H), 3.87, 3.65 (AB, J

= 11.6 Hz, 2H), 2.82 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.29, 143.05, 136.19, 132.53, 131.43, 130.37, 129.83, 128.36, 127.65, 127.57, 127.25, 124.64, 124.27, 123.18, 121.88, 120.72, 111.35, 108.26, 102.51, 67.91, 43.50, 26.03, 22.19; IR (neat): 2927, 2858, 1722, 1612, 1508, 1492, 1469, 1456, 1373, 1325, 1238, 1089, 754, 700; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂ONa [M+Na]⁺: 389.1624, Found: 389.1627.

Product **3t** was obtained in 73% yield as yellow solid; Mp: 153-155 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 3.2 Hz, 1H), 7.26-7.22 (m, 1H), 7.13-7.08 (m, 2H), 7.04-7.00 (m, 4H), 6.77 (d, J = 7.6 Hz, 2H), 6.58-6.53 (m, 3H), 6.37 (d, J = 9.2 Hz, 1H), 3.94, 3.73 (AB, J = 11.6 Hz, 2H), 3.75 (s, 3H),

2.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.23, 154.28, 143.07, 132.49, 131.05, 130.44, 130.36, 129.91, 128.32, 127.60, 127.28, 125.95, 124.25, 123.20, 112.00, 111.91, 108.38, 102.92, 102.42, 67.95, 55.78, 43.45, 26.05; IR (neat): 2931, 2831, 1722, 1614, 1492, 1473, 1448, 1371, 1247, 767, 750, 700; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂O₂Na [M+Na]⁺: 405.1573, Found: 405.1582.

Product **3u** was obtained in 68% yield as yellow solid; Mp: 149-151 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 2.8 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.27-7.23 (m, 1H), 7.19 (d, J = 7.4 Hz, 1H), 7.08-7.01 (m, 3H), 6.98-6.89 (m, 3H), 6.66-6.60 (m, 3H), 4.38, 3.98 (AB, J = 12.4 Hz, 2H), 3.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.71, 142.86, 135.79, 133.02, 132.95, 131.18, 130.13, 129.02, 126.78, 126.42, 126.31, 125.80, 122.85, 122.02, 121.26, 120.19, 111.87, 108.09, 102.85, 67.87, 40.99, 26.34; IR (neat): 1720, 1612, 1471, 1456, 1263, 1234, 1029, 1020, 702, 538; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂ONa [M+Na]⁺: 453.0573, Found: 453.0579.

Product **3v** was obtained in 77% yield as yellow solid; Mp: 150-152 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 3.2 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.30-7.26 (m, 1H), 7.07-6.96 (m, 5H), 6.91-6.88 (m, 2H), 6.71 (d, J = 7.6 Hz, 1H), 6.67-6.65 (m, 2H), 6.55 (d, J = 8.4 Hz, 1H), 3.97 (s, 2H), 3.00 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.87, 143.29, 137.70, 135.82, 131.18, 130.47, 130.36, 130.04, 128.24, 127.40, 125.60, 125.11, 124.92, 122.88, 121.98, 121.21, 120.13, 111.64, 108.36, 102.75, 68.11, 39.04, 26.19, 20.07; IR (neat): 2931, 1722, 1612, 1490, 1469, 1456, 1371, 1328, 1128, 1020, 736, 538; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂ONa [M+Na]⁺: 389.1624, Found: 389.1633. Product **3w** was obtained in 84% yield as yellow solid; Mp: 144-146 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 3.2 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.29-7.22 (m, 2H), 7.10 (d, J = 7.2 Hz, 1H), 7.04-6.99 (m, 2H), 6.90-6.88 (m, 3H), 6.74 (d, J = 8.0 Hz, 1H), 6.64-6.60 (m, 2H), 6.48 (d, J = 8.4 Hz, 1H), 3.91, 3.66 (AB, J =11.6 Hz, 2H), 2.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.91, 142.94, 135.77, 134.82, 133.16, 130.41, 130.19, 129.86, 129.16, 129.07, 127.88, 125.13, 124.21, 123.37, 122.07, 121.51, 121.22, 120.21, 111.21, 108.55, 102.91, 67.75, 43.11, 26.08; IR (neat): 2933, 1720, 1612, 1490, 1471, 1456, 1327, 1263, 1126, 1072, 696, 688; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂ONa [M+Na]⁺: 453.0573, Found: 453.0582.

Product **3x** was obtained in 77% yield as yellow solid; Mp: 128-130 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, J = 3.2 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.28-7.23 (m, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.05-7.00 (m, 2H), 6.95-6.87 (m, 3H), 6.66 (d, J = 3.2 Hz, 1H), 6.61-6.58 (m, 3H), 6.49 (d, J = 8.4 Hz, 1H), 3.94, 3.71 (AB, J =11.2 Hz, 2H), 2.92 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.23, 143.21, 137.22, 135.87, 132.36, 131.12, 129.91, 129.82, 128.54, 127.94, 127.50, 127.45, 125.31, 124.31, 123.12, 121.98, 121.18, 120.12, 111.31, 108.31, 102.73, 68.04, 43.61, 26.04, 21.20; IR (neat): 2928, 1720, 1687, 1612, 1490, 1469, 1456, 1328, 1126, 1093, 1018, 700, 692, 538; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂ONa [M+Na]⁺: 389.1624, Found: 389.1631.

Product **3**y was obtained in 77% yield as yellow solid; Mp: 190-192 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 3.2 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.27-7.23 (m, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.00 (t, J = 7.6 Hz, 2H), 6.89-6.82 (m, 3H), 6.67-6.60 (m, 4H), 6.48 (d, J = 8.4 Hz, 1H), 3.92, 3.70 (AB, J = 11.6 Hz, 2H), 2.91 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.28, 143.19, 136.86, 135.84, 130.24, 129.90, 129.83, 129.31, 128.50, 128.33, 125.31, 124.24, 123.14, 121.95, 121.15, 120.09, 111.29, 108.39, 102.69, 67.97, 43.19, 26.08, 21.13; IR (neat): 2926, 1720, 1612, 1514, 1490, 1469, 1456, 1328, 1126, 1020, 702, 692; HRMS (ESI): Exact mass calcd for C₂₅H₂₂N₂ONa [M+Na]⁺: 389.1624, Found: 389.1630. Product **3z** was obtained in 71% yield as yellow solid; Mp: 156-158 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 3.2 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.02 (d, J = 7.6 Hz, 1H), 6.97-6.92 (m, 4H), 6.80 (t, J = 8.0 Hz, 1H), 6.60 (d, J = 8.0 Hz, 2H), 6.56 (d, J = 3.2 Hz, 1H), 6.46 (d, J = 7.6 Hz, 1H), 6.40 (d, J = 8.4 Hz, 1H), 3.84, 3.63 (AB, J = 11.2 Hz, 2H), 2.76 (s, 3H), 1.13 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 174.20, 150.32, 143.13, 135.83, 130.00, 129.85, 129.82, 129.29, 128.52, 125.32, 124.35, 124.16, 123.13, 121.92, 121.12, 120.07, 111.24, 108.20, 102.66, 68.06, 43.19, 34.45, 31.36, 25.98; IR (neat): 2960, 2868, 1722, 1612, 1492, 1469, 1456, 1371, 1236, 1128, 1020, 736; HRMS (ESI): Exact mass calcd for C₂₈H₂₈N₂ONa [M+Na]⁺: 431.2094, Found: 431.2105.

Product **3aa** was obtained in 74% yield as yellow solid; Mp: 228-230 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 3.2 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 7.2 Hz, 1H), 7.04 (dd, $J_1 = 14.8$ Hz, $J_2 = 7.2$ Hz, 2H), 6.90 (t, J = 8.0 Hz, 1H), 6.76-6.72 (m, 4H), 6.66-6.63 (m, 2H), 6.48 (d, J =8.4 Hz, 1H), 3.97, 3.73 (AB, J = 11.6 Hz, 2H), 2.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.10, 162.20 (d, J = 244.0 Hz), 143.06, 135.81, 131.96 (d, J = 8.0 Hz), 130.07, 129.88, 128.24 (d, J = 3.0 Hz), 128.18, 125.14, 124.20, 123.34, 122.07, 121.22, 120.20, 114.54 (d, J = 21.0 Hz), 111.19, 108.53, 102.88, 67.85, 42.70, 26.09; ¹⁹F NMR (376 MHz, CDCl₃): δ -115.06; IR (neat): 2918, 2849, 1724, 1610, 1508, 1490, 1469, 1456, 1236, 1219, 1097, 837, 752, 738; HRMS (ESI): Exact mass calcd for C₂₄H₁₉FN₂ONa [M+Na]⁺: 393.1374, Found: 393.1381.

Product **3ab** was obtained in 73% yield as yellow solid; Mp: 230-232 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 3.2 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 7.6 Hz, 1H), 7.06-7.02 (m, 4H), 6.91 (t, J = 8.0 Hz, 1H), 6.73 (d, J = 8.0 Hz, 2H), 6.66-6.65 (m, 2H), 6.50 (d, J = 8.4 Hz, 1H), 3.96, 3.73 (AB, J = 11.6 Hz, 2H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.00, 143.08, 135.80, 133.42, 131.72, 131.08, 130.16, 129.91, 128.04, 127.84, 125.13, 124.24, 123.36, 122.10, 121.25, 120.23, 111.23, 108.64, 102.93, 67.75, 42.83, 26.14; IR (neat): 2929, 1612, 1490, 1469, 1456, 1126, 1091, 1082, 1014, 763, 752; HRMS (ESI): Exact mass calcd for C₂₄H₁₉ClN₂ONa [M+Na]⁺: 409.1078, Found: 409.1086.

