Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supplementary Information for

Ligand-Enabled Silver-Catalyzed Carbene Insertion into N-H Bond of Aliphatic and Electron-rich Aromatic Amines

Linxuan Li,^a Paramasivam Sivaguru,^a Xinyue Han,^a Swastik Karmakar^b and Xihe Bi*a,^c

^a Department of Chemistry, Northeast Normal University, Changchun 130024, China.

^b Department of Chemistry, Basirhat College, West Bengal State University, Basirhat-743412, West Bengal, India.

^c State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

E-mail: bixh507@nenu.edu.cn

Table of Contents

1.	General Information	1
2.	Experimental Procedure	2
3.	Computational Details	12
4.	X-ray Crystallographic Data of Complex A	36
5.	Characterization Data for the Products	37
6.	Refferences	55
7.	Copies of ¹ H-, ¹³ C- and ¹⁹ F- Spectra	57

1. General information

General. All reactions dealing with air- or moisture-sensitive compounds were carried out in a flame-dried, sealed Schlenk reaction tube under an atmosphere of argon. Analytical thinlayer chromatography was performed on glass plates coated with 0.25 mm 230-400 mesh silica gel containing a fluorescent indicator (Merck). Flash silica gel column chromatography was performed on silica gel 60N (spherical and neutral, 140-325 mesh) as described by Still. NMR spectra were measured on a Varian I NOVA 500 or Bruker AV-600 spectrometer and reported in parts per million. The ¹H NMR (500 MHz or 600 MHz) chemical shifts were measured relative to TMS, DMSO or CDCl₃ as the internal reference. The ¹³C NMR (125 MHz or 150 MHz) chemical shifts are given using CDCl₃ and DMSO as the internal standard. High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Agilent 1200HPLC/MicrOTOF II) equipped with ESI ionization source. Melting points were determined with XRC-1 and are uncorrected.

Materials. Unless otherwise noted, materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, and other commercial suppliers and used as received. Solvents were dried over CaH₂ (for DCE CHCl₃ and DMF) or sodium (for toluene and 1,4-dioxane) by refluxing for overnight and freshly distilled prior to use.

2. Experimental Procedure

2.1 Optimization of the reaction conditions

		[Ag] (5 mol %)	Ph N CO ₂ Et
FII	Ph ^{CO} ₂ E	t Solven	it, T/ ⁰C, air	Ph
				16
Entry	[Ag]	Solvent	T (°C)	Yield of 16 (%)
1	—	DCE	60	0
2	AgOTf (5 mol %)	DCE	60	15
3	AgSbF ₆ (5 mol %)	DCE	60	29
4	$AgBF_4$ (5 mol %)	DCE	60	32
5	Tp ^{(CF3)2} Ag (5 mol %)	DCE	60	76
6	[Tp ^{Br3} Ag] ₂ (2.5 mol %)	DCE	60	92 (91) ^b
7	[Tp ^{Br3} Ag] ₂ (2.5 mol %)	DCE	40	52
8	[Tp ^{Br3} Ag] ₂ (2.5 mol %)	DCE	80	71
9	[Tp ^{Br3} Ag] ₂ (2.5 mol %)	CHCl ₃	60	88
10	[Tp ^{Br3} Ag] ₂ (2.5 mol %)	1,4-dioxane	60	47
11	[Tp ^{Br3} Ag] ₂ (2.5 mol %)	PhCF ₃	60	85
12	[Tp ^{Br3} Ag] ₂ (2.5 mol %)	PhMe	60	75

Table S1. Optimization of the reaction conditions with diazoes and aliphatic amines^a

^{*a*} Conditions: Benzylamine (0.3 mmol), [Tp^{Br3}Ag]₂ (2.5 mol %), **1a** (0.36 mmol) in DCE (3 mL) at 60 °C for 6 h. ^{*b*} Isolated yields are given.

DL	NNHTfs		[Tp^{Br3}Ag] ₂ (2.5 mol %) Base (xx equiv)	Ph N CO ₂ Et	
Pn NH ₂ T		Ph ^{CO} ₂ Et	DCE, 60 °C, air	Ph 16	
Entry	1b (mmol)	Benzylamine (mmol)	Base (mmol)	Yield of 16 (%)	
1	0.2	0.24	NaH (0.24)	21	
2	0.2	0.24	K ₂ CO ₃ (0.24)	23	
3	0.2	0.24	KO'Bu (0.24)	20	
4	0.2	0.24	LiO'Bu (0.24)	45	
5	0.2	0.24	DIPEA (0.24)	trace	
6	0.2	0.24	DBU (0.24)	12	
7	0.2	0.24	Pydine (0.24)	10	
8	0.2	0.2	LiO'Bu (0.2)	55	
9	0.3	0.2	LiO'Bu (0.2)	67	
10	0.4	0.2	LiO'Bu (0.2)	77	
11	0.4	0.2	LiO'Bu (0.4)	25	
12	0.4	0.2	LiO'Bu (0.6)	26	
13 ^b	0.4	0.2	LiO'Bu (0.2)	84 (82) ^c	

Table S2. Optimization of the reaction conditions with sulfonyl hydrazones and aliphatic amines^a

^{*a*} Conditions: Benzylamine (0.2 mmol), $[Tp^{Br3}Ag]_2$ (2.5 mol %), **1b** (0.4 mmol), LiO'Bu (0.2 mmol) in DCE (5 mL), 60 °C, 6 h; ^{*b*} using $[Tp^{Br3}Ag]_2$ (2.5 mol %). ^{*c*} Isolated yields are given.

2.2 General procedure for the synthesis of starting materials

Add *o*-trifluoromethylbenzenesulfonyl chloride (24.4 g, 100 mmol, 1.0 equiv) to 120 mL of tetrahydrofuran (THF) solution to dissolve it. The reaction system was placed at -35 °C and hydrazine hydrate (24 mL, 250 mmol, 2.5 equiv) was added dropwise under argon atmosphere. After 4 hours of reaction, the reaction system was monitored by TLC until the raw materials disappeared. After the reaction, extract with ethyl acetate (about 60mL×3), wash with saturated sodium chloride solution, combine the organic phases, dry with anhydrous Na₂SO₄, and concentrate in vacuo; slowly drop the remaining solution into 500mL cold petroleum ether placed in a round bottom flask to precipitate the product; then the solid was filtered off with suction and dried in vacuum to obtain a white powdery solid with a yield of 85%.

Add ethyl benzoylformate (1.81 g, 11 mmol, 1.1 equiv) to a 50 mL round bottom flask, add 15 mL of methanol, and then add TfsNHNH₂ (2.4 g, 10 mmol, 1.0 equiv), and stir at room temperature for approx. After 1 hour, the reaction system was monitored by TLC until TfsNHNH₂ disappeared. The suspension was filtered with suction and washed with ether: petroleum ether = 10:1 to obtain a white powdery solid with a yield of 80%. Use the same method for other *N*-triftosyhydrazones.

At 0 °C, *p*-toluenesulfonyl azide (2.17 g, 11 mmol, 1.1 eq) was added to ethyl phenylacetate (1.64 g, 10 mmol, 1 eq) dissolved in 30 mL of acetonitrile. Under argon atmosphere, DBU (2.28 g, 15 mmol, 1.5 eq) was slowly added dropwise to the system, and stirring was continued for about 6 hours at room temperature. The reaction system was monitored by TLC, and the reaction was stopped when the raw materials disappeared. It was quenched with saturated NH₄Cl (20 mL), extracted with DCE (30 mL × 3), and the organic phases were combined, dried over anhydrous Na₂SO₄, and then concentrated in vacuo. The product was purified by flash column chromatography (PE : EA = 100 : 1) to obtain a red oily liquid with a yield of 90%. Use the same method for other diazonium compounds.

2.3 Synthesis of silver catalyst

[**Tp**^{Br3}**Ag**]₂(**THF**)₂ **Synthesize according to the previously reported literature**¹ Previously sublimed 1*H*-3,4,5-tribromopyrazole (12.19 g, 40.0 mmol) and TlBH₄ (2.19 g, 10.0 mmol) were added to a 500 mL Schlenk tube. The tube was closed with a rubber septum and three vacuum/nitrogen cycles were made. The septum was replaced with a reflux condenser fitted with a bubbler on top. The nitrogen flow was stopped and the stirred solid mixture was warmed to 180-185 °C for 2 h before the temperature was increased to 200 °C and the reaction mixture stirred for an additional 2 h. After cooling to room temperature, the obtained white solid was directly purified by sublimation to remove the unreacted pyrazole (150 °C, 2 mbar) to give TlTp^{Br3} as a white solid (13.4 g, 89% yield). Silver triflate (1.29 g, 5.0 mmol) was added to a solution of TlTp^{Br3} (5.64 g, 5.0 mmol) in acetone. After 20 h of stirring in the dark, a white solid precipitated from the initially colorless solution. The solid was filtered off and dried under vacuum to give complex [Tp^{Br3}Ag]₂.CH₃COCH₃. [Tp^{Br3}Ag]₂.CH₃COCH₃ (5.0 mmol) was stirred in fresh distilled THF (100 mL) for 30 min in the dark. After the removal of the volatiles under reduced pressure, a white solid was obtained in quantitative yield.

Amine/silver complex A: To a round bottom sealed tube, $AgSbF_6$ (171.8 mg, 0.5 mmol) were added under air atmosphere. DCM (2 mL) was added to dissolve $AgSbF_6$. Ethyl 4-aminobenzoate (173 mg, 1.05 mmol) dissolved in DCM (2 mL) were added to the tube. After stirring for 5 min after the addition at room temperature, a large amount of white solid precipitated out, and the suspension was centrifuged. Wash with DCM (5 mL × 3), and then dry the solid to obtain the white solid amine/silver complex A (329 mg, 98% yield).

Amine/silver complex B: To a round bottom sealed tube, $AgSbF_6$ (171.8 mg, 0.5 mmol) were added under air atmosphere. DCE (2 mL) was added to dissolve $AgSbF_6$. 1,2-Diaminocyclohexane (60 mg, 0.52 mmol) dissolved in DCE (2 mL) were added to the tube. The resulting mixture was stirred at room temperature for 10 minutes, and a large amount of white solid precipitated. Then the solvent was evaporated in vacuo and washed with DCM (5 mL×3) to obtain white solid amine/silver complex **B** (211.6 mg, 95% yield).

HRMS (ESI⁺) m/z calcd for $C_6H_{14}AgN_2$ [M+H]⁺ 221.0202, found 221.0194.

 Table S3. Screening of amine ligands^a

^{*a*} Conditions: *N*-Methylaniline (0.3 mmol), amine/silver complex (5 mol %), **1a** (0.36 mmol) in DCE (3 mL), 40 °C, 1 h. Isolated yields are given.

2.4 General procedure for the synthesis of products

i. N-H bond insertion reaction of aliphatic amines

Typical synthetic procedure (with 16 as an example): Method A: To a dried Schlenk flask, $[Tp^{Br3}Ag]_2$ (16.5 mg, 0.015 mmol) were added under air atmosphere. Benzylamine (0.3 mmol) and ethyl 2-diazo-2-phenylacetate **1a** (0.36 mmol) dissolved in DCE (3 mL) were added to the Schlenk flask via a syringe. The resulting mixture was stirred at 60 °C under sealed conditions for 6 h. After cooling to room temperature, the reaction mixture was diluted with DCM (5 mL) and filtered through a plug of celite, followed by washing with DCM (5 mL × 3). The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography with ethyl acetate/petroleum ether (1:25 v:v) as an eluent to provide the product **16**.