Product **3ac** was obtained in 80% yield as yellow solid; Mp: 210-212 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 3.2 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 7.16 (dd, $J_1 = 16.8$ Hz, $J_2 = 8.0$ Hz, 3H), 7.04 (dd, $J_1 = 12.4$ Hz, $J_2 = 6.8$ Hz, 2H), 6.91 (t, J = 8.0 Hz, 1H), 6.67-6.65 (m, 4H), 6.50 (d, J = 8.4Hz, 1H), 3.94, 3.71 (AB, J = 11.6 Hz, 2H), 2.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.00, 143.07, 135.79, 132.07, 131.60, 130.80, 130.19, 129.91, 128.01, 125.13, 124.25, 123.38, 122.11, 121.60, 121.25, 120.23, 111.23, 108.67, 102.94, 67.69, 42.88, 26.15; IR (neat): 2933, 1724, 1612, 1508, 1489, 1469, 1456, 1263, 1126, 1093, 808, 522; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrN₂ONa [M+Na]⁺: 453.0573, Found: 453.0581.

Product **3ad** was obtained in 83% yield as yellow solid; Mp: 178-179 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.60 (m, 2H), 7.45 (s, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 1H), 7.07 (dd, *J*₁ = 15.2 Hz, *J*₂ = 7.6 Hz, 2H), 6.93 (t, *J* = 7.6 Hz, 1H), 6.89 (s, 2H), 6.71-6.67 (m, 2H), 6.52 (d, *J* = 8.4 Hz, 1H), 3.90, 3.64 (AB, *J* = 11.6 Hz, 2H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.65, 142.81, 136.50, 135.72, 132.94, 132.10, 130.45, 129.85, 127.46, 125.01, 124.25, 123.51, 122.15, 121.85, 121.27, 120.31, 111.19, 108.72, 103.05, 67.55, 42.71, 26.14; IR (neat): 2931, 1716, 1612, 1552, 1490, 1469, 1456, 1313, 1126, 1089, 1001, 732; HRMS (ESI): Exact mass calcd for C₂₄H₁₈Br₂N₂ONa [M+Na]⁺: 530.9678, Found: 530.9684.

Product **3ae** was obtained in 73% yield as yellow solid; Mp: 144-146 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 3.6 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.26-7.22 (m, 1H), 7.12 (d, J = 7.2 Hz, 1H), 7.01 (t, J = 7.6 Hz, 2H), 6.88 (t, J = 7.6 Hz, 1H), 6.72 (s, 1H), 6.64 (d, J = 2.4 Hz, 1H), 6.58 (d, J = 8.0 Hz, 1H), 6.48 (d, J = 8.4 Hz, 1H), 6.38 (s, 2H), 3.88, 3.65 (AB, J = 11.6 Hz, 2H), 2.90 (s, 3H), 2.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 174.24, 143.25, 137.01, 135.88, 132.24, 129.89, 129.72, 128.72, 128.65, 128.23, 125.35, 124.32, 123.00, 121.93, 121.15, 120.09, 111.33, 108.24, 102.66, 68.05, 43.56, 26.00, 21.07; IR (neat): 2920, 2860, 1720, 1610, 1516, 1508, 1490, 1469, 1126, 1018, 702, 690, 538; HRMS (ESI): Exact mass calcd for C₂₆H₂₄N₂ONa [M+Na]⁺: 403.1781, Found: 403.1790. Product **3af** was obtained in 85% yield as yellow solid; Mp: 190-192 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.96 (m, 1H), 7.83 (d, J = 3.2 Hz, 1H), 7.72-7.69 (m, 1H), 7.63 (d, J = 7.6 Hz, 2H), 7.37-7.35 (m, 2H), 7.15 (dd, $J_1 =$ 14.0 Hz, $J_2 = 7.6$ Hz, 2H), 7.07-7.01 (m, 3H), 6.91-6.85 (m, 2H), 6.71 (d, J = 2.8 Hz, 1H), 6.43 (dd, $J_1 = 18.0$ Hz, $J_2 = 8.4$ Hz, 2H), 4.49, 4.36 (AB, J = 12.4 Hz, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.77, 142.92, 135.95, 133.40, 132.26, 129.98, 129.73, 128.98, 128.93, 128.35, 128.20, 128.17, 125.56, 125.41, 124.93, 124.43, 124.21, 122.85, 121.99, 121.21, 120.14, 111.51, 108.09, 102.89, 68.16, 38.77, 25.93; IR (neat): 2933, 1720, 1612, 1514, 1490, 1469, 1454, 1126, 1089, 1016, 702, 692; HRMS (ESI): Exact mass calcd for C₂₈H₂₂N₂ONa [M+Na]⁺: 425.1624, Found: 425.1631.

Product **3ag** was obtained in 83% yield as yellow solid; Mp: 208-210 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.71-7.68 (m, 2H), 7.61-7.57 (m, 2H), 7.49 (d, *J* = 8.4 Hz, 1H), 7.39-7.37 (m, 2H), 7.26 (s, 1H), 7.20-7.16 (m, 2H), 7.01 (t, *J* = 7.6 Hz, 2H), 6.90-6.86 (m, 2H), 6.66 (d, *J* = 3.2 Hz, 1H), 6.50 (d, *J* = 8.4 Hz, 1H), 6.43 (d, *J* = 7.6 Hz, 1H), 4.11, 3.87 (AB, *J* = 11.6 Hz, 2H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.20, 143.06, 135.84, 132.93, 132.43, 130.03, 129.92, 129.45, 128.30 127.76, 127.51, 126.97, 125.97, 125.94, 125.31, 124.29, 123.18, 122.00, 121.19, 120.14, 111.30, 108.46, 102.79, 68.02, 43.63, 26.02; IR (neat): 2931, 1720, 1612, 1508, 1490, 1469, 1456, 1124, 1083, 1016, 1001, 734, 692; HRMS (ESI): Exact mass calcd for C₂₈H₂₂N₂ONa [M+Na]⁺: 425.1624, Found: 425.1634.

Product **3ah** was obtained in 61% yield as yellow solid; Mp: 178-180 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.60 (m, 2H), 7.36 (t, J = 7.6 Hz, 1H), 7.13-7.02 (m, 4H), 6.94 (t, J = 7.7 Hz, 1H), 6.79-6.76 (m, 2H), 6.66-6.64 (m, 2H), 6.61 (d, J = 3.2 Hz, 1H), 4.19, 4.04 (AB, J = 13.2 Hz, 2H), 3.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.03, 143.73, 135.90, 133.99, 130.31, 129.98, 128.35, 128.17, 126.31, 125.48, 125.36, 124.63, 123.40, 122.08, 121.21, 120.21, 111.58, 108.61, 102.92, 67.50, 37.58, 26.30; IR (neat): 2924, 1716, 1610, 1492, 1469, 1456, 1311, 1236, 1122, 1018, 732, 692; HRMS (ESI): Exact mass calcd for C₂₂H₁₈N₂OSNa [M+Na]⁺: 381.1032, Found: 381.1039. Product **3ai** was obtained in 60% yield as white solid; Mp: 200-202 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.30 (d, J = 4.8 Hz, 2H), 7.62-7.59 (m, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 7.05 (dd, $J_1 = 15.2$ Hz, $J_2 = 7.6$ Hz, 2H), 6.91 (t, J = 8.0 Hz, 1H), 6.72 (d, J = 4.8 Hz, 2H), 6.66-6.63 (m, 2H), 6.51 (d, J = 8.4 Hz, 1H), 3.96, 3.73 (AB, J = 11.2 Hz, 2H), 2.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.64, 149.18, 142.95, 141.86, 135.68, 130.44, 129.93, 127.51, 125.45, 125.02, 124.29, 123.52, 122.20, 121.31, 120.32, 111.18, 108.76, 103.12, 67.36, 42.77, 26.08; IR (neat): 2929, 1716, 1612, 1600, 1490, 1469, 1456, 1313, 1234, 1126, 736, 692; HRMS (ESI): Exact mass calcd for C₂₃H₁₉N₃ONa [M+Na]⁺: 376.1420, Found: 376.1423.

Product **3aj** was obtained in 37% yield as yellow solid; Mp: 110-112 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 7.2 Hz, 1H), 7.45 (td, $J_1 = 8.0$ Hz, J_2 = 1.2 Hz, 1H), 7.34 (dd, $J_1 = 7.2$ Hz, $J_2 = 0.8$ Hz, 1H), 7.28 (d, J = 3.6 Hz, 1H), 7.10 (td, $J_1 = 7.6$ Hz, $J_2 = 0.8$ Hz, 1H), 7.04-6.96 (m, 3H), 6.87 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.4$ Hz, 1H), 6.54 (dd, $J_1 = 3.2$ Hz, $J_2 = 0.8$ Hz, 1H), 3.83, 3.60 (AB, J = 15.2 Hz, 2H), 3.51 (s, 3H), 3.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.92, 168.58, 144.52, 135.60, 130.82, 130.30, 127.34, 125.85, 125.31, 123.30, 122.11, 121.32, 120.27, 112.18, 109.02, 102.96, 64.05, 52.15, 41.23, 26.77; IR (neat): 2920, 2848, 1724, 1612, 1492, 1469, 1454, 1238, 1199, 1128, 1087, 1018, 738; HRMS (ESI): Exact mass calcd for C₂₀H₁₈N₂O₃Na [M+Na]⁺: 357.1210, Found: 357.1205.

Product **3ak** was obtained in 27% yield as yellow solid; Mp: 66-68 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.56 (m, 1H), 7.44-7.35 (m, 3H), 7.15 (d, J =3.2 Hz, 1H), 7.11-7.04 (m, 3H), 6.95 (d, J = 8.0 Hz, 1H), 6.47 (d, J = 3.2 Hz, 1H), 4.01, 3.59 (AB, J = 16.0 Hz, 2H), 3.27 (s, 3H), 2.98 (s, 3H), 2.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.59, 167.46, 145.22, 135.55, 130.44, 130.40, 128.19, 126.34, 124.82, 122.61, 121.89, 121.29, 120.08, 113.23, 108.99, 102.29, 64.97, 39.48, 37.56, 35.57, 26.73; IR (neat): 2929, 1722, 1647, 1610, 1492, 1469, 1452, 1165, 1147, 1126, 1087, 731; HRMS (ESI): Exact mass calcd for C₂₁H₂₁N₃O₂Na [M+Na]⁺: 370.1526, Found: 370.1527.

Product **3al** was obtained in 65% yield as yellow solid; Mp: 80-82 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.08-6.98 (m, 3H), 6.89 (t, *J* = 7.6 Hz, 1H), 6.60 (d, *J* = 2.8 Hz, 1H), 6.46 (d, *J* = 8.4 Hz, 1H), 5.51-5.40 (m, 1H), δ 5.15 (d, *J* = 17.2 Hz, 1H), 5.07 (d, *J*

= 10.0 Hz, 1H), 3.37-3.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 174.53, 143.27, 135.78, 129.99, 129.94, 129.61, 128.65, 125.60, 124.42, 123.41, 121.94, 121.24, 121.14, 120.07, 111.19, 108.70, 102.70, 66.41, 41.58, 26.45; IR (neat): 2918, 1720, 1610, 1490, 1469, 1456, 1369, 1234, 1078, 1018, 736, 692; HRMS (ESI): Exact mass calcd for C₂₀H₁₈N₂ONa [M]⁺: 325.1311, Found: 325.1310.

Product **3am** was obtained in 83% yield as yellow solid; Mp: 100-102 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.57 (m, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.26-7.19 (m, 3H), 7.15-7.14 (m, 3H), 7.08-6.89 (m, 2H), 6.95-6.89 (m, 2H), 6.62 (d, J = 2.8 Hz, 1H), 6.48-6.42 (m, 2H), 5.83-5.76 (m, 1H), 3.49 (dd, $J_1 = 12.8$ Hz, $J_2 = 6.4$ Hz, 1H), 3.37 (dd, $J_1 = 12.4$ Hz, $J_2 = 8.4$ Hz, 1H), 3.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.57, 143.19, 136.83, 135.97, 135.86, 130.09, 129.95, 128.69, 128.63, 127.78, 126.33, 125.66, 124.48, 123.47, 121.98, 121.18, 120.81, 120.12, 111.23, 108.76, 102.83, 66.80, 40.75, 26.53; IR (neat): 1722, 1612, 1471, 1456, 1265, 1128, 968, 731, 692, 538; HRMS (ESI): Exact mass calcd for C₂₆H₂₂N₂ONa [M+Na]⁺: 401.1624, Found: 401.1632.

Product **3an** was obtained in 85% yield as yellow solid; Mp: 133-135 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58-7.56 (m, 2H), 7.36 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.13 (dd, $J_1 = 7.2$ Hz, $J_2 = 0.8$ Hz, 1H), 7.12-7.00 (m, 2H), 6.92-6.89 (m, 2H), 6.61 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.8$ Hz, 1H), 6.48 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.8$ Hz, 1H), 6.04 (s, 1H), 5.57 (d, J = 0.8 Hz, 1H), 3.97, 3.55 (AB, J = 15.2 Hz, 2H), 3.44 (s, 3H), 3.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.26, 166.98, 143.36, 135.69, 133.83, 130.28, 129.99, 129.42, 126.87, 126.04, 125.43, 123.03, 122.03, 121.23, 120.17, 111.23, 108.71, 102.85, 67.10, 51.91, 37.84, 26.35; IR (neat): 2949, 2931, 1720, 1612, 1516, 1492, 1471, 1456, 1319, 1234, 1126, 1082, 738; HRMS (ESI): Exact mass calcd for C₂₂H₂₀N₂O₃Na [M+Na]⁺: 383.1366, Found: 383.1371. Product **3ao** was obtained in 84% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, J = 3.2 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.6Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.26-7.25 (m, 5H), 7.10 (t, J = 7.6 Hz, 1H), 7.05-7.00 (m, 2H), 6.90 (t, J = 7.6 Hz, 1H), 6.63 (d, J = 2.4 Hz, 1H), 6.42 (d, J = 8.4 Hz, 1H), 3.78 (d, J = 16.4 Hz, 1H), 3.34-3.30 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 174.18, 143.26, 135.79, 131.70, 130.40, 130.01, 128.45, 128.39, 126.32, 125.20, 123.58, 122.79, 122.06, 121.20, 120.20, 111.05, 108.81, 102.91, 84.92, 82.75, 65.39, 29.20, 26.75; IR (neat): 2933, 1724, 1612, 1490, 1469, 1456, 1369, 1315, 754, 738; HRMS (ESI): Exact mass calcd for C₂₆H₂₀N₂ONa [M+Na]⁺: 399.1468, Found: 399.1476.

Product **3ap** was obtained in 64% yield as yellow solid; Mp: 138-140 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 3.2 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.35 (d, J = 7.2 Hz, 1H), 7.10 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.6 Hz, 2H), 6.88 (t, J = 7.6 Hz, 1H), 6.62 (d, J = 2.8 Hz, 1H), 6.35 (d, J = 8.4 Hz, 1H), 3.51 (d, J = 16.4 Hz, 1H), 3.33 (s, 3H), 3.01 (d, J = 16.8 Hz, 1H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.35, 143.09, 135.75, 130.22, 129.94, 128.59, 126.52, 125.14, 123.42, 121.94, 121.11, 120.08, 110.95, 108.70, 102.66, 80.71, 72.10, 65.26, 28.57, 26.67, 3.59; IR (neat): 2920, 1722, 1612, 1471, 1456, 1369, 1265, 1074, 731, 702, 536; HRMS (ESI): Exact mass calcd for C₂₁H₁₈N₂ONa [M+Na]⁺: 337.1311, Found: 337.1305.

5. General procedure for one-pot tandem sequence of keto esters.

To a 25-mL Schlenk reaction tube were added α -ketoester **9** (0.25 mmol, 1.0 equiv), aniline derivatives **5** (0.3 mmol, 1.2 equiv), MS 5Å (250.0 mg) and anhydrous toluene (1.0 mL), followed by the addition of *p*-TsOH (2.2 mg, 5 mol%). The reaction mixture was stirred at 120 °C for 2 h, and then cooled down to room temperature for concentration under vacuum. The thus obtained residue was dissolved in anhydrous MeOH (2.5 mL), followed by the addition of K₂CO₃ (69.1 mg, 0.5 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 30 min, concentrated in vacuum, and then the residue was dissolved in anhydrous DMA (5.0 mL), followed by the addition of alkyl iodides (0.5 mmol, 2.0 equiv) or alkyl bromides (0.5 mmol, 2.0 equiv) and NaH (15.0 mg, 0.375 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 12 h, and then quenched with saturated aqueous NH₄Cl (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with water (3 × 20 mL) and brine (20 mL), then dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the desired product **7a-7t**.

Product **7a** was obtained in 85% yield as white solid; Mp: 93-95 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.0 Hz, 1H), 7.46-7.43 (m, 2H), 7.27 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.14-6.98 (m, 4H), 6.77 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 6.64 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.8$ Hz, 1H), 3.71 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃): δ 169.97, 138.12, 136.04, 132.44, 131.54, 130.24, 129.37, 128.91, 127.02, 125.90, 121.40, 120.93, 120.06, 115.33, 103.07, 68.15, 52.88, 25.57; IR (neat): 2951, 2922, 1739, 1517, 1471, 1452, 1292, 1230, 1112, 1091, 1018, 763, 742; HRMS (ESI): Exact mass calcd for C₁₈H₁₆ClNO₂Na [M+Na]⁺: 336.0762, Found: 336.0760.

Product **7b** was obtained in 74% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.59 (m, 1H), 7.51 (d, J = 3.6 Hz, 1H), 7.44 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.29 (td, $J_1 = 8.4$ Hz, $J_2 = 2.0$ Hz, 1H), 7.16 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7b 7.06 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 2H), 6.94-6.91 (m, 2H), 6.63 (dd, $J_1 = 3.6$ Hz, J_2

= 0.8 Hz, 1H), 3.64 (s, 3H), 3.04-2.98 (m, 1H), 2.92-2.86 (m, 1H), 0.81 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.93, 135.87, 135.22, 132.73, 131.48, 131.13, 130.10, 129.34, 126.86, 126.16, 121.17, 120.78, 119.99, 115.59, 103.13, 71.31, 52.64, 28.13, 8.98; IR (neat): 2949, 1737, 1508, 1471, 1452, 1433, 1192, 1180, 1018, 1004, 734, 688; HRMS (ESI): Exact mass calcd for C₁₉H₁₈ClNO₂Na [M+Na]⁺: 350.0918, Found: 350.0917.