Method B: To a dried Schlenk flask, $[Tp^{Br3}Ag]_2$ (16.5 mg, 0.015mmol), ethyl 2-phenyl-2-(2-((2-(trifluoromethyl)phenyl)sulfonyl)hydrazono)acetate **1b** (0.6 mmol) and LiO'Bu (1.0 equiv) were added under air atmosphere. Benzylamine (0.3 mmol) dissolved in DCE (3 mL) were added to the Schlenk flask via a syringe. The resulting mixture was stirred at 60 °C under sealed conditions for 10 h. After cooling to room temperature, the reaction mixture was diluted with DCM (5 mL) and filtered through a plug of celite, followed by washing with DCM (5 mL × 3). The combined residue was concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography with ethyl acetate/petroleum ether (1:25 v:v) as an eluent to provide the product **16**.

ii. N-H bond insertion reaction of aromatic amines

Typical synthetic procedure (with 33 as an example): Method C: To a dried sealed tube,

Ag(DACH)SbF₆ (1.4 mg, 0.003 mmol) were added under air atmosphere. Aniline (0.3 mmol) and ethyl 2-diazo-2-phenylacetate **1a** (0.36 mmol) dissolved in DCE (3 mL) were added to the sealed tube via a syringe. The resulting mixture was stirred at 40 °C under sealed conditions for 2 h. After cooling to room temperature, the reaction mixture was diluted with DCM (5 mL) and filtered through a plug of celite, then washed with DCM (5 mL × 3). The combined residues were concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography using ethyl acetate/petroleum ether (1:25 v:v) as eluent to provide product **33**.

Method D: To a dried sealed tube, Ag(DACH)SbF₆ (1.4 mg, 0.015 mmol), ethyl 2-phenyl-2-(2-((2-(trifluoromethyl)phenyl)sulfonyl)hydrazono)acetate **1b** (0.36 mmol) and LiO^tBu (1.0 equiv) were added under air atmosphere. Aniline (0.3 mmol) and dissolved in DCE (3 mL) were added to the sealed tube via a syringe. The resulting mixture was stirred at 40 °C under sealed conditions for 2 h. After cooling to room temperature, the reaction mixture was diluted with DCM (5 mL) and filtered through a plug of celite, then washed with DCM (5 mL × 3). The combined residues were concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography using ethyl acetate/petroleum ether (1:25 v:v) as eluent to provide product **33**.

2.5 Mechanismtic investigations

i. Equivalent complex A replacement catalyst and aromatic amine

To a dried sealed tube, complex A (1.4 mg, 0.015 mmol) were added under air atmosphere. ethyl 2-diazo-2-phenylacetate 1a (0.36 mmol) dissolved in DCE (3 mL) were added to the sealed tube via a syringe. The resulting mixture was stirred at 40 °C under sealed conditions for 1 h. After cooling to room temperature, the reaction mixture was diluted with DCM (5 mL) and filtered through a plug of celite, then washed with DCM (5 mL \times 3). The combined residues were concentrated under reduced pressure, and then the resulting crude product was purified by column chromatography using ethyl acetate/petroleum ether (1:25 v:v) as eluent to provide product **33** of 13% yield.

ii. KIE determined from an intermolecular competition

To a dried sealed tube, $Ag(DACH)SbF_6$ (7 mg, 0.01 mmol) were added under air atmosphere. *N*-Methylaniline (0.2 mmol, H/D = 1:1) and ethyl 2-diazo-2-phenylacetate **1a** (0.36 mmol) dissolved in DCE (3 mL) were added to the sealed tube via a syringe. The resulting mixture was stirred at 40 °C under sealed conditions for 1 h. After cooling to room temperature, the deuterium content of product **33** is 15% by nuclear magnetic monitoring.

2.6 Reaction supplement of other substrates

i. Amide as substrate

Ph NH ₂ +	Ph CO ₂ Me	Cat. DCE, 60 °C, air	
0.3 mmol	1.2 equiv.		D
Entry	Car	ŕ .	Yield of C
1	$[Tp^{Br3}Ag]_2 (2)$	2.5 mol%)	22%
2 Ag(DACH)St		F ₆ (5 mol%)	10%
3 AgSbF ₆ (5 mol%)	trace

ii. Reaction of other diazo compounds with benzylamine

(i)	Ph NH ₂	+	N ₂ CO ₂ Et	[Tp ^{Br3} Ag] ₂ (2.5 mol%) DCE, 60 °C, air	CO₂Et ∧ ∧ Ph H
	0.3 mmol		1.2 equiv.		D , 0%
(ii)	Ph NH ₂	+	F ₃ C ^N 2	[Tp ^{Br3} Ag] ₂ (2.5 mol%) DCE, 60 °C, air	Ph N CF ₃ H
	0.3 mmol		1.2 equiv. (in toluene)		E, 0%
(iii)	Ph NH ₂	+	Ph Ph	[Tp ^{Br3} Ag] ₂ (2.5 mol%) DCE, 60 °C, air	Ph N Ph
	0.3 mmol		1.2 equiv.		F , 54%

3 Computational details

In Figure 3a, all of the density functional theory (DFT) calculations were performed with the Gaussian 16 package.² The B97D³ method with DEF2SVP⁴ basis set has been selected for geometry optimizations under gas phase condition. The nature of the extrema (minimum) was established with analytical frequencies calculations and geometry optimizations were computed without any symmetry constraints. Intrinsic Reaction Paths (IRPs)^{5,6} were traced from the various transition structures to obtain the connected intermediates.

In Figure 4, all of the density functional theory (DFT) calculations were performed with the Gaussian 16 package.² The B3LYP-D3^{7,8} method with DEF2SVP⁴ basis set has been selected for geometry optimizations. The nature of the extrema (minimum) was established with analytical frequencies calculations and geometry optimizations were computed without any symmetry constraints. Intrinsic Reaction Paths (IRPs)^{5,6} were traced from the various transition structures to obtain the connected intermediates. The SMD solvation model was used to evaluate solvation energies by a self-consistent reaction field (SCRF) approach based on accurate numerical solutions of the Poisson–Boltzmann equation.⁹ 1,2-dichloroethane was chosen as solvent. 3D diagrams of the computed species were generated using CYLview visualization software.¹⁰

Cartesian coordinates of all optimized structures

TS-int

Zero-point correction=	=		0.194167 (Hartree/Partie	cle)
Thermal correction to	o Energy=		0.219260	
Thermal correction to	o Enthalpy=		0.220204	
Thermal correction to	0.134333			
Sum of electronic an	-1540.179481			
Sum of electronic an	d thermal Energ	ies=	-1540.154388	
Sum of electronic and thermal Enthalpies=			-1540.153444	
Sum of electronic an	d thermal Free E	Energies=	-1540.239315	
Sb	3.37083600	-0.65230100	0.07083000	
F	2.94286200	0.89718000	-1.17787400	
F	3.89312100	-1.68740200	-1.46231500	
F	5.12831100	0.08628700	0.31826300	

F	3.63376200	-2.09112300	1.31835900
F	2.65088000	0.51544700	1.49122900
F	1.48081200	-1.16515500	-0.20168600
Ag	0.92457900	1.75982000	-0.55337000
С	-4.03374200	0.75332700	0.77119800
С	-2.75919000	1.20666900	1.13347300
С	-1.62601000	0.42736800	0.83182400
С	-1.76529300	-0.80474000	0.16117900
С	-3.04192000	-1.24995000	-0.19618900
С	-4.18854500	-0.47967300	0.10054900
Н	-4.91803800	1.35352000	1.00851600
Н	-2.64065800	2.16641200	1.65416000
Н	-0.87211900	-1.39553700	-0.07177700
Н	-3.17512900	-2.20667800	-0.71402100
Ν	-0.31481600	0.90757100	1.15692200
Н	-0.32034100	1.55267400	1.95054900
Н	0.34585100	0.14623400	1.36331800
С	-5.52545300	-1.01796600	-0.31605600
0	-5.68709400	-2.07362600	-0.89889400
0	-6.54130600	-0.18966300	0.03173800
С	-7.87704900	-0.61967300	-0.32538700
Н	-7.92272900	-0.76145600	-1.42291000
Н	-8.06797400	-1.60719000	0.13823600
С	-8.85252500	0.44138600	0.15874500
Н	-9.88562300	0.14189400	-0.09982100
Н	-8.78803000	0.56424200	1.25628400
Н	-8.64151000	1.41739300	-0.31748400

Zero-point correction=	:		0.200212 (Hartree/Particle)
Thermal correction to	• Energy=		0.223956
Thermal correction to	• Enthalpy=		0.224900
Thermal correction to	Gibbs Free En	ergy=	0.141994
Sum of electronic and	l zero-point Ene	ergies=	-1540.246047
Sum of electronic and thermal Energies=			-1540.222303
Sum of electronic and thermal Enthalpies=			-1540.221359
Sum of electronic and thermal Free Energies=		-1540.304265	
Sb	3.04982200	-1.06519600	0.06592100
F	3.32761000	0.95431000	-0.31478400
F	4.42064000	-1.61378100	-1.17026600
F	4.09779200	-0.81298200	1.69246800

F	2.42210900	-2.82680700	0.60499100
F	1.16000400	-0.18156400	1.69462500
F	1.53571700	-0.86377100	-1.21141600
Ag	1.39035200	2.06523900	-0.37752200
С	-4.04961000	1.16629600	0.47366300
С	-2.93758100	1.97773000	0.66756700
С	-1.63017700	1.55172500	0.24819500
С	-1.51322600	0.25050800	-0.34994300
С	-2.63150000	-0.55166400	-0.53229600
С	-3.92059500	-0.11226900	-0.13031300
Н	-5.04055900	1.51040400	0.78817400
Н	-3.04666200	2.96839200	1.12865200
Н	-0.51724200	-0.11320500	-0.63124800
Н	-2.53807500	-1.54696100	-0.98181300
Ν	-0.53324000	2.33407000	0.41912600
Н	-0.74538900	3.20045800	0.91786900
Н	0.42537400	0.32076700	1.38260100
С	-5.07767600	-1.02796400	-0.35451000
0	-4.99434400	-2.12739800	-0.87346000
0	-6.24762600	-0.49549000	0.08622000
С	-7.43145200	-1.30737600	-0.08989500
Н	-7.55016300	-1.53546700	-1.16743200
Н	-7.28173800	-2.27355300	0.43091300
С	-8.61509500	-0.53185000	0.46689300
Н	-9.53974300	-1.12736400	0.34705600
Н	-8.47386800	-0.31698800	1.54292100
Н	-8.74438500	0.42744000	-0.06885100

1a

Zero-point correction=	=	0.	408414 (Hartree/Particle)		
Thermal correction to	Energy=		0.443414		
Thermal correction to	Enthalpy=		0.444359		
Thermal correction to	Gibbs Free Ener	gy=	0.336009		
Sum of electronic and zero-point Energies=			-1978.668855		
Sum of electronic and	thermal Energies	s=	-1978.633854		
Sum of electronic and	thermal Enthalp	ies=	-1978.632910		
Sum of electronic and thermal Free Energies=		ergies=	-1978.741260		
Sb	2.29662700	-1.627241	00 -0.31513700		
F	2.91310300	0.082093	-1.00265700		
F	3.11228400	-2.523320	00 -1.80749500		
F	3.91039200	-1.805030	00 0.71372100		