Product 7c was obtained in 62% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (m, 1H), 7.46 (d, J = 3.6 Hz, 1H), 7.43 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, f_{c} 1H), 7.28 (td, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.15 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.06-7.03 (m, 2H), 6.94-6.91 (m, 2H), 6.62 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.4$ Hz, 1H), 3.64 (s, 3H), 2.91-2.87 (m, 2H), 1.35-1.27 (m, 3H), 0.88-0.84 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ

169.90, 135.92, 135.53, 132.70, 131.44, 130.94, 130.10, 129.30, 126.73, 126.19, 121.18, 120.79, 119.99, 115.60, 103.16, 70.97, 52.64, 34.73, 26.43, 22.81, 13.96; IR (neat): 2929, 1737, 1519, 1469, 1452, 1431, 1193, 1180, 1053, 1018, 763, 738; HRMS (ESI): Exact mass calcd for C₂₁H₂₂ClNO₂Na [M+Na]⁺: 378.1231, Found: 378.1238.

Product **7d** was obtained in 65% yield as yellow solid; Mp: 83-85 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 3.6 Hz, 1H), 7.44 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1H), 7.29 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.15-7.13 (m, 1H), 7.06-7.03 (m, 2H), 6.95-6.92 (m, 2H), 6.63 (d, J = 3.6 Hz, 1H), 3.64 (s, 3H), 2.94-2.87 (m, 2H), 1.62-1.50 (m, 1H), 1.31-1.25 (m, 1H), 0.91 (d, J = 6.8 Hz, 3H), 0.84 (d, J =6.8 Hz, 3H), 0.76-0.74 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.92, 135.94, 135.46, 132.67, 131.44, 131.03, 130.11, 129.30, 126.73, 126.15, 121.17, 120.79, 120.00, 115.65, 103.17, 71.04, 52.64, 33.08, 32.92, 28.38, 22.71, 22.40; IR (neat): 2954, 2927, 1737, 1469, 1452, 1431, 1195, 1180, 1055, 1047, 1018, 734, 704; HRMS (ESI): Exact mass calcd for C₂₂H₂₄ClNO₂Na [M+Na]⁺: 392.1388, Found: 392.1396. Product 7e was obtained in 76% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.57 (d, J = 7.6 Hz, 1H), 7.41 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.28-7.26 (m, 2H), 7.24-7.17 (m, 2H), 7.18-7.10 (m, 2H), 7.09-6.99 (m, 4H), 6.92-6.88 (m, 2H), 6.56 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.8$ Hz, 1H), 3.60 (s, 3H), 2.94-2.87 (m, 2H), 2.59 (t, J= 7.6 Hz, 2H), 1.67-1.64 (m, 1H), 1.28-1.22 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.79, 141.39, 135.89, 135.36, 132.73, 131.48, 130.91, 130.10, 129.40, 128.54, 128.53, 126.63, 126.27, 126.16, 121.21, 120.81, 120.02, 115.57, 103.22, 70.88, 52.66, 35.66, 34.29, 25.93; IR (neat): 2922, 1737, 1517, 1469, 1452, 1431, 1195, 1178, 1037, 1018, 734, 698; HRMS (ESI): Exact mass calcd for C₂₆H₂₄ClNO₂Na [M+Na]⁺: 440.1388, Found: 440.1398.

Product **7f** was obtained in 53% yield as yellow solid; Mp: 98-100 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 3.6 Hz, 1H), 7.45 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.31 (td, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.17 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.07-7.03 (m, 2H), 6.95-6.93 (m, 1H), 6.91-6.90 (m, 1H), 6.64 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.8$ Hz, 1H), 3.66 (s, 3H), 3.55-3.51 (m, 1H), 3.49-3.46 (m, 1H), 3.23-3.13 (m, 1H), 3.03-2.92 (m, 1H), 1.84-1.81 (m, 1H), 1.42-1.36 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 169.58, 135.89, 135.17, 132.73, 131.66, 130.73, 130.14, 129.65, 126.56, 126.45, 121.35, 120.92, 120.16, 115.54, 103.56, 70.51, 52.83, 44.74, 32.72, 27.61; IR (neat): 2951, 2920, 1735, 1519, 1469, 1452, 1431, 1197, 1180, 1089, 1018, 763, 736; HRMS (ESI): Exact mass calcd for C₂₀H₁₉Cl₂NO₂Na [M+Na]⁺: 398.0685, Found: 398.0694.

Product **7g** was obtained in 50% yield as white solid; Mp: 58-60 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 7.6 Hz, 1H), 7.47 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.36 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.23 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.23 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.47 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.36 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.32 (d, J = 3.6 Hz, 1H), 7.47 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, $J_1 = 1.6$ Hz, $J_2 =$

7gHz, $J_2 = 1.6$ Hz, 1H), 7.13-7.04 (m, 2H), 7.01-6.95 (m, 1H), 6.84 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.4$ Hz, 1H), 6.66 (dd, $J_1 = 3.2$ Hz, $J_2 = 0.4$ Hz, 1H), 3.71 (s, 3H), 3.46-3.36 (m, 1H),3.30-3.20 (m, 1H), 2.45-2.35 (m, 1H), 2.08-1.97 (m, 1H); 13 C NMR (100 MHz, CDCl₃): δ 169.22,135.78, 134.02, 132.90, 132.15, 130.39, 130.30, 130.09, 127.01, 125.95, 121.97, 121.31, 120.58,118.59, 114.80, 104.22, 69.99, 53.26, 31.55, 13.20; IR (neat): 2954, 2254, 1737, 1452, 1433, 1265,763; HRMS (ESI): Exact mass calcd for C₂₀H₁₇ClN₂O₂Na [M+Na]⁺: 375.0871, Found: 375.0874.

Product **7h** was obtained in 65% yield as yellow solid; Mp: 102-104 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 3.6 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.47 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.32 (td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.14 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.11-7.06 (m, 1H), 7.03-6.96 (m, 3H), 6.66 (d, J = 3.2 Hz, 1H), 3.94, 3.77 (ABd, $J_1 = 18.0$ Hz, $J_2 = 2.4$ Hz, 2H), 3.67 (s, 3H), 1.93 (t, J = 2.4 Hz, 1H); ¹³C

NMR (100 MHz, CDCl₃): δ 168.53, 135.71, 134.33, 132.17, 131.73, 131.12, 130.24, 129.85, 127.06, 126.18, 121.37, 120.89, 120.26, 115.70, 103.44, 78.35, 73.64, 69.86, 52.98, 27.41; IR (neat): 2951, 1735, 1508, 1471, 1454, 1431, 1242, 1193, 1058, 1047, 1020, 734, 690; HRMS (ESI): Exact mass calcd for C₂₀H₁₆ClNO₂Na [M+Na]⁺: 360.0762, Found: 360.0765.

Product 7i was obtained in 70% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.61-7.57 (m, 2H), 7.43 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.30-7.26 (m, 1H), $\gamma_1 = 1.6$ Hz, 1H), 6.98-6.89 (m, 2H), 6.62-6.61 (m, 1H), 5.59-5.52 (m, 1H), 5.11-5.06 (m, 1H), 5.01-4.98 (m, 1H), 3.82-3.73 (m, 1H), 3.67-3.62 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 169.47, 135.96, 135.20, 132.77, 131.90, 131.49, 131.00, 130.12, 129.49, 127.00, 126.27, 121.26, 120.85, 120.12, 119.70, 115.50, 103.21, 70.66, 52.76, 39.70; IR (neat): 2953, 1737, 1473, 1454, 1433, 1265, 1020, 731, 702; HRMS (ESI): Exact mass calcd for C₂₀H₁₈ClNO₂Na [M+Na]⁺: 362.0918, Found: 362.0919.

Product **7j** was obtained in 80% yield as white solid; Mp: 127-128 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.61 (m, 2H), 7.46 (d, J = 3.6 Hz, 1H), 7.18-7.16 (m, (400 MHz, CDCl₃): δ 7.65-7.61 (m, 2H), 7.46 (d, J = 3.6 Hz, 1H), 7.18-7.16 (m, 2H), 7.08-7.06 (m, 1H), 6.99-6.96 (m, 2H), 6.82-6.80 (m, 1H), 6.64 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.4$ Hz, 1H), 3.71 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.91, 139.43, 136.05, 135.21, 130.25, 129.52, 129.21, 127.59, 125.99, 121.88, 121.37, 120.90, 120.06, 115.40, 103.13, 69.21, 52.90, 25.80; IR (neat): 2949, 1737, 1517, 1467, 1452, 1429, 1193, 1111, 1089, 1039, 1018, 761, 740; HRMS (ESI): Exact mass calcd for C₁₈H₁₆BrNO₂Na [M+Na]⁺: 380.0257, Found: 380.0257. Product **7k** was obtained in 75% yield as yellow solid; Mp: 160-162 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.61 (d, J = 7.6 Hz, ^{-Me}Co₂Me 1H), 7.46 (d, J = 3.6 Hz, 1H), 7.29-7.22 (m, 1H), 7.09-7.04 (m, 1H), 6.99 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 6.96-6.88 (m, 2H), 6.85 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.8$ Hz,

1H), 6.64 (dd, $J_1 = 3.2$ Hz, $J_2 = 0.4$ Hz, 1H), 3.71 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.10, 142.89, 141.72, 136.22, 130.20, 129.50, 128.82, 128.36, 126.18, 121.37, 120.85, 120.01, 115.14, 103.21, 95.19, 70.58, 52.95, 26.12; IR (neat): 2922, 1735, 1562, 1517, 1508, 1489, 1452, 1193, 1126, 1087, 1008, 761, 740; HRMS (ESI): Exact mass calcd for C₁₈H₁₆INO₂Na [M+Na]⁺: 428.0118, Found: 428.0121.