F	1.63286700	-3.30775500	0.36403800
F	1.45476200	-0.70012800	1.16071300
F	0.66170300	-1.42111700	-1.35295000
Ag	-0.86870800	0.79971500	-0.56498900
Ν	-2.32693300	-1.71968000	-1.46604500
С	-2.67530300	-0.89168500	-0.47271800
Ν	-2.01870900	-2.40796000	-2.29989100
С	-3.72237900	0.06165600	-0.94984800
0	-4.13472200	0.07015000	-2.09120500
0	-4.10622500	0.91634200	0.00315900
С	-5.12969000	1.88747900	-0.33480800
Н	-4.92061700	2.28672200	-1.33812200
Н	-4.99281300	2.68820300	0.40482300
С	-6.51561900	1.28001300	-0.25309900
Н	-7.26955700	2.05890300	-0.45052300
Н	-6.63972400	0.48212800	-1.00052300
Н	-6.70325100	0.86267700	0.74886900
С	-2.31431900	-1.34091000	0.91075100
С	-1.30488600	-2.30948800	1.08225200
С	-2.93341700	-0.80554800	2.05721700
С	-0.91347500	-2.71629200	2.35663900
Н	-0.78168100	-2.72563900	0.22206700
С	-2.53783200	-1.22477200	3.33048400
Н	-3.71556700	-0.05738300	1.95489100
С	-1.52650300	-2.17683100	3.49160600
Н	-0.10510400	-3.44476900	2.44952500
Н	-3.03077300	-0.79488100	4.20660200
Н	-1.21626200	-2.49138200	4.49117800
С	3.24258800	4.04642900	1.52736300
С	3.13050900	4.71887900	0.15618300
С	2.59299500	3.73455500	-0.88565800
С	1.24349700	3.11844200	-0.48356400
С	1.33658800	2.46543300	0.91352800
С	1.89660300	3.45142600	1.94863700
Н	2.48516000	4.22239400	-1.86914100
Н	2.44858300	5.58601700	0.22834900
Н	4.10889800	5.11191100	-0.16638000
Н	3.99650200	3.24014600	1.47728200
Н	3.59480500	4.76437800	2.28657000
Н	0.47996700	3.91577300	-0.43042200
Н	2.02581800	1.61290700	0.81850200
Н	1.16072600	4.26649300	2.08611300
Н	1.98268800	2.93372600	2.91867300
Н	3.31406100	2.90689700	-1.01576100

Ν	0.03673400	1.90628200	1.32900600
Н	0.17559400	1.21982600	2.07185600
Н	-0.55924900	2.64101700	1.71779000
Ν	0.78083900	2.13737700	-1.48739000
Н	0.55972800	2.60952900	-2.36534800
Н	1.54526900	1.48761500	-1.69390300

Zero-point correct	ion=	0.40	6009 (Hartree/Particle)
Thermal correction	n to Energy=		0.441068
Thermal correction	ermal correction to Enthalpy=		0.442012
Thermal correction	n to Gibbs Free Ener	gy= 0	.334063
Sum of electronic	and zero-point Energ	gies=	-1978.644761
Sum of electronic	and thermal Energies	s=	-1978.609703
Sum of electronic	and thermal Enthalp	ies=	-1978.608759
Sum of electronic	and thermal Free En	ergies=	-1978.716708
Sb	-2.30031700	-1.84238200	-0.04420500
F	-3.35521500	-0.25899000	0.34035400
F	-3.38226900	-2.86469200	1.17370300
F	-3.46350100	-2.28915000	-1.50760700
F	-1.19971500	-3.38939900	-0.39128200
F	-1.19246100	-0.79982300	-1.24288800
F	-1.12421600	-1.34617600	1.42285200
Ag	0.71793300	0.97210300	0.54198200
Ν	2.89093800	-0.38860300	2.35212600
С	2.63920800	0.02493400	0.59202700
Ν	2.63262800	-0.75728500	3.36122000
С	3.65984000	1.11518100	0.48617800
0	4.23251700	1.66214500	1.40371000
0	3.76795200	1.46958500	-0.80202000
С	4.62625600	2.59190600	-1.12498300
Н	4.50014300	3.36921800	-0.35654400
Н	4.23618000	2.96783300	-2.08101200
С	6.07398900	2.15831400	-1.24376300
Н	6.69342400	3.01876400	-1.54420800
Н	6.45020300	1.78241100	-0.28037400
Н	6.18637000	1.36943300	-2.00414500
С	2.85578200	-1.26131500	-0.09385200
С	1.79455600	-2.18721700	-0.18064400
С	4.09731800	-1.59010300	-0.68409400
С	1.95693200	-3.39498500	-0.85560900

Н	0.84537700	-1.95458000	0.29952200
С	4.25359500	-2.79315900	-1.36980600
Н	4.93587900	-0.89431500	-0.61855000
С	3.18490700	-3.69598000	-1.45706100
Н	1.11570000	-4.08764900	-0.91777600
Н	5.21255800	-3.03284200	-1.83570200
Н	3.31242900	-4.63893200	-1.99536400
С	-3.89037100	3.63975100	-1.43518600
С	-3.98406700	4.10416700	0.02163500
С	-3.31759400	3.09218700	0.95804800
С	-1.85704300	2.80991800	0.57509500
С	-1.74828900	2.37224400	-0.89919700
С	-2.43323300	3.38216000	-1.82990400
Н	-3.35445900	3.44113800	2.00398300
Н	-3.48505200	5.08528200	0.12507500
Н	-5.03658500	4.25253400	0.31498100
Н	-4.46926200	2.70649700	-1.55736300
Н	-4.34118900	4.38503300	-2.11143100
Н	-1.26559200	3.73642600	0.69292300
Н	-2.26148400	1.40330400	-0.98106900
Н	-1.86748600	4.33251700	-1.79268700
Н	-2.36681600	3.01230000	-2.86696300
Н	-3.86644800	2.13471300	0.91732100
Ν	-0.34065700	2.13270000	-1.26004600
Н	-0.28910500	1.57822800	-2.11575500
Н	0.12794500	3.01915000	-1.46377200
Ν	-1.24388600	1.78939100	1.44934400
Н	-1.16480400	2.14642700	2.40303800
Н	-1.86586400	0.97860100	1.50563700

int1

Zero-point correction=	0.517841 (Hartree/Particle)
Thermal correction to Energy=	0.557841
Thermal correction to Enthalpy=	0.558785
Thermal correction to Gibbs Free Energy=	0.439561
Sum of electronic and zero-point Energies=	-2156.571263
Sum of electronic and thermal Energies=	-2156.531263
Sum of electronic and thermal Enthalpies=	-2156.530318
Sum of electronic and thermal Free Energies	s= -2156.649542
Ag 0.52546900 0.	.43722100 -0.69670600
C -1.36708600 0.1	34407000 -1.46796000

С	-2.34822900	1.09036400	-0.65913900
0	-3.00866500	0.55157200	0.21675500
0	-2.36877400	2.39133600	-0.93485700
С	-3.15523500	3.26001400	-0.07557000
Н	-4.09751300	2.75404300	0.18052100
Н	-3.37862700	4.13458300	-0.70177400
С	-2.36973000	3.64076700	1.16342500
Н	-2.96459200	4.33348200	1.78007700
Н	-2.13843700	2.75205600	1.77055500
Н	-1.42641900	4.14083600	0.89219300
С	-1.83097300	-0.42026900	-2.57772400
С	-0.88947600	-1.12453900	-3.38402400
С	-3.21694900	-0.52858700	-2.90598500
С	-1.30806900	-1.90458900	-4.45209400
Н	0.16992400	-1.04081800	-3.14513200
С	-3.62858300	-1.31121300	-3.97464200
Н	-3.96069800	-0.00935700	-2.29726800
С	-2.67626800	-1.99980800	-4.74572700
Н	-0.57238900	-2.45232300	-5.04338900
Н	-4.69057400	-1.39714900	-4.21527800
Н	-3.00781900	-2.61936500	-5.58332600
С	5.72202100	1.56020500	1.19689000
С	5.61344800	0.12152000	1.71390200
С	4.15242300	-0.26268700	1.96771200
С	3.28146000	-0.05513600	0.72345500
С	3.39793400	1.37839300	0.18186700
С	4.86508000	1.75786100	-0.05826900
Н	4.07066500	-1.31532800	2.28435800
Н	6.04367100	-0.56761000	0.96486000
Н	6.20388300	-0.00445200	2.63649600
Н	5.38212800	2.25790500	1.98404400
Н	6.77228200	1.81611500	0.98002000
Н	3.63256000	-0.73279900	-0.06986800
Н	2.96877800	2.06148800	0.93732300
Н	5.25542500	1.12255500	-0.87489600
Н	4.91829700	2.80166200	-0.41117100
Н	3.74243100	0.35296900	2.79015100
Ν	2.56899400	1.50191900	-1.03216400
Н	2.52862700	2.47363000	-1.34462200
Н	2.99754900	0.97078900	-1.79616600
Ν	1.86768300	-0.39127000	0.96048900
Н	1.75874500	-1.40464000	1.02630600
Н	1.55473900	-0.02027500	1.86085700
С	-0.17227000	-1.06612800	3.74714300

С	-1.05368100	-1.11528600	2.66533900
С	-0.96188700	-2.15116300	1.70605900
С	0.05111800	-3.12508400	1.87270900
С	0.92928500	-3.05941200	2.95475900
С	0.83006700	-2.03298700	3.90424600
Н	-0.26453600	-0.25241700	4.47279800
Н	-1.82089000	-0.34669300	2.53919200
Н	0.15835200	-3.91372800	1.12522700
Н	1.71433400	-3.81541300	3.04627800
Ν	-1.84508000	-2.21872300	0.64917900
Н	-2.37995700	-1.37415900	0.45493700
Н	-1.50067500	-2.68867600	-0.18248000
Н	1.52366800	-1.98518500	4.74705000
Sb	2.11592600	-3.27552400	-1.85337000
F	1.41207800	-3.47527500	-3.63924000
F	1.76612600	-5.12654900	-1.46373100
F	3.88611200	-3.69129600	-2.47717400
F	2.80086200	-3.02885600	-0.05858100
F	2.43219600	-1.39013200	-2.21879000
F	0.33746500	-2.82591100	-1.22867200

Zero-point correction	1=	(.517669 (Hartree/Particle)
Thermal correction t	o Energy=		0.555882
Thermal correction t	o Enthalpy=		0.556827
Thermal correction t	o Gibbs Free Ener	gy=	0.443396
Sum of electronic an	d zero-point Energ	gies=	-2156.568762
Sum of electronic and thermal Energies=		s=	-2156.530549
Sum of electronic and thermal Enthalpies=		ies=	-2156.529605
Sum of electronic an	d thermal Free End	ergies=	-2156.643035
Sb	2.19341400	-2.202139	00 -0.53864900
F	3.66204700	-0.943192	-0.38207300

F	3.66204700	-0.94319200	-0.38207300
F	3.12090200	-3.11563400	-1.95457900
F	3.00258200	-3.34876200	0.77495300
F	0.69015800	-3.39862300	-0.72531700
F	1.23849300	-1.27501700	0.87529100
F	1.39011600	-1.00109900	-1.83479200
Ag	0.05491700	1.38139500	-0.35473600
С	-2.00502900	1.01331900	-0.51555700
С	-2.80381900	2.26493400	-0.50718700
0	-3.01628000	2.99182400	0.45178100

0	-3.20047900	2.55824000	-1.75412500
С	-3.80180600	3.85455500	-1.99106300
Н	-4.51155100	4.07425400	-1.17961500
Н	-4.36107400	3.72673300	-2.92838600
С	-2.74598700	4.93581700	-2.11399000
Н	-3.22698400	5.89891600	-2.34924900
Н	-2.19105400	5.04992900	-1.17032400
Н	-2.03341500	4.69800300	-2.91969400
С	-2.64168300	-0.23047500	-0.86519200
С	-1.85057800	-1.38830100	-1.07908200
С	-4.05413100	-0.36974700	-0.94295500
С	-2.43039700	-2.61739000	-1.37093000
Н	-0.76883300	-1.29982100	-1.02031600
С	-4.63342000	-1.60205700	-1.23196800
Н	-4.69353700	0.49981400	-0.78211100
С	-3.82540700	-2.72675400	-1.44656600
Н	-1.78983800	-3.48735400	-1.52876800
Н	-5.72099600	-1.69346500	-1.28137400
Н	-4.28660100	-3.69222700	-1.67082700
С	5.12482500	2.19302000	2.20572800
С	5.35273000	3.00958000	0.92989700
С	4.49671400	2.47161500	-0.22022600
С	3.00246300	2.43007700	0.13288200
С	2.76771700	1.62274900	1.42499900
С	3.63785700	2.15733600	2.57154900
Н	4.63651600	3.07908300	-1.13048900
Н	5.08863200	4.06613600	1.12009100
Н	6.41808800	2.99660500	0.64584500
Н	5.48223600	1.15988900	2.04463500
Н	5.71276900	2.60624400	3.04217300
Н	2.64197900	3.45984600	0.31022400
Н	3.06505500	0.58693700	1.20775800
Н	3.29460300	3.17849500	2.82498700
Н	3.46952000	1.53330400	3.46535200
Н	4.81272000	1.44198400	-0.46686900
Ν	1.33718600	1.58515100	1.76661000
Н	1.15215000	0.77510700	2.35887800
Н	1.07520100	2.41138700	2.30924200
Ν	2.19411700	1.87200100	-0.97009700
Н	2.26331900	2.47457700	-1.79210900
Н	2.58487600	0.96780900	-1.25046800
С	-3.60956000	-2.67535600	2.31291600
С	-2.68691500	-1.64759200	2.12684800
С	-3.12452900	-0.30719300	2.09289600

С	-4.49821600	-0.02248300	2.24500100
С	-5.40761300	-1.06044500	2.44288700
С	-4.97253200	-2.39131600	2.47150200
Н	-3.26114100	-3.71126300	2.32651000
Н	-1.62505900	-1.86610900	1.98641400
Н	-4.83601300	1.01582100	2.20252100
Н	-6.46895700	-0.82834700	2.56432600
Ν	-2.22711800	0.70326700	1.82926100
Н	-1.23718100	0.51827500	1.94294300
Н	-2.51879400	1.67945900	1.86699100
Н	-5.68986700	-3.20236500	2.61803900

int2

Zero-point correction	=	0.	521873 (Hartree/Particle)
Thermal correction to	Energy=		0.560669
Thermal correction to	Enthalpy=		0.561613
Thermal correction to	Gibbs Free Ener	gy=	0.444886
Sum of electronic and	l zero-point Energ	gies=	-2156.604719
Sum of electronic and	l thermal Energies	s=	-2156.565924
Sum of electronic and	thermal Enthalp	ies=	-2156.564979
Sum of electronic and	l thermal Free En	ergies=	-2156.681707
Sb	-1.39085300	-2.47676200	-0.13281400
F	-3.26762300	-2.02787000	-0.14952200
F	-1.69361400	-4.03571800	0.94463600
F	-1.56078000	-3.53082200	-1.72845600
F	0.53672000	-2.7652400	0 -0.09814900
F	-1.00261300	-0.92037200	-1.23088700
F	-1.17853200	-1.42533800) 1.48328800
Ag	-0.31796400	1.4334100	0 0.39846400
С	1.85125400	0.9409280	-0.05387300
С	2.02493600	2.1491020	-0.86145000
0	1.91370700	2.1742920	-2.08854000
0	2.24393600	3.2666430	00 -0.13440600
С	2.05030800	4.5341300	-0.79163500
Н	2.54139800	4.5159930	00 -1.77621000
Н	2.57076500	5.2603250	00 -0.15098800
С	0.57431700	4.8671060	-0.91993600
Н	0.45351000	5.8695500	00 -1.36141100
Н	0.06639200	4.1395080	00 -1.57053900
Н	0.08365000	4.8602760	0.06673600
С	2.58781900	0.6650430	00 1.22053700

С	2.17439500	-0.41522700	2.03001400
С	3.72321300	1.39223500	1.62366300
С	2.86616000	-0.75250800	3.19390500
Н	1.29605400	-0.99635400	1.73931200
С	4.40214200	1.06782500	2.80318600
Н	4.07738100	2.22105600	1.01054600
С	3.98199600	-0.00621700	3.59319100
Н	2.52395500	-1.59697100	3.79838700
Н	5.27738000	1.65409700	3.09716700
Н	4.51873300	-0.26166900	4.51066200
С	-5.81143100	1.04877000	-0.92531700
С	-6.01099600	1.33874400	0.56540400
С	-4.74941400	0.98627000	1.35793100
С	-3.49478600	1.70008000	0.83059800
С	-3.30618600	1.43392200	-0.67769600
С	-4.58086600	1.78803600	-1.45831800
Н	-4.87594900	1.22356500	2.42769200
Н	-6.24353400	2.41089200	0.70178800
Н	-6.87292200	0.77539300	0.95999800
Н	-5.66913300	-0.03783300	-1.06786500
Н	-6.70785700	1.33255200	-1.50144500
Н	-3.61519300	2.79134200	0.95840800
Н	-3.11323400	0.35571000	-0.79437300
Н	-4.74385900	2.88025700	-1.38759600
Н	-4.41833300	1.55939000	-2.52527400
Н	-4.56717300	-0.10179100	1.28758400
Ν	-2.11426900	2.13613500	-1.17226200
Н	-1.91537200	1.85794200	-2.13431900
Н	-2.28450200	3.14474900	-1.19925500
Ν	-2.29180300	1.30351900	1.59106700
Н	-2.29173600	1.75305900	2.50791500
Н	-2.32015400	0.29753600	1.77663500
С	4.86179100	-2.56112900	-0.84175000
С	3.57803500	-2.04057400	-0.64962800
С	3.24524900	-0.82328800	-1.24487500
С	4.16365400	-0.11701600	-2.02614700
С	5.44196700	-0.64934100	-2.21161100
С	5.79406300	-1.86764600	-1.61896000
Н	5.12942200	-3.51363100	-0.37818000
Н	2.84163100	-2.57556100	-0.04944500
Н	3.87681600	0.83103500	-2.48188600
Н	6.16553900	-0.10720800	-2.82528200
Ν	1.91030200	-0.25082900	-1.00139000
Н	1.27863100	-0.99842800	-0.68608100

Н	1.52056100	0.10069000	-1.89095700
Н	6.79648300	-2.27733600	-1.76589300

int3

Zero-point correction	n=		0.639891 (Hartree/Particle)
Thermal correction to Energy=		0.685971	
Thermal correction t	o Enthalpy=		0.686915
Thermal correction t	o Gibbs Free Ener	gy= 0	.552481
Sum of electronic an	d zero-point Energ	gies=	-2443.920957
Sum of electronic and thermal Energies=			-2443.874878
Sum of electronic an	d thermal Enthalp	ies=	-2443.873934
Sum of electronic an	d thermal Free En	ergies=	-2444.008367
С	-2.32062600	-0.13187800	-0.34197100
С	-2.20817500	-0.60247700	0.96817100
0	-1.41667700	-1.47743700	1.41173800
0	-3.07566800	0.00020300	1.84410400
С	-2.87139400	-0.21349300	3.24523500
Н	-1.84998000	0.10177900	3.51839400
Н	-2.95692700	-1.28790400	3.47643600
С	-3.91442700	0.59781200	3.98454700
Н	-3.77404800	0.49171200	5.07180900
Н	-3.83423500	1.66557200	3.72539900
Н	-4.93287400	0.25468900	3.73755800
С	-1.50579200	-0.57097600	-1.46527200
С	-1.10312600	0.31668200	-2.49388300
С	-1.06996700	-1.91738700	-1.56937300
С	-0.30002100	-0.11222900	-3.55158900
Н	-1.37864700	1.37271000	-2.44503400
С	-0.26298000	-2.33797900	-2.62826200
Н	-1.40258700	-2.63950400	-0.82329100
С	0.13499300	-1.44072800	-3.62660500
Н	0.01104800	0.61023900	-4.31127200
Н	0.05305200	-3.38430100	-2.67536700
Н	0.77255000	-1.77098700	-4.45064500
С	-1.17212400	3.88751600	0.72392100
С	-1.52502700	2.60881100	0.28226100
С	-2.84669600	2.34855900	-0.05639200
С	-3.83592300	3.32846300	0.04954000
С	-3.47838300	4.60163400	0.50380900
С	-2.14747000	4.88329800	0.83856000
Н	-0.12703300	4.09338100	0.96689400

Н	-0.77926600	1.82341100	0.19462600
Н	-4.87046000	3.09782900	-0.21754100
Н	-4.24360800	5.37660400	0.59510100
Ν	-3.23411100	1.00799200	-0.55010700
Н	-6.51928200	0.79967900	0.24789100
Н	-3.42849400	1.08256500	-1.55742200
С	-6.65669700	-2.56117300	-1.89792900
С	-6.59640300	-1.29903300	-1.30036200
С	-5.87564600	-1.11305700	-0.10824200
С	-5.21799100	-2.21319100	0.47195800
С	-5.28329700	-3.46967700	-0.13303100
С	-6.00069500	-3.65425000	-1.32142200
Н	-7.22314000	-2.68830000	-2.82464200
Н	-7.10624300	-0.44658700	-1.75858300
Н	-4.64943900	-2.07272100	1.39342200
Н	-4.76491700	-4.31307400	0.33128700
Ν	-5.73754800	0.17660900	0.44840100
Н	-5.52893400	0.17688900	1.44591100
Н	-4.18981700	0.76758500	-0.13775200
Sb	2.42334900	1.98501500	-0.55497500
F	3.90469000	1.28824700	0.48914400
F	2.41728200	3.59587300	0.50871700
F	3.66491300	2.77542700	-1.79258800
F	0.93252900	2.65565200	-1.57577000
F	2.39208500	0.35919900	-1.60194700
F	1.22128300	1.17815300	0.74205400
Ag	0.76801100	-1.60302300	0.96414200
С	6.26920800	-2.47274300	-0.28751700
С	6.38731700	-2.55108800	1.23787500
С	5.30128600	-1.70668800	1.91053400
С	3.88389100	-2.10154700	1.46515500
С	3.76653100	-2.04368500	-0.07305100
С	4.86534600	-2.87805800	-0.74573000
Н	5.36816300	-1.78440000	3.00915800
Н	6.28361700	-3.60409800	1.55858000
Н	7.38531300	-2.21741100	1.56787600
Н	6.47147000	-1.43685700	-0.61486000
Н	7.02685800	-3.11234800	-0.77039100
Н	3.68376600	-3.14258900	1.77959600
Н	3.90031700	-0.98997500	-0.35566800
Н	4.69206300	-3.94443600	-0.50530400
Н	4.76592400	-2.77801100	-1.83969000
Н	5.44936200	-0.64175700	1.65444300
Ν	2.41752900	-2.42605400	-0.52174800

Н	2.21596500	-2.00513500	-1.42962600
Н	2.35173700	-3.43865700	-0.64682700
Ν	2.85097600	-1.25261100	2.08351900
Н	2.86104600	-1.36791300	3.09791200
Н	3.07255900	-0.26916900	1.90569000
Н	-1.87254900	5.88182100	1.18773100
Н	-6.04810600	-4.63926700	-1.79207000