7k

Product **71** was obtained in 52% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 1H), 7.42 (t, J = 1.6 Hz, 1H), 7.35-7.31 (m, 1H), 7.26 (t, J = 8.0 $CI + CO_2Me$ Hz, 1H), 7.14-7.10 (m, 3H), 7.08-7.04 (m, 1H), 6.78 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1H), 6.58 (dd, $J_1 = 3.2$ Hz, $J_2 = 0.8$ Hz, 1H), 3.74 (s, 3H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.86, 142.10, 136.13, 134.66, 129.91, 129.85, 128.66, 127.54, 126.08, 125.41, 121.91, 121.30, 120.09, 112.64, 102.52, 67.14, 53.31, 26.96; IR (neat): 2953, 1737, 1516, 1508, 1475, 1456, 1433, 1263, 1195, 1111, 1072, 763, 702; HRMS (ESI): Exact mass calcd for C₁₈H₁₆ClNO₂Na [M+Na]⁺: 336.0762, Found: 336.0767.

Product **7m** was obtained in 50% yield as yellow solid; Mp: 103-105 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.63-7.61 (m, 1H), 7.33-7.27 (m, 2H), 7.26-7.20 (m, 2H), 7.13 (d, J = 3.2 Hz, 1H), 7.08 (td, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 7.05-6.99 (m, 1H), 6.76 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.8$ Hz, 1H), 6.56 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.8$ Hz, 1H), 3.72 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.05, 138.60, 136.12, 134.42, 129.85, 128.82, 128.68, 126.07, 121.87, 121.29, 120.07, 112.66, 102.44, 67.06, 53.26, 26.98; IR (neat): 2951, 2918, 1735, 1516, 1492, 1456, 1433, 1195, 1095, 1076, 1012, 765, 713; HRMS (ESI): Exact mass calcd for C₁₈H₁₆ClNO₂Na [M+Na]⁺: 336.0762, Found: 336.0767. Product **7n** was obtained in 44% yield as yellow solid; Mp: 85-87 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 1H), 7.37 (s, 5H), 7.11-7.08 (m, 2H), **Me** Co₂Me 7.07-7.03 (m, 1H), 6.82 (dd, $J_1 = 8.0$ Hz, $J_2 = 0.8$ Hz, 1H), 6.55 (dd, $J_1 = 3.6$ Hz, **7n** $J_2 = 0.8$ Hz, 1H), 3.75 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.40, 139.82, 136.25, 129.87, 128.71, 128.50, 127.22, 126.48, 121.63, 121.19, 119.86, 112.84, 102.06, 67.55, 53.13, 26.49; IR (neat): 2951, 2922, 1735, 1514, 1494, 1473, 1454, 1433, 1195, 1107, 1074, 1018, 738, 696; HRMS (ESI): Exact mass calcd for C₁₈H₁₇NO₂Na [M+Na]⁺: 302.1151, Found: 302.1147.

Product **70** was obtained in 60% yield as yellow solid; Mp: 140-141 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 3.6 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.28-7.22 (m, 3H), 7.15-7.09 (m, 2H), 7.04 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 3H), 6.87 (t, J = 7.6 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 7.6 Hz, 2H), 6.55 (d, J = 3.6 Hz, 1H), 4.34, 4.04 (AB, J = 13.6 Hz, 2H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.31, 135.81, 135.45, 134.72, 133.80, 131.59, 130.94, 130.73, 129.92, 129.48, 127.94, 127.70, 127.15, 126.25, 121.11, 120.89, 119.89, 114.21, 102.47, 71.42, 52.80, 42.00; IR (neat): 2922, 1739, 1496, 1473, 1452, 1431, 1288, 1224, 1193, 1176, 1082, 1020, 740, 700; HRMS (ESI): Exact mass calcd for C₂₄H₂₀ClNO₂Na [M+Na]⁺: 412.1075, Found: 412.1084.

Product **7p** was obtained in 51% yield as white solid; Mp: 151-153 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 3.6 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), **7**p 7.29-7.24 (m, 3H), 7.18-7.16 (m, 1H), 7.07-7.02 (m, 3H), 6.93-6.86 (m, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.63 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 3.6 Hz, 1H), 4.34, 4.00 (AB, J = 13.6 Hz, 2H), 3.68 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.30, 135.85, 135.26, 133.83, 133.25, 133.21, 132.13, 131.72, 130.85, 129.96, 129.66, 128.07, 127.42, 126.45, 121.25, 120.99, 120.01, 114.24, 102.76, 71.37, 52.84, 41.49; IR (neat): 1743, 1735, 1508, 1490, 1452, 1433, 1274, 1259, 1193, 1016, 763, 748; HRMS (ESI): Exact mass calcd for C₂₄H₁₉Cl₂NO₂Na [M+Na]⁺: 446.0685, Found: 446.0695.

Product 7q was obtained in 41% yield as white solid; Mp: 150-152 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.94 (d, J = 3.6 Hz, 1H), 7.78-7.71 (m, 1H), 7.61 $(d, J = 7.6 \text{ Hz}, 1\text{H}), 7.47 (dd, J_1 = 8.0 \text{ Hz}, J_2 = 1.2 \text{ Hz}, 1\text{H}), 7.36-7.26 (m, 3\text{H}),$ ⁻2-BrC₆H₄ 7.07-6.99 (m, 2H), 6.96-6.86 (m, 2H), 6.78 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.4$ Hz, 1H),

 $6.50 (dd, J_1 = 3.6 Hz, J_2 = 0.4 Hz, 1H), 6.29-6.19 (m, 1H), 4.50, 4.37 (AB, J = 14.4 Hz, 2H), 3.71$ (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.01, 136.79, 135.68, 134.64, 134.41, 132.77, 131.80, 131.72, 130.01, 129.93, 129.61, 128.83, 127.12, 126.37, 126.34, 121.26, 121.12, 119.88, 113.23, 101.76, 70.24, 53.20, 40.79; IR (neat): 2951, 1745, 1473, 1452, 1433, 1253, 1197, 1178, 1066, 1022, 758, 738; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrClNO₂Na [M+Na]⁺: 490.0180, Found: 490.0193.

Product 7r was obtained in 57% yield as yellow solid; Mp: 118-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 3.6 Hz, 1H), 7.71 (d, J = 2.0 Hz, 1H), CO₂Me 7.31-7.26 (m, 3H), 7.20-7.13 (m, 2H), 7.07 (t, J = 7.6 Hz, 2H), 6.95 (dd, $J_1 = 9.2$ Ph CI Hz, $J_2 = 2.0$ Hz, 1H), 6.66 (d, J = 7.6 Hz, 2H), 6.58 (d, J = 8.8 Hz, 1H), 6.48 (d, 7r J = 3.6 Hz, 1H), 4.29, 4.03 (AB, J = 13.2 Hz, 2H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.10, 135.25, 134.43, 134.40, 133.88, 131.75, 131.62, 130.64, 129.73, 129.07, 128.03, 127.31, 126.45, 123.95, 123.36, 115.30, 113.34, 101.88, 71.43, 52.93, 42.08; IR (neat): 2951, 1739, 1564, 1516, 1508, 1496, 1471, 1446, 1192, 1082, 1056, 1026, 736, 700; HRMS (ESI): Exact mass calcd for C₂₄H₁₉BrClNO₂Na [M+Na]⁺: 490.0180, Found: 490.0189.

-CO₂Me

വ

7q

Product 7s was obtained in 65% yield as yellow solid; Mp: 120-122 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 3.6 Hz, 1H), 7.40 (s, 1H), 7.32-7.24 (m, 3H), 7.16-7.13 (m, 2H), 7.09-7.05 (m, 2H), 6.73-6.72 (m, 3H), 6.66-6.64 (m,

1H), 6.51-6.50 (m, 1H), 4.35, 4.06 (AB, J= 13.6 Hz, 2H), 3.70 (s, 3H), 2.40 (s, 7s 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.33, 135.54, 134.78, 134.15, 133.79, 131.52, 130.97, 130.75, 130.22, 129.42, 129.06, 127.91, 127.76, 127.11, 126.20, 122.74, 120.63, 113.89, 102.00, 71.35, 52.74, 41.95, 21.32; IR (neat): 2920, 2856, 1737, 1496, 1471, 1456, 1431, 1225, 1192, 1176, 1082, 1028, 731, 700; HRMS (ESI): Exact mass calcd for C₂₅H₂₂ClNO₂Na [M+Na]⁺: 426.1231, Found: 426.1239.

Product **7t** was obtained in 72% yield as white solid; Mp: 60-62 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 3.6 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.32 (td, J_1 = 8.0 Hz , J_2 = 1.2 Hz, 2H), 7.25 (td, J_1 = 7.2 Hz , J_2 = 1.6 Hz, 1H), 7.19-7.12 (m, 2H), 7.09-7.05 (m, 2H), 6.90 (dd, J_1 = 8.0 Hz , J_2 = 0.8 Hz, 1H),

6.72 (d, J = 7.2 Hz, 2H), 6.55 (s, 1H), 6.52 (dd, $J_1 = 3.6$ Hz , $J_2 = 0.4$ Hz, 1H), 4.35, 4.08 (AB, J = 13.6 Hz, 2H), 3.71 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.31, 136.25, 135.57, 134.83, 133.81, 131.58, 130.97, 130.72, 130.60, 129.40, 127.91, 127.75, 127.25, 127.11, 126.15, 121.64, 120.40, 114.23, 102.20, 71.37, 52.77, 41.97, 22.13; IR (neat): 2920, 1737, 1516, 1496, 1471, 1456, 1433, 1192, 1176, 1082, 752, 700; HRMS (ESI): Exact mass calcd for C₂₅H₂₂ClNO₂Na [M]⁺: 426.1231, Found: 426.1243.