Zero-point corre	ction=	0.63	35546 (Hartree/Particle)	
Thermal correction to Energy=			0.680863	
Thermal correcti	Thermal correction to Enthalpy=		0.681807	
Thermal correction to Gibbs Free Energy=		gy=	0.550692	
Sum of electroni	c and zero-point Energ	gies=	-2443.887506	
Sum of electroni	c and thermal Energies	5=	-2443.842189	
Sum of electroni	c and thermal Enthalpi	es=	-2443.841245	
Sum of electroni	c and thermal Free End	ergies=	-2443.972361	
Sb	1.36549400	1.68761100	2.49047200	
F	3.26602200	1.62501900	2.13870600	
F	1.69129600	2.36570900	4.25945700	
F	1.28203100	3.48203700	1.78997700	
F	-0.54541300	1.72965500	2.82597200	
F	1.01516500	0.96298400	0.72630300	
F	1.44389900	-0.12757400	3.17122500	
Ag	0.74330800	-1.47074600	-1.25158500	
С	-2.46648900	-0.92819400	-0.37273800	
С	-2.33402300	-1.28938000	-1.78394400	
0	-1.28009000	-1.69223500	-2.28958600	
0	-3.42884000	-1.07660600	-2.52354100	
С	-3.33875800	-1.19192700	-3.96774500	
Н	-2.38333600	-0.75564300	-4.29377500	
Н	-4.16163300	-0.56589000	-4.33928100	
С	-3.48478200	-2.63200000	-4.41462800	
Н	-3.48238100	-2.67555400	-5.51559500	
Н	-2.65162100	-3.24578400	-4.04137800	
Н	-4.43380200	-3.05972600	-4.05415600	
С	-1.87930100	-1.88397300	0.62498100	
С	-1.90452400	-3.27300800	0.40003400	
С	-1.29467300	-1.40564800	1.80889200	
С	-1.34154500	-4.15682600	1.32343700	
Н	-2.36103100	-3.66495400	-0.51223400	

С	-0.74104400	-2.28931200	2.73943000
Н	-1.25646800	-0.33461700	2.00223900
С	-0.75880300	-3.66625200	2.49835400
Н	-1.36353900	-5.23230300	1.12846300
Н	-0.26846700	-1.88887100	3.63798700
Н	-0.31724200	-4.35665400	3.22194600
С	5.88743700	-0.27421600	0.77546800
С	5.65557900	-1.54238100	1.60297300
С	4.15784200	-1.79050300	1.79995600
С	3.38506300	-1.86464900	0.47237500
С	3.64707300	-0.60693100	-0.38494300
С	5.15207300	-0.36405100	-0.56529700
Н	3.98300200	-2.72169700	2.36526200
Н	6.10889300	-2.40701500	1.08370500
Н	6.15607200	-1.46364500	2.58253600
Н	5.50655500	0.59738700	1.33579300
Н	6.96465500	-0.10759000	0.60846100
Н	3.74218200	-2.73712000	-0.10574300
Н	3.21635500	0.24672900	0.15634600
Н	5.57375100	-1.19316100	-1.16505500
Н	5.29514500	0.55902300	-1.15225600
Н	3.72493000	-0.96888700	2.39464700
Ν	2.93482400	-0.69466000	-1.67469900
Н	2.94899000	0.21484800	-2.13987800
Н	3.43000200	-1.33432600	-2.30211300
Ν	1.93959400	-2.04897700	0.69110500
Н	1.75072100	-2.97287900	1.08151600
Н	1.61187200	-1.38314200	1.39412900
С	-5.19278900	-1.05122200	3.38997900
С	-4.48758400	-0.44358900	2.34673900
С	-4.59421700	-0.97364000	1.06048700
С	-5.38037100	-2.09682100	0.79638700
С	-6.08229600	-2.69573700	1.84524200
С	-5.98823000	-2.17451900	3.14117100
Н	-5.11603900	-0.64405900	4.40088600
Н	-3.85522100	0.42811000	2.52842900
Н	-5.43435600	-2.49637800	-0.21943900
Н	-6.70274100	-3.57338600	1.64876500
Ν	-3.83709500	-0.36470600	-0.02187100
Н	-3.54937900	0.66268600	0.17327800
Н	-6.53637000	-2.64701500	3.95996000
С	-0.67513000	3.35724500	-0.99942800
С	-0.29526200	4.05964900	-2.14253200
С	-0.91571300	3.82736300	-3.37981600

С	-1.94046400	2.87353500	-3.44156800
С	-2.33729800	2.17028500	-2.30305300
С	-1.71186800	2.38224600	-1.04145800
Н	-0.16379200	3.54168000	-0.05214100
Н	0.50711000	4.80081000	-2.06698200
Н	-0.60954600	4.37937100	-4.27208300
Н	-2.44639100	2.67623900	-4.39233200
Н	-3.14990500	1.44344700	-2.37413000
Ν	-2.09748900	1.64351300	0.05025600
Н	-1.93678500	0.26755100	-0.23840300
Н	-1.55442800	1.88051200	0.87989000
Н	-4.40046800	-0.35159800	-0.88240200

Pr

Zero-point correcti	on=		0.638959 (Hartree/Particle)
Thermal correction to Energy=		0.685702	
Thermal correction	to Enthalpy=		0.686646
Thermal correction	to Gibbs Free Ene	ergy=	0.549843
Sum of electronic a	and zero-point Ener	rgies=	-2443.942567
Sum of electronic a	and thermal Energi	es=	-2443.895824
Sum of electronic a	and thermal Enthalj	pies=	-2443.894880
Sum of electronic a	and thermal Free Er	nergies=	-2444.031683
С	-2.80917000	-1.12865300	0.09554400
С	-2.70542400	-0.57437700	1.53908400
0	-1.68339600	-0.27503700	2.12719400
0	-3.90548100	-0.47102800	2.09544700
С	-3.98445200	0.02428500	3.46416400
Н	-3.66586700	1.07861900	3.46015900
Н	-3.27100400	-0.54606000	4.07774200
С	-5.40801600	-0.14522000	3.94030700
Н	-5.48914800	0.23095700	4.97207600
Н	-6.11217300	0.41547600	3.30785900
Н	-5.70000600	-1.20709200	3.93636600
С	-1.45721600	-1.50878100	-0.50807500
С	-1.13117900	-1.15771100	-1.82430600
С	-0.54000300	-2.28386700	0.23246800
С	0.08775500	-1.55280700	-2.38640600
Н	-1.83459600	-0.57087800	-2.41561100
С	0.67896500	-2.67979800	-0.33467800
Н	-0.79187500	-2.60957600	1.24485000
С	0.99782700	-2.30914000	-1.64541000

Н	0.32912500	-1.25775800	-3.41091700
Н	1.39114800	-3.26597400	0.24882800
Н	1.96011500	-2.59715500	-2.06812700
С	-2.22407900	3.14708700	-0.85003500
С	-2.36052800	1.79184400	-0.53230500
С	-3.46175900	1.05002600	-1.01038200
С	-4.41247900	1.71674800	-1.81963000
С	-4.26324400	3.06735900	-2.12733100
С	-3.16839900	3.80037700	-1.64632400
Н	-1.35683400	3.69208500	-0.46581900
Н	-1.59588000	1.31634800	0.07853900
Н	-5.26923900	1.15622300	-2.20288400
Н	-5.01454600	3.55491800	-2.75515200
Ν	-3.64517300	-0.29213500	-0.72952100
Н	-4.48350500	-0.72662300	-1.09633600
Н	-3.37567200	-2.06496900	0.23084000

Zero-point correction	n=	0.51	7074 (Hartree/Particle)
Thermal correction t	Thermal correction to Energy=		0.555378
Thermal correction t	o Enthalpy=		0.556323
Thermal correction t	o Gibbs Free Ener	gy=	0.441578
Sum of electronic an	d zero-point Energ	gies=	-2156.596867
Sum of electronic an	d thermal Energies	s=	-2156.558563
Sum of electronic an	d thermal Enthalp	ies=	-2156.557619
Sum of electronic an	d thermal Free En	ergies=	-2156.672363
Sh	-1 09124900	-2 58904900	-0 03909600
F	-2 89684000	-1 90522400	0.11471200
F	-1 50764700	-4 06094000	1 12215300
F	-1.58061500	-3 62420500	-1.58089200
F	0 74829300	-3 16729500	-0 18688500
F	-0.65089200	-1.09656400	-1.21856000
F	-0.60831800	-1.50363700	1 49036800
Ασ	-0.39714500	1.38521300	0.37116100
C	1.88344700	1.13029000	-0.04661000
C	1 89928800	2 38712200	-0.73333700
0	1.83308600	2 33168300	-2.01481000
0	1.97627900	3 54010000	-0.09810800
C C	1.67323100	4 75852800	-0.82979300
н	2 24437800	4 76193100	-0.02779500
и П	2.27737300	5 55722200	0 17020500
11	2.05576500	5.55722500	-0.1/232300

С	0.18385100	4.89746400	-1.07585800
Н	-0.01716600	5.87145800	-1.54974800
Н	-0.17953100	4.10650400	-1.74797200
Н	-0.37721600	4.84896900	-0.12914200
С	2.43426300	0.81400800	1.29255600
С	2.43071000	-0.52790400	1.73484200
С	2.97673400	1.79136200	2.15439200
С	2.94330900	-0.87430200	2.98515100
Н	1.99968200	-1.30499600	1.10303000
С	3.48025200	1.43758300	3.40921500
Н	3.00418300	2.83408900	1.83986700
С	3.46994300	0.10516400	3.83544100
Н	2.92284000	-1.92163700	3.29886300
Н	3.89355100	2.21600700	4.05702500
Н	3.86748900	-0.16704900	4.81655800
С	-5.86675800	0.95445300	-1.10005000
С	-6.08314100	1.16387800	0.40159400
С	-4.84375800	0.73511500	1.19130300
С	-3.56520300	1.44999700	0.72716400
С	-3.35505500	1.27602100	-0.79252700
С	-4.61131600	1.69277800	-1.57193300
Н	-4.98313500	0.91546200	2.27060400
Н	-6.29200600	2.23209700	0.59529900
Н	-6.96493200	0.60104600	0.75019100
Н	-5.75158600	-0.12547000	-1.30412300
Н	-6.74602900	1.29455700	-1.67209000
Н	-3.66226200	2.53336300	0.92381300
Н	-3.16389700	0.20487500	-0.96730200
Н	-4.75443100	2.78254500	-1.44379400
Н	-4.43519600	1.51971500	-2.64709300
Н	-4.68370900	-0.35044400	1.06369200
Ν	-2.15249700	2.00355200	-1.22748600
Н	-1.92340000	1.76101300	-2.19275500
Н	-2.33352200	3.01071500	-1.22694200
Ν	-2.38177500	0.97815300	1.47460300
Н	-2.42413400	1.30184700	2.44236100
Н	-2.39754800	-0.04355200	1.52430500
С	4.57243600	-2.50473800	-1.83495100
С	3.33994300	-1.88779100	-1.60066300
С	3.29378200	-0.51653100	-1.32781000
С	4.47397500	0.23565200	-1.27900900
С	5.70118100	-0.39106800	-1.50926000
С	5.75623400	-1.76111500	-1.79039100
Н	4.60422500	-3.57735000	-2.04310600

Н	2.41569700	-2.46851100	-1.60238600
Н	4.43699400	1.30383500	-1.05594900
Н	6.62081400	0.19830400	-1.46838200
Ν	2.01734800	0.12814000	-1.13322400
Н	1.24764000	-0.54523300	-1.16273000
Н	1.86273000	1.11434700	-2.00429700
Н	6.71863600	-2.24738500	-1.96827600

int4

Zero-point correctio	n=	0.520)555 (Hartree/Particle	e)
hermal correction to Energy=		0.559367		
Thermal correction to Enthalpy=		0.560311		
Thermal correction to Gibbs Free Energy=		gy=	0.443474	
Sum of electronic ar	nd zero-point Energ	gies=	-2156.602272	
Sum of electronic ar	nd thermal Energies	s=	-2156.563460	
Sum of electronic ar	nd thermal Enthalpi	ies=	-2156.562516	
Sum of electronic ar	nd thermal Free En	ergies=	-2156.679353	
Sb	1.56786200	2.41363900	-0.24378400	
F	3.35236300	1.71228200	-0.48876400	
F	2.25332800	3.96446100	0.65781400	
F	1.65902900	3.31642700	-1.93786500	
F	-0.25319300	3.01912500	0.01025500	
F	0.83736800	0.84841400	-1.14820900	
F	1.45984400	1.47789900	1.45127700	
Ag	-0.00538200	-1.74349000	-0.37124000	
С	-2.17172800	-0.80326000	-0.06299500	
С	-2.64006500	-1.87188400	-0.84194200	
0	-2.90252800	-1.69650500	-2.13253900	
0	-2.92430200	-3.06365100	-0.35035400	
С	-2.99544300	-4.21436900	-1.23682900	
Н	-3.68788700	-3.99116600	-2.06123200	
Н	-3.44041900	-4.99615700	-0.60728300	
С	-1.62496700	-4.61900300	-1.74116900	
Н	-1.71700100	-5.54217600	-2.33516100	
Н	-1.18836800	-3.84182000	-2.38736500	
Н	-0.93788300	-4.81411200	-0.90237900	
С	-2.08661200	-0.75452900	1.42722100	
С	-1.55985600	0.41175600	2.02504000	
С	-2.47636700	-1.81121000	2.27947700	
С	-1.40294700	0.50633800	3.40808300	

Н	-1.24107300	1.24633900	1.40188500
С	-2.32081900	-1.70728500	3.66446900
Н	-2.89955000	-2.72051700	1.85754600
С	-1.77895000	-0.55337100	4.24060700
Н	-0.97432600	1.41770700	3.83352300
Н	-2.63174700	-2.54171900	4.29952900
Н	-1.65458000	-0.47981800	5.32407700
С	5.55094800	-1.26090600	-0.51904000
С	5.49369200	-1.49914100	0.99307400
С	4.11162200	-1.14084000	1.54553300
С	2.96983400	-1.88768000	0.83602700
С	3.04996500	-1.66782100	-0.69094400
С	4.43823300	-2.03690700	-1.23036000
Н	4.05305200	-1.34653000	2.62750900
Н	5.71051600	-2.56249600	1.20441400
Н	6.26984100	-0.90942700	1.50862600
Н	5.42233200	-0.18277600	-0.72129200
Н	6.53519800	-1.54990900	-0.92332800
Н	3.08129000	-2.97328600	1.01381300
Н	2.87665100	-0.59750500	-0.87707100
Н	4.59453800	-3.12364800	-1.09300600
Н	4.46201400	-1.84523800	-2.31657900
Н	3.93258000	-0.05931900	1.41222500
Ν	1.96586200	-2.39963200	-1.37971900
Н	1.98067800	-2.17861300	-2.37747100
Н	2.13166300	-3.40828300	-1.31667300
Ν	1.64965500	-1.49207800	1.35751600
Н	1.47014800	-1.93702300	2.25812800
Н	1.63175600	-0.48425900	1.53472500
С	-4.29341600	3.51873100	-0.91578100
С	-3.19516400	2.66204700	-0.99715400
С	-3.32685700	1.30244700	-0.65381600
С	-4.57858600	0.82775400	-0.22128800
С	-5.67091500	1.69701500	-0.14279500
С	-5.54117100	3.04544200	-0.48995900
Н	-4.16874500	4.57198600	-1.18270400
Н	-2.21961100	3.04083300	-1.30769000
Н	-4.70027900	-0.21981200	0.06066800
Н	-6.63516700	1.30963300	0.19816400
Ν	-2.21838600	0.44033600	-0.79581800
Н	-1.33085400	0.92969600	-0.87978000
Н	-2.68125900	-0.74916300	-2.30371200
Н	-6.39808100	3.72044700	-0.42491700

Zero-point correct	ion=	0.5148	869 (Hartree/Particle)
Thermal correction	'hermal correction to Energy=		0.553518
Thermal correction to Enthalpy=			0.554462
Thermal correction to Gibbs Free Energy=		gy= 0	.440091
Sum of electronic	and zero-point Energ	gies=	-2156.529485
Sum of electronic	and thermal Energies	s=	-2156.490836
Sum of electronic	and thermal Enthalp	ies=	-2156.489892
Sum of electronic	and thermal Free En	ergies=	-2156.604262
		C	
Sb	-0.20317500	-2.42902300	0.01488900
F	-2.08578600	-2.49031600	-0.44351400
F	-0.31579500	-4.19971700	0.75398600
F	0.26899700	-3.13255700	-1.71443900
F	1.66251400	-2.32185800	0.48495700
F	-0.10188300	-0.63330200	-0.74233100
F	-0.69985500	-1.66207100	1.72294900
Ag	-1.21693500	1.43129600	1.27758400
C	2.35869900	1.70193700	0.12290300
С	1.81282900	2.74441600	-0.77704400
0	2.77657600	3.39353000	-1.30502500
0	0.57051800	2.99329100	-1.01448800
С	0.18250800	4.08195300	-1.91987600
Н	0.90657000	4.90045800	-1.80109600
Н	-0.79647800	4.40175300	-1.53913600
С	0.11054300	3.57699700	-3.34296500
Н	-0.21872200	4.39852400	-3.99848100
Н	1.09661400	3.23187200	-3.68949200
Н	-0.61245700	2.75132700	-3.43287200
С	1.74504100	1.47297300	1.44163300
С	2.04616000	0.30590800	2.17511400
С	0.85235700	2.41254100	2.04223600
С	1.52780000	0.09479400	3.45520100
Н	2.68857100	-0.45080800	1.72538500
С	0.31933800	2.17759200	3.33046200
Н	0.68454100	3.38557700	1.57232800
С	0.66251200	1.02015200	4.04572300
Н	1.79312300	-0.82059500	3.99096600
Н	-0.31756700	2.93866500	3.78994700
Н	0.25404400	0.84841600	5.04400900
С	-5.02984400	-0.28869500	-2.57964700
С	-5.91384700	-0.42276700	-1.33568200

С	-5.06168000	-0.67643600	-0.08904600
С	-3.99492600	0.40821600	0.12653400
С	-3.11492700	0.56391600	-1.13289100
С	-3.97490100	0.80348500	-2.38145800
Н	-5.69436800	-0.74378100	0.81223700
Н	-6.49659300	0.50683400	-1.19935200
Н	-6.64508700	-1.23786900	-1.46514700
Н	-4.52193200	-1.25141500	-2.76968700
Н	-5.64158100	-0.06976900	-3.47064000
Н	-4.49428400	1.37779400	0.30779100
Н	-2.57081000	-0.38343400	-1.25409400
Н	-4.47431300	1.78585500	-2.27967200
Н	-3.31206900	0.87195900	-3.26053800
Н	-4.53885400	-1.64447100	-0.18994500
Ν	-2.09806000	1.60816000	-0.93834600
Н	-1.30409500	1.45124100	-1.55750000
Н	-2.47574600	2.53063000	-1.16544500
Ν	-3.15502700	0.12601100	1.30638100
Н	-3.71767400	0.16976200	2.15766500
Н	-2.80153800	-0.83305000	1.25431000
С	5.12323800	-1.96424400	-1.75795600
С	3.90750900	-1.32867600	-1.51517200
С	3.86561300	-0.06983400	-0.86731100
С	5.08634900	0.51011400	-0.46270100
С	6.29838600	-0.13901300	-0.71452900
С	6.33465600	-1.37673400	-1.36558800
Н	5.12343400	-2.93703200	-2.25852600
Н	2.96794700	-1.80567500	-1.80534000
Н	5.07906600	1.46932100	0.05824100
Н	7.22972700	0.33442300	-0.38940000
Ν	2.63373200	0.52915100	-0.66428500
Н	1.83008700	-0.06624800	-0.85054100
Н	3.39674500	2.74622700	-0.49507600
Н	7.28610100	-1.87823200	-1.55896600

Zero-point correction=	0.515974 (Hartree/Particle)
Thermal correction to Energy=	0.554528
Thermal correction to Enthalpy=	0.555472
Thermal correction to Gibbs Free Energy=	0.441511
Sum of electronic and zero-point Energies=	-2156.533211
Sum of electronic and thermal Energies=	-2156.494658

Sum of electronic and thermal Enthalpies=	-2156.493714
Sum of electronic and thermal Free Energies=	-2156.607675

Sb	0.11588500	-2.70048800	-0.03814400
F	-1.47315300	-3.06808700	-1.06948800
F	-0.00426500	-4.41322800	0.82729600
F	1.23205900	-3.45864400	-1.41759500
F	1.66419500	-2.23382600	1.01816400
F	0.24315300	-0.97631800	-0.92833900
F	-1.00059100	-1.92582300	1.34821000
Ag	-0.67970100	1.07167100	1.27755100
С	1.78575600	2.07651700	-1.15804800
С	0.65173300	2.40032400	-2.00777300
0	0.33874000	1.77407300	-3.01637800
0	-0.03860500	3.47564500	-1.57099000
С	-1.11917900	3.96029100	-2.38684800
Н	-1.67026700	3.10962300	-2.81597800
Н	-0.69608800	4.53412900	-3.22961800
С	-2.00524600	4.82265200	-1.51466100
Н	-2.83084100	5.23839300	-2.11351700
Н	-2.43715700	4.23229300	-0.69001700
Н	-1.43679200	5.65942300	-1.07894800
С	1.77160400	2.34744700	0.28890500
С	1.69855700	1.27902600	1.22910300
С	1.77177100	3.66435800	0.78201000
С	1.61438200	1.54804100	2.61190600
Н	1.80979200	0.24538300	0.89507900
С	1.68825400	3.92014500	2.15520100
Н	1.83212100	4.49285500	0.07486300
С	1.60567300	2.87269700	3.07727500
Н	1.61204900	0.71323100	3.31760500
Н	1.69513700	4.95518300	2.50756300
Н	1.55156100	3.07778900	4.14888900
С	-5.21166200	-1.00459500	-1.34779400
С	-5.92056300	-0.63525600	-0.04112900
С	-4.92559200	-0.58991000	1.12201200
С	-3.74621600	0.35909400	0.86094600
С	-3.04961500	0.01559700	-0.47318300
С	-4.05986200	-0.03652300	-1.62804500
Н	-5.42773900	-0.29129500	2.05773200
Н	-6.39982600	0.35466000	-0.15285900
Н	-6.72709100	-1.35331700	0.18181900
Н	-4.80806600	-2.03031100	-1.26845800
Н	-5.92297700	-1.00606800	-2.19030500

Н	-4.12536700	1.39387600	0.77677000	
Н	-2.60095700	-0.98291700	-0.36204300	
Н	-4.46090500	0.98202800	-1.78972400	
Н	-3.52405900	-0.31946300	-2.54955300	
Н	-4.51331000	-1.60244900	1.28927200	
Ν	-1.95059800	0.95666000	-0.73290100	
Н	-1.36860100	0.62557100	-1.50373600	
Н	-2.33059600	1.86141700	-1.01650300	
Ν	-2.77985000	0.34367800	1.97993900	
Н	-3.19351700	0.78069300	2.80512500	
Н	-2.58482000	-0.62662400	2.23960700	
С	4.77999200	-1.90171600	-0.68228800	
С	3.66636400	-1.24996700	-1.21408600	
С	3.53778400	0.13991900	-1.07590400	
С	4.52915800	0.87099000	-0.40066600	
С	5.64036600	0.20521700	0.12337300	
С	5.77325400	-1.18099100	-0.01013300	
Н	4.85988000	-2.98683500	-0.78706400	
Н	2.88543100	-1.82096900	-1.71733800	
Н	4.43494100	1.95111000	-0.28163400	
Н	6.40709700	0.78181200	0.64758600	
Ν	2.40554200	0.76623500	-1.65909000	
Н	1.72209800	0.13711800	-2.09055200	
Н	2.70482400	1.86484300	-2.09703300	
Н	6.64023900	-1.69540300	0.41144900	
4 X-ray Crystallographic Data of Complex A