6. Product transformation

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanoate **7j** (107.5 mg, 0.3 mmol) in THF/H₂O (v/v = 1:1, 3 mL) was added LiOH·H₂O (63.0 mg, 1.5 mmol). The reaction mixture was stirred at 50 °C for 48 h, and then cooled down to room temperature, acidified with HCl (2 M, 10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (CH₂Cl₂/MeOH, 20/1, v/v) to afford the title compound **10** in 84% yield as white solid; Mp: 186-188 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.64-7.61 (m, 2H), 7.44 (d, *J* = 3.6 Hz, 1H), 7.20-7.18 (m, 2H), 7.09-7.06 (m, 1H), 6.97-6.90 (m, 3H), 6.60-6.65 (m, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.55, 138.56, 136.02, 135.34, 130.18, 129.70, 129.18, 127.61, 125.89, 121.94, 121.49, 120.93, 120.18, 115.36, 103.39, 69.12, 25.42; IR (neat): 2922, 1708, 1608, 1517, 1467, 1452, 1230, 1193, 1114, 1089, 1020, 738; HRMS (ESI): Exact mass calcd for C₁₇H₁₄BrNO₂Na [M+Na]⁺: 366.0100, Found: 366.0091.

To a solution of PhNH₂ (69.8 mg, 0.75 mmol) in dry THF (2 mL) was added NaHMDS (0.6 mL, 1.0 M in THF, 0.6 mmol) dropwise at 0 °C. Then the reaction mixture was stirred for 20 min before methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanoate **7j** (107.5 mg, 0.3 mmol) in THF (1 mL) was added dropwise. The resulting mixture was allowed to warm to room temperature and stirred for 12 h, and then quenched with saturated aqueous NH₄Cl solution (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the title compound **11** in 68% yield as yellow solid; Mp: 78-80 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.55 (dd, $J_1 =$

7.6 Hz, $J_2 = 1.2$ Hz, 1H), 7.47 (s, 1H), 7.43 (d, J = 3.6 Hz, 1H), 7.41-7.36 (m, 1H), 7.25-7.21 (m, 5H), 7.11-7.09 (m, 2H), 6.97-6.91 (m, 1H), 6.71 (dd, $J_1 = 3.6$ Hz, $J_2 = 0.8$ Hz, 1H), 6.57 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.8$ Hz, 1H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 169.39, 138.52, 137.13, 136.44, 135.70, 130.42, 129.97, 129.72, 129.10, 128.09, 126.88, 125.10, 122.67, 122.56, 121.80, 120.71, 120.33, 112.11, 103.93, 71.08, 25.12; IR (neat): 2924, 1683, 1597, 1498, 1465, 1440, 1313, 1242, 1138, 1078, 1020, 752, 692; HRMS (ESI): Exact mass calcd for C₂₃H₁₉BrN₂ONa [M+Na]⁺: 441.0573, Found: 441.0580.

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanoate **7j** (1.97 g, 5.5 mmol) in dry THF (55 mL) was added LiAlH₄ (418.0 mg, 11.0 mmol) at -78 °C. The reaction mixture was stirred at -78 °C for 2 h, and then quenched with saturated aqueous NH₄Cl solution (20 mL), extracted with EtOAc (2 × 30 mL), dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the aldehyde **12** in 77% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 10.36 (s, 1H), 7.66-7.64 (m, 2H), 7.32-7.25 (m, 3H), 7.10-7.06 (m, 2H), 7.01-6.94 (m, 1H), 6.78 (dd, *J*₁ = 8.4 Hz, *J*₂ = 0.8 Hz, 1H), 6.66 (dd, *J*₁ = 3.2 Hz, *J*₂ = 0.4 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 194.30, 138.40, 135.44, 130.30, 130.26, 129.41, 128.32, 125.39, 121.89, 121.55, 121.24, 120.35, 112.69, 103.66, 70.47, 22.10; IR (neat): 1726, 1516, 1452, 1427, 1292, 1265, 1234, 1022, 731, 702; HRMS (ESI): Exact mass calcd for C₁₇H₁₄BrNONa [M+Na]⁺: 350.0151, Found: 350.0145.

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanal **12** (98.5 mg, 0.3 mmol) in dry MeOH (3 mL) was added NaBH₄ (28.4 mg, 0.75 mmol) at 0 °C. The reaction mixture was then allowed to warm to room temperature and stirred for 12 h before saturated aqueous solution of NH₄Cl (10 mL) was added. The aqueous layer was separated and extracted with EtOAc (3×10

mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 5/1, v/v) to afford the title compound **13** in 100% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.0 Hz, 1H), 7.52 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 2H), 7.46-7.41 (m, 2H), 7.17 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.04-7.00 (m, 1H), 6.86-6.82 (m, 1H), 6.59 (dd, $J_1 = 3.2$ Hz, $J_2 = 0.8$ Hz, 1H), 6.52 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.4$ Hz, 1H), 4.52 (d, J = 11.2 Hz, 1H), 4.32-4.30 (m, 1H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 140.76, 136.30, 135.19, 129.98, 129.27, 127.96, 127.76, 127.17, 122.51, 121.21, 121.13, 119.65, 111.90, 101.69, 68.03, 64.41, 23.65; IR (neat): 3502, 2981, 2887, 1512, 1473, 1454, 1055, 1037, 1018, 734; HRMS (ESI): Exact mass calcd for C₁₇H₁₆BrNONa [M+Na]⁺: 352.0307, Found: 352.0298.

To a 10-mL sealed tube were added 2-(2-bromophenyl)-2-(1H-indol-1-yl)propan-1-ol **13** (99.1 mg, 0.3 mmol) , CuI (5.7 mg, 0.03 mmol), 'BuOLi (72.1 mg, 0.9 mmol) and 1,4-dioxane (3 mL). The reaction mixture was stirred at room temperature for 5 min and then at 100 °C for 5 h, and then filtered through celite and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the title compound **14** in 93% yield as yellow solid; Mp: 68-70 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.65-7.63 (m, 1H), 7.36-7.31 (m, 1H), 7.21-7.18 (m, 2H), 7.11-7.07 (m, 3H), 7.01-6.96 (m, 2H), 6.48 (d, *J* = 3.2 Hz, 1H), 5.04, 4.57 (AB, *J* = 9.6 Hz, 2H), 2.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 159.77, 134.67, 130.52, 130.13, 126.03, 124.48, 121.55, 121.43, 121.39, 119.78, 112.05, 110.97, 101.22, 81.76, 65.69, 27.30; IR (neat): 2933, 1598, 1479, 1454, 1244, 1220, 1199, 1178, 1149, 1107, 736, 711; HRMS (ESI): Exact mass calcd for C₁₇H₁₅NONa [M+Na]⁺: 272.1046, Found: 272.1049.

To a solution of methyltriphenylphosphonium bromide (643.0 mg, 1.8 mmol) in dry THF (2 mL) was added "BuLi (0.6 mL, 2.5 M in hexane, 1.5 mmol) dropwise at -78 °C, and then allowed to warm to room temperature and stirred for 1 h before aldehyde **12** (98.5 mg, 0.3 mmol) in THF (1 mL) was added dropwise at -78 °C. The resulting mixture was allowed to warm to room temperature and stirred for 7 h, and then quenched with saturated aqueous NH₄Cl solution (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the title compound **15** in 70% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.64 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.52 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.42-7.38 (m, 2H), 7.17 (td, $J_1 = 7.6$ Hz, $J_2 = 1.6$ Hz, 1H), 7.04-7.00 (m, 1H), 6.88-6.81 (m, 2H), 6.58-6.55 (m, 2H), 5.31 (d, J = 10.8 Hz, 1H), 5.08 (d, J = 17.2 Hz, 1H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.81, 140.15, 136.23, 135.42, 129.92, 129.27, 128.77, 127.83, 126.31, 122.58, 121.05, 120.99, 119.34, 115.32, 112.24, 101.49, 65.03, 25.42; IR (neat): 2987, 1512, 1467, 1454, 1425, 1292, 1263, 1230, 1018, 732, 702; HRMS (ESI): Exact mass calcd for C₁₈H₁₆BrNNa [M+Na]⁺: 348.0358, Found: 348.0351.