Crystallography data and structure refinement for Complex A (CCDC 2105536)

Empirical formula	$AgC_{18}F_6N_2O_4SbH_{22}$
Temperature	293(2) K
Formula weight	673.99
Unit cell dimensions	a = 8.2459(6) Å $alpha = 90 deg$
	b = 20.336(2) Å beta = 90 deg.
	c = 13.7102(12) Å gamma = 90 deg.
Volume	2299.0 (3) Å ³
Ζ	4
pcalc	1.947 g/cm ³
μ/mm ⁻¹	2.102
F(000)	1312.0
Crystal size	0.1 x 0.1x 0.1 mm
Radiation	MoKα (λ = 0.71073 Å)
2θrange for data collection	7.17 to 58.672/°
Reflections collected	4990
Independent reflections	$2622[R_{int} = 0.0296, R_{sigma} = 0.0419]$
Data/restraints/parameters	2622/0/152
Goodness-of-fit on F ²	0.979
Final R indexes [I>=2σ (I)]	$R_1 = 0.0347, wR_2 = 0.0697$
Final R indexes [all data]	$R_1 = 0.0495, wR_2 = 0.0803$

Complex **A** was crystallized as a colourless crystal via vaporization of a hexane/ EtOAc solution, and its structure was determined by x-ray structure analysis. The crystallographic data that can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

5 Characterization data for the products

*Known compounds have been marked with references

ethyl 2-(butylamino)-2-phenylacetate (1)¹¹

Light yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.39-7.27 (m, 5H), 4.34 (s, 1H), 4.23-4.16 (m, 1H), 4.15-4.09 (m, 1H), 2.61-2.56 (m, 1H), 2.52-2.47 (m, 1H), 1.97 (s, 1H), 1.53-1.47 (m, 2H), 1.38-1.29 (m, 2H), 1.21 (t, *J* = 7.5 Hz, 3H), 0.89 (t, *J* = 7.5 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.2, 138.4, 128.6, 127.9, 127.3, 65.7, 61.0, 47.5, 32.1, 20.4, 14.1, 13.9; **HRMS** (ESI⁺) m/z calcd for C₁₄H₂₁NNaO₂ [M+Na]⁺ 258.1464, found 258.1467.

ethyl 2-(octylamino)-2-phenylacetate (2)

Light yellow oil; ¹**H NMR** (600 MHz, CDCl₃) δ 7.40-7.25 (m, 5H), 4.34 (s, 1H), 4.21-4.17 (m, 1H), 4.15-4.10 (m, 1H), 2.59-2.55 (m, 1H), 2.51-2.47 (m, 1H), 2.01 (s, 1H), 1.55-1.46 (m, 2H), 1.35-1.23 (m, 10H), 1.21 (t, *J* = 7.2 Hz, 3H), 0.87 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 173.2, 138.4, 128.6, 127.9, 127.3, 65.7, 61.0, 47.8, 31.8, 30.0, 29.4, 29.2, 27.2, 22.6, 14.07, 14.02; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₉NNaO₂ [M+Na]⁺ 314.2090, found 314.2098.

ethyl 2-(dodecylamino)-2-phenylacetate (3)

Light yellow oil; ¹**H** NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 4.34 (s, 1H), 4.22-4.17 (m, 1H), 4.15-4.09 (m, 1H), 2.59-2.55 (m, 1H), 2.51-2.47 (m, 1H), 1.99 (s, 1H), 1.55-1.46 (m, 2H), 1.33-1.25 (m, 18H), 1.20 (t, J = 7.2 Hz, 3H), 0.88 (t, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.1, 138.4, 128.6, 127.9, 127.3, 65.6, 61.0, 47.8, 31.9, 30.0, 29.62, 29.59, 29.57, 29.53, 29.47, 29.3, 27.2, 22.7, 14.1; **HRMS** (ESI⁺) m/z calcd for C₂₂H₃₈NO₂ [M+H]⁺ 348.2897, found 348.2906.

ethyl 2-(cyclopentylamino)-2-phenylacetate (4)

Colorless oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 4.23-4.16 (m, 1H), 4.14-4.08 (m, 1H), 2.99-2.95 (m, 1H), 2.04 (br, 1H), 1.85-1.73 (m, 2H), 1.73-1.64 (m, 2H), 1.55-1.44 (m, 2H), 1.41-1.37 (m, 2H), 1.21 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 173.5, 138.7, 128.6, 127.9, 127.4, 64.3, 61.1, 57.4, 33.2, 33.0, 24.0, 23.96, 14.1; **HRMS** (ESI⁺) m/z calcd for C₁₅H₂₂NO₂ [M+H]⁺ 248.1645, found 248.1655.

.....

ethyl 2-(cyclohexylamino)-2-phenylacetate (5)¹²

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 7.0 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 4.51 (s, 1H), 4.22-4.15 (m, 1H), 4.14-4.08 (m, 1H), 2.41-2.30 (m, 1H), 2.09 (s, 1H), 1.87-1.81 (m, 2H), 1.74-1.66 (m, 2H), 1.59-1.56 (m, 1H), 1.23-1.10 (m, 8H); ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 138.8, 128.6, 127.8, 127.3, 62.4, 61.0, 54.4, 33.4, 33.2, 26.0, 24.8, 14.1; HRMS (ESI⁺) m/z calcd for C₁₆H₂₃NNaO₂ [M+Na]⁺ 284.1621, found 284.1626.

, CO₂Et

ethyl 2-(cycloheptylamino)-2-phenylacetate (6)

Colorless oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.38-7.30 (m, 4H), 7.30-7.25 (m, 1H), 4.45 (s, 1H), 4.22-4.07 (m, 2H), 2.57-2.52 (m, 1H), 2.07 (s, 1H), 1.86-1.74 (m, 2H), 1.69-1.60 (m, 2H), 1.55-1.30 (m, 8H), 1.20 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.5, 138.6, 128.6, 127.8, 127.2, 62.8, 61.0, 56.4, 34.73, 34.67, 28.2, 28.1, 24.1, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₇H₂₆NO₂ [M+H]⁺ 276.1958, found 276.1968.

ethyl 2-(phenethylamino)-2-phenylacetate (7)

Colorless oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.35-7.30 (m, 4H), 7.30-7.24 (m, 3H), 7.21-7.15 (m, 3H), 4.37 (s, 1H), 4.20-4.04 (m, 2H), 2.88-2.71 (m, 4H), 2.13 (br, 1H), 1.17 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 172.8, 139.7, 138.1, 128.63, 128.58, 128.4, 127.9, 127.3, 126.1, 65.5, 61.0, 49.0, 36.4, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₁NNaO₂ [M+Na]⁺

306.1464, found 306.1481.

ethyl 2-((3-(4-methoxyphenyl)propyl)amino)-2-phenylacetate (8)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 7.09 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 4.38 (s, 1H), 4.21-4.14 (m, 1H), 4.13-4.05 (m, 1H), 3.76 (s, 3H), 2.86-2.72 (m, 4H), 2.07 (br, 1H), 1.18 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.9, 158.0, 138.0, 131.5, 129.5, 128.6, 128.0, 127.3, 113.8, 65.5, 61.1, 55.1, 49.1, 35.3, 14.0; HRMS (ESI⁺) m/z calcd for C₁₉H₂₃NNaO₃ [M+Na]⁺ 336.1570, found 336.1575.

ethyl 2-phenyl-2-((3-phenylpropyl)amino)acetate (9)

Colorless oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.38-7.24 (m, 7H), 7.19-7.14 (m, 3H), 4.33 (s, 1H), 4.25-4.06 (m, 2H), 2.71-2.58 (m, 3H), 2.56-2.51 (m, 1H), 1.94 (s, 1H), 1.87-1.80 (m, 2H), 1.20 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.2, 142.1, 138.4, 128.7, 128.4, 128.3, 128.0, 127.4, 125.8, 65.6, 61.1, 47.3, 33.5, 31.6, 14.1; **HRMS** (ESI⁺) m/z calcd for C₁₉H₂₃NNaO₂ [M+Na]⁺ 320.1621, found 320.1627.

ethyl 2-((2-methoxyethyl)amino)-2-phenylacetate (10)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.28 (m, 5H), 4.40 (s, 1H), 4.25-4.09 (m, 2H), 3.55-3.47 (m, 2H), 3.25 (s, 3H), 2.85-2.69 (m, 2H), 2.23 (s, 1H), 1.21 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.0, 136.8, 127.7, 127.2, 126.4, 70.7, 64.7, 60.4, 57.6, 46.4, 13.1; HRMS (ESI⁺) m/z calcd for C₁₃H₁₉NNaO₃ [M+Na]⁺ 260.1257, found 260.1254.

ethyl 2-((2-(cyclohex-1-en-1-yl)ethyl)amino)-2-phenylacetate (11) Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.31 (m, 4H), 7.30-7.27 (m, 1H), 5.51-5.42

(m, 1H), 4.36 (s, 1H), 4.22-4.08 (m, 2H), 2.67-2.53 (m, 2H), 2.16 (t, J = 7.0 Hz, 2H), 2.09 (s, 1H), 2.01-1.95 (m, 2H), 1.93-1.78 (m, 2H), 1.63-1.57 (m, 2H), 1.56-1.52 (m, 2H), 1.20 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.0, 138.3, 135.1, 128.6, 127.9, 127.3, 122.8, 65.5, 61.0, 45.3, 38.2, 28.0, 25.2, 22.9, 22.4, 14.1; HRMS (ESI⁺) m/z calcd for C₁₈H₂₅NNaO₂ [M+Na]⁺ 310.1777, found 310.1787.

ethyl 2-((2-methylallyl)amino)-2-phenylacetate (12)

Light yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 4.89-4.85 (m, 2H), 4.35 (s, 1H), 4.22-4.09 (m, 2H), 3.12 (ABq, J = 13.8 Hz, 2H), 2.11 (s, 1H), 1.75 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 143.2, 138.3, 128.6, 127.9, 127.4, 111.5, 64.2, 61.0, 53.3, 20.7, 14.1; HRMS (ESI⁺) m/z calcd for C₁₄H₁₉NNaO₂ [M+Na]⁺ 256.1308, found 256.1309.

.....

ethyl 2-((2,2-difluoroethyl)amino)-2-phenylacetate (13)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 5.82 (tt, J = 56.5, 4.5 Hz, 1H), 4.42 (s, 1H), 4.24-4.07 (m, 2H), 3.02-2.78 (m, 2H), 2.22 (s, 1H), 1.20 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.4, 137.5, 128.8, 128.4, 127.5, 116.0 (t, J = 238.5 Hz), 65.1, 61.4, 49.2 (t, J = 24.0 Hz), 14.1; ¹⁹F NMR (564 MHz, CDCl₃) δ -(121.40)-(-121.62) (m); HRMS (ESI⁺) m/z calcd for C₁₂H₁₆F₂NO₂ [M+H]⁺ 260.1281, found 260.1278.

.

ethyl 2-phenyl-2-((2,2,2-trifluoroethyl)amino)acetate (14)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.21 (m, 5H), 4.43 (s, 1H), 4.17-3.99 (m, 2H), 3.10-2.95 (m, 2H), 2.37 (s, 1H), 1.12 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.1, 137.0, 128.8, 128.4, 127.5, 125.4 (q, *J* = 276.0 Hz), 64.4, 61.5, 47.8 (q, *J* = 31.5 Hz), 14.0; ¹⁹F NMR (564 MHz, CDCl₃) δ -71.72 (t, *J* = 9.6 Hz); HRMS (ESI⁺) m/z calcd for C₁₂H₁₄F₃NNaO₂ [M+Na]⁺ 284.0869, found 284.0873.