To a solution of methyl 2-(2-bromophenyl)-2-(1H-indol-1-yl)propanal **12** (98.5 mg, 0.3 mmol) in dry MeOH (3 mL) were added BnNH₂ (96.5 mg, 0.9 mmol) and MS 5Å (600 mg). The reaction mixture was stirred at 80 °C for 12 h before NaBH₃CN (56.5 mg, 0.9 mmol) and AcOH (45.1 mg, 0.75 mmol) were added at 0 °C. The resulting mixture was allowed to warm to room temperature and stirred for 4 h, and then quenched with saturated aqueous NaHCO₃ solution (10 mL) and extracted with EtOAc (3×10 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography

(PE/EtOAc, 10/1, v/v) to afford the title compound **16** in 85% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 1H), 7.53 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.48-7.45 (m, 2H), 7.37 (td, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz, 1H), 7.25-7.19 (m, 3H), 7.15-7.10 (m, 3H), 7.02-6.98 (m, 1H), 6.81-6.77 (m, 1H), 6.55 (dd, $J_1 = 3.2$ Hz, $J_2 = 0.8$ Hz, 1H), 6.49 (dd, $J_1 = 8.4$ Hz, $J_2 = 0.4$ Hz, 1H), 3.70-3.64 (m, 3H), 3.48 (d, J = 11.2 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.93, 140.28, 136.19, 135.11, 129.98, 128.99, 128.44, 127.99, 127.88, 127.74, 127.35, 126.99, 122.45, 120.97, 120.90, 119.45, 111.88, 101.12, 63.58, 55.89, 53.75, 25.06; IR (neat): 2981, 1606, 1512, 1494, 1473, 1454, 1363, 1116, 1018, 734, 696; HRMS (ESI): Exact mass calcd for C₂₄H₂₄BrN₂ [M+H]⁺: 419.1117, Found: 419.1125.

To a solution of *N*-benzyl-2-(2-bromophenyl)-2-(1H-indol-1-yl)propan-1-amine **16** (125.8 mg, 0.3 mmol) in dry DMSO (3 mL) were added CuI (11.4 mg, 0.06 mmol) and CsOAc (115.2 mg, 0.9 mmol). The reaction mixture was stirred at room temperature for 24 h and filtered through celite, then extracted with saturated aqueous NaCl solution (10 mL) and EtOAc (3×10 mL). The organic layers were washed three times with H₂O (3×10 mL), dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was purified by column chromatography (PE/EtOAc, 20/1, v/v) to afford the title compound **17** in 98% yield as yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (m, 1H), 7.29-7.21 (m, 7H), 7.03-6.94 (m, 4H), 6.72-6.68 (m, 2H), 6.44 (d, *J* = 3.2 Hz, 1H), 4.49, 4.30 (AB, *J* = 15.2 Hz, 2H), 3.94, 3.45 (AB, *J* = 9.6 Hz, 2H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.83, 137.85, 134.93, 132.36, 130.49, 129.72, 128.74, 127.94, 127.49, 126.35, 124.15, 121.20, 120.97, 119.40, 118.20, 112.97, 107.95, 100.76, 65.02, 64.44, 52.54, 27.60; IR (neat): 2924, 1606, 1508, 1489, 1473, 1454, 1313, 1292, 1220, 1159, 1026, 1018, 736, 698; HRMS (ESI): Exact mass calcd for C₂₄H₂₂N₂Na [M+Na]⁺: 361.1675, Found: 361.1666.

7. X-ray crystallography data of 70

Single-Crystal X-ray Crystallography of 7o (CCDC: 2235158)

Table 5 Crystal data and structure refinement for 70.

Identification code	70
Empirical formula	$C_{24}H_{20}CINO_2$
Formula weight	389.86
Temperature/K	190(20)
Crystal system	triclinic
Space group	P-1
a/Å	6.8922(2)
b/Å	10.1765(3)
c/Å	14.9016(4)
$\alpha/^{\circ}$	109.628(2)
β/°	97.057(2)
$\gamma/^{\circ}$	93.235(2)
Volume/Å ³	971.63(5)
Z	2
$\rho_{calc}g/cm^3$	1.333
μ/mm^{-1}	1.892
F(000)	408.0
Crystal size/mm ³	$0.32 \times 0.25 \times 0.12$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.37 to 134.158
Index ranges	$-8 \leq h \leq 8, -11 \leq k \leq 12, -17 \leq 1 \leq 17$
Reflections collected	19351
Independent reflections	
Data/restraints/parameters	3432 [R _{int} = 0.0370, R _{sigma} = 0.0224] 3432/0/254
Goodness-of-fit on F^2	1.072
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0346, WR_2 = 0.0913$
Final R indexes [all data]	$R_1 = 0.0346, wR_2 = 0.0913$ $R_1 = 0.0356, wR_2 = 0.0920$
Largest diff. peak/hole / e Å ⁻³	$R_1 = 0.0330, WR_2 = 0.0920$ 0.54/-0.34
Largest unit. peak/noie / e A	0.34/-0.34

Table 6 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 70. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

	/1 •			
Atom	x	у	Z.	U(eq)
Cl1	9635.2(6)	1359.6(4)	6677.7(3)	39.90(14)
01	6809.6(14)	5888.4(11)	9173.3(7)	27.8(2)
O2	4282.2(15)	4558.3(12)	8118.9(8)	36.3(3)
N1	7866.4(16)	2978.8(12)	8366.2(8)	22.3(3)
C7	9603.1(19)	5856.7(15)	7425.7(10)	24.4(3)
C15	9597.3(19)	4915.4(15)	8020.0(10)	24.0(3)
C2	6930.8(19)	3273.2(15)	6775.0(10)	22.8(3)
C13	6016.0(19)	4849.6(15)	8364.5(10)	22.7(3)
C17	6525(2)	1847.0(14)	8269.1(10)	22.7(3)
C16	7620.6(19)	4000.1(14)	7860.2(9)	20.8(3)
C22	7289(2)	1205.3(15)	8925.9(10)	26.7(3)
C8	8688(2)	7091.6(16)	7657.3(11)	29.5(3)
C24	9416(2)	3041.6(16)	9074.0(11)	29.0(3)
C18	4712(2)	1352.9(16)	7680.5(11)	28.1(3)
C3	5552(2)	3848.0(17)	6285.8(11)	28.9(3)
C23	9119(2)	1990.6(17)	9422.2(11)	32.0(3)
C12	10566(2)	5511.4(17)	6626.0(11)	32.7(3)
C21	6202(2)	40.5(16)	8989.1(11)	32.4(3)
C14	5412(2)	6688.9(17)	9726.7(12)	33.8(4)
C6	7008(3)	1440.0(18)	5227.9(12)	37.2(4)
C19	3690(2)	196.3(17)	7761.0(12)	35.0(4)
C10	9671(2)	7570.0(17)	6301.2(12)	35.2(4)
C20	4422(2)	-452.4(17)	8406.3(12)	36.2(4)
C9	8707(2)	7935.3(17)	7096.6(12)	34.1(4)
C1	7704(2)	2085.3(16)	6209.4(11)	28.3(3)
C11	10614(3)	6360.0(18)	6071.5(12)	37.9(4)
C4	4887(2)	3229.3(19)	5307.6(12)	37.5(4)
C5	5585(3)	2004(2)	4784.3(12)	41.4(4)

Tactor	factor exponent takes the form: $-2\pi^2$ [1- π^{-2} -011+2nka 0^{-1} 012+].								
Atom	U 11	U_{22}	U 33	U23	U 13	U12			
Cl1	42.3(2)	36.8(2)	44.8(2)	14.14(18)	13.94(18)	21.17(17)			
01	25.5(5)	28.7(5)	25.4(5)	2.9(4)	6.5(4)	5.2(4)			
O2	18.5(5)	43.7(7)	39.8(6)	5.5(5)	3.4(4)	6.1(5)			
N1	19.9(6)	22.7(6)	23.8(6)	8.4(5)	0.3(4)	3.4(4)			
C7	18.1(6)	22.8(7)	28.6(7)	5.5(6)	1.5(5)	-2.0(5)			
C15	16.2(6)	23.8(7)	29.7(7)	6.9(6)	1.9(5)	2.4(5)			
C2	20.3(6)	23.8(7)	23.9(7)	8.5(6)	3.1(5)	-1.3(5)			
C13	20.9(7)	23.6(7)	25.2(7)	10.2(6)	3.0(5)	4.6(5)			
C17	24.5(7)	21.1(7)	22.0(7)	5.4(5)	6.5(5)	5.5(5)			
C16	17.9(6)	20.8(7)	23.4(7)	7.4(5)	1.7(5)	3.8(5)			
C22	30.8(7)	25.8(7)	25.2(7)	8.1(6)	8.3(6)	10.6(6)			
C8	30.8(8)	26.4(8)	31.4(8)	8.2(6)	9.2(6)	4.4(6)			
C24	23.6(7)	30.7(8)	30.3(8)	10.3(6)	-4.8(6)	3.9(6)			
C18	26.5(7)	29.0(8)	27.9(7)	10.0(6)	2.3(6)	0.4(6)			
C3	25.9(7)	30.8(8)	30.0(8)	12.2(6)	0.3(6)	1.5(6)			
C23	32.2(8)	33.7(9)	31.3(8)	14.4(7)	-2.4(6)	9.1(6)			
C12	29.5(8)	28.2(8)	38.0(8)	6.1(7)	12.2(6)	1.9(6)			
C21	41.1(9)	28.6(8)	33.8(8)	15.2(7)	13.4(7)	11.6(7)			
C14	37.7(9)	29.8(8)	35.0(8)	7.3(7)	17.5(7)	11.4(7)			
C6	45.0(9)	31.7(9)	32.3(8)	5.0(7)	14.8(7)	-0.2(7)			
C19	30.0(8)	32.9(9)	38.9(9)	10.3(7)	2.9(7)	-4.1(6)			
C10	41.2(9)	30.8(8)	32.7(8)	12.7(7)	2.0(7)	-7.9(7)			
C20	40.5(9)	27.6(8)	44.2(9)	14.8(7)	14.2(7)	1.7(7)			
C9	38.1(9)	26.6(8)	38.4(9)	12.1(7)	6.3(7)	3.2(6)			
C1	29.2(8)	26.0(8)	30.3(8)	9.2(6)	9.2(6)	1.7(6)			
C11	42.7(9)	36.2(9)	31.8(8)	6.4(7)	14.3(7)	-4.9(7)			
C4	34.7(8)	46.7(10)	31.1(8)	17.0(7)	-2.5(7)	-0.3(7)			
C5	45.7(10)	48.6(11)	24.6(8)	8.9(7)	1.8(7)	-5.8(8)			

Table 7 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 70. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 8 Bond Lengths for 70.

Atom	Atom	Length/Å
Cl1	C1	1.7414(16)
O1	C13	1.3365(17)
O1	C14	1.4503(17)
O2	C13	1.1956(17)
N1	C17	1.3918(18)
N1	C16	1.4807(17)
N1	C24	1.3883(18)
C7	C15	1.507(2)
C7	C8	1.396(2)
C7	C12	1.387(2)
C15	C16	1.5519(18)
C2	C16	1.5350(18)
C2	C3	1.398(2)
C2	C1	1.398(2)
C13	C16	1.5527(18)
C17	C22	1.415(2)

Atom	Atom	Length/Å
C17	C18	1.395(2)
C22	C23	1.427(2)
C22	C21	1.403(2)
C8	C9	1.385(2)
C24	C23	1.352(2)
C18	C19	1.385(2)
C3	C4	1.385(2)
C12	C11	1.383(2)
C21	C20	1.374(2)
C6	C1	1.395(2)
C6	C5	1.374(3)
C19	C20	1.400(2)
C10	C9	1.382(2)
C10	C11	1.385(3)
C4	C5	1.379(3)

Table 9 Bond Angles for 70.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C13	01	C14	115.20(11)	C2	C16	C13	111.44(11)
C17	N1	C16	126.23(11)	C17	C22	C23	106.96(13)
C24	N1	C17	107.82(12)	C21	C22	C17	119.37(14)
C24	N1	C16	125.81(12)	C21	C22	C23	133.65(14)
C8	C7	C15	122.28(13)	C9	C8	C7	121.14(14)
C12	C7	C15	119.75(13)	C23	C24	N1	110.31(13)
C12	C7	C8	117.97(14)	C19	C18	C17	117.08(14)
C7	C15	C16	114.27(11)	C4	C3	C2	122.20(15)
C3	C2	C16	120.18(12)	C24	C23	C22	107.46(13)
C1	C2	C16	123.49(12)	C11	C12	C7	121.13(15)
C1	C2	C3	116.19(13)	C20	C21	C22	118.95(15)
01	C13	C16	111.20(11)	C5	C6	C1	120.07(15)
O2	C13	01	123.25(13)	C18	C19	C20	121.96(15)
O2	C13	C16	125.27(13)	C9	C10	C11	119.58(15)
N1	C17	C22	107.45(12)	C21	C20	C19	120.87(15)
N1	C17	C18	130.77(13)	C10	C9	C8	119.96(15)
C18	C17	C22	121.76(13)	C2	C1	Cl1	122.09(11)
N1	C16	C15	109.60(10)	C6	C1	Cl1	116.22(12)

Table 9 Bond Angles for 70.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	C16	C2	112.00(11)	C6	C1	C2	121.66(14)
N1	C16	C13	101.60(10)	C12	C11	C10	120.21(15)
C15	C16	C13	112.67(11)	C5	C4	C3	119.94(16)
C2	C16	C15	109.37(11)	C6	C5	C4	119.69(15)

Table 10 Torsion Angles for 70.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
01	C13	C16	N1	85.37(13)	C22	C21	C20	C19	-0.3(2)
01	C13	C16	C15	-31.81(15)	C8	C7	C15	C16	76.36(17)
01	C13	C16	C2	-155.19(11)	C8	C7	C12	C11	-0.2(2)
O2	C13	C16	N1	-88.64(16)	C24	N1	C17	C22	-0.53(15)
O2	C13	C16	C15	154.18(14)	C24	N1	C17	C18	178.18(14)
O2	C13	C16	C2	30.79(19)	C24	N1	C16	C15	15.68(18)
N1	C17	C22	C23	0.34(15)	C24	N1	C16	C2	137.26(13)
N1	C17	C22	C21	178.91(12)	C24	N1	C16	C13	-103.70(14)
N1	C17	C18	C19	-178.95(14)	C18	C17	C22	C23	-178.51(13)
N1	C24	C23	C22	-0.32(18)	C18	C17	C22	C21	0.1(2)
C7	C15	C16	N1	171.88(11)	C18	C19	C20	C21	0.0(3)
C7	C15	C16	C2	48.74(15)	C3	C2	C16	N1	140.99(13)
C7	C15	C16	C13	-75.79(15)	C3	C2	C16	C15	-97.31(14)
C7	C8	C9	C10	-1.0(2)	C3	C2	C16	C13	27.93(17)
C7	C12	C11	C10	-0.8(2)	C3	C2	C1	Cl1	172.43(11)
C15	C7	C8	C9	-179.72(14)	C3	C2	C1	C6	-5.5(2)
C15	C7	C12	C11	-179.38(14)	C3	C4	C5	C6	-3.1(3)
C2	C3	C4	C5	0.1(2)	C23	C22	C21	C20	178.41(16)
C17	N1	C16	C15	-169.28(12)	C12	C7	C15	C16	-104.53(15)
C17	N1	C16	C2	-47.70(17)	C12	C7	C8	C9	1.2(2)
C17	N1	C16	C13	71.34(15)	C21	C22	C23	C24	-178.29(16)
C17	N1	C24	C23	0.54(17)	C14	01	C13	O2	-2.2(2)
C17	C22	C23	C24	-0.02(17)	C14	01	C13	C16	-176.39(11)
C17	C22	C21	C20	0.3(2)	C9	C10	C11	C12	1.0(2)
C17	C18	C19	C20	0.4(2)	C1	C2	C16	N1	-43.45(17)
C16	N1	C17	C22	-176.31(12)	C1	C2	C16	C15	78.25(16)
C16	N1	C17	C18	2.4(2)	C1	C2	C16	C13	-156.51(13)
C16	N1	C24	C23	176.34(13)	C1	C2	C3	C4	4.1(2)
C16	C2	C3	C4	180.00(14)	C1	C6	C5	C4	1.7(3)
C16	C2	C1	Cl1	-3.3(2)	C11	C10	C9	C8	-0.1(2)

Table 10 Torsion Angles for 70.

Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
C16	C2	C1	C6	178.73(14)	C5	C6	C1	Cl1	-175.29(13)
C22	C17	C18	C19	-0.4(2)	C5	C6	C1	C2	2.8(2)

Table 11 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 70.

	-			、
Atom	x	У	Z.	U(eq)
H15A	9911.97	5503.59	8710.19	29
H15B	10650.62	4289.84	7865.42	29
H8	8040.02	7358.08	8208.86	35
H24	10526.5	3725.34	9283.81	35
H18	4201.15	1790.7	7243.59	34
H3	5055.15	4691.25	6636.27	35
H23	9972.82	1808.48	9908.09	38
H12	11204.36	4677.57	6456.18	39
H21	6689.46	-400.62	9428.1	39
H14A	4625.95	7127.09	9333.73	51
H14B	6122.57	7418.22	10306.07	51
H14C	4544.62	6062.28	9914.4	51
H6	7518.25	609.65	4866.07	45
H19	2454.57	-167.75	7366.67	42
H10	9686.63	8145.27	5914.37	42
H20	3678.8	-1243.79	8441.5	43
H9	8058.58	8764.55	7258.73	41
H11	11296.33	6112.18	5531.32	45
H4	3950.91	3648.63	4997.52	45
H5	5084.9	1552.45	4120.14	50

8. References

- 1. B.-X. Tang, R.-J. Song, C.-Y. Wu, Y. Liu, M.-B. Zhou, W.-T. Wei, G.-B. Deng, D.-L. Yin and J.-H. Li, *J. Am. Chem. Soc.*, 2010, **132**, 8900–8902.
- 2. D. Zetschok, L. Heieck and H. Wennemers, Org. Lett., 2021, 23, 1753-1757.
- 3. Q. Gui, F. Dai, J. Liu, P. Chen, Z. Yang, X. Chen and Z. Tan, Org. Biomol. Chem., 2014, 12, 3349–3353.
- 4. W. Zhuang, J. Zhang, C. Ma, J. S. Wright, X. Zhang, S.-F. Ni and Q. Huang, *Org. Lett.*, 2022, 24, 4229–4233.
- 5. Y. Ferandin, K. Bettayeb, M. Kritsanida, O. Lozach, P. Polychronopoulos, P. Magiatis, A.-L. Skaltsounis and L. Meijer, *J. Med. Chem.*, 2006, **49**, 4638–4649.
- Y.-H. Wang, J.-S. Tian, P.-W. Tan, Q. Cao, X.-X. Zhang, Z.-Y. Cao, F. Zhou, X. Wang and J. Zhou, *Angew. Chem.*, *Int. Ed.*, 2020, **59**, 1634–1643.
- 7. Z. Zhang, J. Su, Z. Zha and Z. Wang, Chem. Eur. J., 2013, 19, 17711–17714.
- 8. A. Veerareddy, S. Gogireddy and P. K. Dubey, J. Heterocyclic Chem., 2014, 51, 1311–1321.
- 9. R. Liu, Q. Liu, H. Meng, H. Ding, J. Hao, Z. Ji, H. Yue and W. Wei, *Org. Chem. Front.*, 2021, **8**, 1970–1975.
- 10. M.-M. Wang and J. Waser, Angew. Chem., Int. Ed., 2019, 58, 13880-13884.