.....

ethyl 2-phenyl-2-(prop-2-yn-1-ylamino)acetate (15)

Colorless oil; ¹**H NMR** (600 MHz, CDCl₃) δ 7.40 (d, J = 8.4 Hz, 2H), 7.35 (t, J = 7.8 Hz, 2H), 7.33-7.29 (m, 1H), 4.61 (s, 1H), 4.23-4.11 (m, 2H), 3.48-3.45 (m, 1H), 3.32-3.25 (m, 1H), 2.25 (s, 1H), 2.05 (s, 1H), 1.21 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 172.4, 137.5, 128.7, 128.2, 127.8, 81.2, 72.0, 63.7, 61.3, 35.9, 14.1; **HRMS** (ESI⁺) m/z calcd for C₁₃H₁₅NNaO₂ [M+Na]⁺ 240.0995, found 240.1000.

ethyl 2-(benzylamino)-2-phenylacetate (16)¹²

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.24 (m, 10H), 4.37 (s, 1H), 4.23-4.07 (m, 2H), 3.74 (s, 2H), 2.29 (br, 1H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 139.5, 138.2, 128.7, 128.44, 128.36, 128.0, 127.6, 127.2, 64.5, 61.2, 51.4, 14.1; HRMS (ESI⁺) m/z calcd for C₁₇H₁₉NNaO₂ [M+Na]⁺ 292.1308, found 292.1313.

ethyl 2-((4-methylbenzyl)amino)-2-phenylacetate (17)

Light yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.38 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.0 Hz, 1H), 7.21 (d, J = 7.5 Hz, 2H), 7.12 (d, J = 7.5 Hz, 2H), 4.37 (s, 1H), 4.22-4.15 (m, 1H), 4.14-4.07 (m, 1H), 3.70 (br, 1H), 2.36 (s, 1H), 2.33 (s, 3H), 1.19 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 172.9, 138.2, 136.7, 136.4, 129.1, 128.6, 128.3, 128.0, 127.5, 64.3, 61.1, 51.1, 21.1, 14.1; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₁NNaO₂ [M+Na]⁺ 306.1464, found 306.1471.

ethyl 2-((4-chlorobenzyl)amino)-2-phenylacetate (18) Brown oil; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.24 (m, 9H), 4.33 (s, 1H), 4.23-4.06 (m, 2H), 3.70 (s, 2H), 2.01 (s, 1H), 1.20 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.8, 138.0, 137.9, 132.7, 129.6, 128.6, 128.5, 128.0, 127.4, 64.3, 61.1, 50.5, 14.0; HRMS (ESI⁺) m/z calcd for C₁₇H₁₈ClNNaO₂ [M+Na]⁺ 326.0918, found 326.0923.

ethyl 2-((2-methylbenzyl)amino)-2-phenylacetate (19)

Light yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.0 Hz, 2H), 7.31-7.26 (m, 2H), 7.18-7.11 (m, 3H), 4.40 (s, 1H), 4.22-4.08 (m, 2H), 3.72 (q, J = 13.0 Hz, 2H), 2.31 (s, 3H), 2.19 (s, 1H), 1.20 (t, J = 7.5 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 172.0, 137.3, 136.5, 135.7, 129.3, 127.8, 127.6, 127.0, 126.5, 126.2, 124.9, 63.9, 60.1, 48.3, 17.9, 13.1; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₁NNaO₂ [M+Na]⁺ 306.1464, found 306.1464.

.....

ethyl 2-((naphthalen-1-ylmethyl)amino)-2-phenylacetate (20)

Yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 8.13 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.53-7.39 (m, 6H), 7.35 (t, J = 7.5 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 4.48 (s, 1H), 4.23-4.12 (m, 4H), 2.35 (s, 1H), 1.20 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 173.0, 138.2, 135.1, 133.9, 131.9, 128.61, 128.58, 128.02, 127.96, 127.6, 126.4, 126.1, 125.6, 125.3, 123.9, 65.1, 61.1, 49.3, 14.1; **HRMS** (ESI⁺) m/z calcd for C₂₁H₂₁NNaO₂ [M+Na]⁺ 342.1464, found 342.1427.

ethyl 2-((furan-3-ylmethyl)amino)-2-phenylacetate (21)

Yellow oil; ¹**H NMR** (500 MHz, CDCl₃) δ 7.40-7.36 (m, 3H), 7.35 (d, J = 1.5 Hz, 1H), 7.34-7.28 (m, 2H), 6.31 (dd, J = 3.0, 2.0 Hz, 1H), 6.16 (d, J = 2.5 Hz, 1H), 4.38 (s, 1H), 4.21-4.05 (m, 2H), 3.74 (q, J = 14.5 Hz, 2H), 1.68 (s, 1H), 1.19 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (125MHz, CDCl₃) δ 172.6, 153.0, 142.0, 137.8, 128.7, 128.1, 127.6, 110.1, 107.5, 64.2, 61.2, 43.8, 14.1; **HRMS** (ESI⁺) m/z calcd for C₁₅H₁₈NO₃ [M+H]⁺ 260.1281, found 260.1278.

ethyl 2-phenyl-2-((thiophen-3-ylmethyl)amino)acetate (22)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.27 (m, 6H), 7.13 (d, J = 1.5 Hz, 1H), 7.06 (d, J = 5.0 Hz, 1H), 4.38 (s, 1H), 4.23-4.08 (m, 2H), 3.76 (s, 2H), 2.14 (s, 1H), 1.20 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.9, 140.6, 138.1, 128.7, 128.0, 127.7, 127.5, 125.8, 122.0, 64.4, 61.2, 46.4, 14.1; HRMS (ESI⁺) m/z calcd for C₁₅H₁₇NNaO₂S [M+Na]⁺ 298.0872, found 298.0864.

ethyl 2-phenyl-2-(((R)-1-phenylethyl)amino)acetate (23)¹³

Colorless oil; ¹**H NMR** (600 MHz, CDCl₃) δ 7.36-7.30 (m, 5H), 7.29-7.24 (m, 5H), 4.18 (d, J = 2.5 Hz, 1H), 4.13-3.98 (m, 2H), 3.58-3.54 (m, 1H), 2.36 (s, 1H), 1.34 (dd, J = 5.5, 2.5 Hz, 3H), 1.14-1.11 (m, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 172.8, 144.5, 138.4, 128.6, 128.5, 127.9, 127.7, 127.1, 126.9, 62.6, 61.1, 54.7, 24.3, 13.9; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₁NNaO₂ [M+Na]⁺ 306.1464, found 306.1459.

ethyl 2-(benzhydrylamino)-2-phenylacetate (24)

White solid; mp: 122-123 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 (d, *J* = 7.5 Hz, 2H), 7.37-7.26 (m, 11H), 7.24-7.18 (m, 2H), 4.74 (s, 1H), 4.31 (s, 1H), 4.23-4.07 (m, 2H), 2.70 (s, 1H), 1.18 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 173.2, 143.3, 143.2, 138.3, 128.7, 128.6, 128.5, 128.0, 127.6, 127.48, 127.47, 127.3, 127.2, 64.5, 62.9, 61.2, 14.1; **HRMS** (ESI⁺) m/z calcd for C₂₃H₂₃NNaO₂ [M+Na]⁺ 368.1261, found 368.1271.

ethyl 2-(diisopropylamino)-2-phenylacetate (25)

Light yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.28 (m, 4H), 7.26-7.22 (m, 1H), 4.75 (s, 1H), 4.29-4.14 (m, 2H), 3.31-3.24 (m, 2H), 1.28 (t, *J* = 7.0 Hz, 3H), 1.12 (d, *J* = 6.5 Hz, 6H), 0.96 (d, *J* = 7.0 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 175.6, 139.5, 128.4, 128.0,

127.0, 61.6, 60.2, 45.7, 23.1, 21.6, 14.1; **HRMS** (ESI⁺) m/z calcd for $C_{16}H_{26}NO_2$ [M+H]⁺ 264.1958, found 264.1960.

Ph CO₂Et

ethyl 2-(benzyl(methyl)amino)-2-phenylacetate (26)

Colorless oil; ¹**H** NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.5 Hz, 2H), 7.36-7.28 (m, 7H), 7.22 (t, J = 7.0 Hz, 1H), 4.31 (s, 1H), 4.26-4.13 (m, 2H), 3.65 (d, J = 13.5 Hz, 1H), 3.53 (d, J = 13.5 Hz, 1H), 2.21 (s, 3H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 138.9, 136.7, 128.8, 128.7, 128.4, 128.1, 128.0, 126.9, 72.2, 60.6, 58.5, 39.0, 14.2; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₁NNaO₂ [M+Na]⁺ 306.1464, found 306.1474.

ethyl 2-(dibenzylamino)-2-phenylacetate (27)¹²

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.25 (m, 13H), 7.22-7.19 (m, 2H), 4.60 (s, 1H), 4.35-4.18 (m, 2H), 3.82-3.72 (m, 4H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.1, 139.5, 136.8, 128.8, 128.3, 128.2, 127.7, 127.0, 65.8, 60.4, 54.2, 14.4; HRMS (ESI⁺) m/z calcd for C₂₄H₂₆NO₂ [M+H]⁺ 360.1958, found 360.1955.

.....

ethyl 2-(diallylamino)-2-phenylacetate (28)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.0 Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 5.87-5.79 (m, 2H), 5.18-5.12 (m, 4H), 4.59 (s, 1H), 4.27-4.11 (m, 2H), 3.22 (d, J = 6.5 Hz, 4H), 1.25 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 136.8, 135.7, 128.7, 128.3, 127.9, 117.5, 67.7, 60.5, 53.2, 14.3; HRMS (ESI⁺) m/z calcd for C₁₆H₂₁NNaO₂ [M+Na]⁺ 282.1464, found 282.1468.

ethyl 1-(2-ethoxy-2-oxo-1-phenylethyl)piperidine-4-carboxylate (29)

Colorless oil; ¹**H** NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 7.0 Hz, 2H), 7.36-7.28 (m, 3H), 4.22-4.15 (m, 1H), 4.14-4.09 (m, 3H), 4.01 (s, 1H), 2.90 (d, J = 11.0 Hz, 1H), 2.76 (d, J = 11.0 Hz, 1H), 2.32-2.25 (m, 1H), 2.21 (td, J = 11.0, 3.0 Hz, 1H), 2.01 (td, J = 11.0, 3.0 Hz, 1H), 1.92-1.76 (m, 4H), 1.23 (t, J = 7.5 Hz, 3H), 1.20 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.0, 171.5, 136.1, 128.7, 128.4, 128.1, 74.1, 60.7, 60.2, 50.6, 50.5, 41.1, 28.1, 28.1, 14.2, 14.1; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₅NNaO₄ [M+Na]⁺ 342.1676, found 342.1671.

ethyl 2-(azocan-1-yl)-2-phenylacetate (30)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.5 Hz, 2H), 7.32 (t, J = 7.0 Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 4.40 (s, 1H), 4.22-4.12 (m, 2H), 2.70-2.57 (m, 4H), 1.74-1.65 (m, 2H), 1.61-1.50 (m, 4H), 1.49-1.40 (m, 4H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.7, 138.0, 129.0, 128.1, 127.6, 73.3, 60.3, 51.5, 27.9, 27.5, 25.7, 14.2; HRMS (ESI⁺) m/z calcd for C₁₇H₂₆NO₂ [M+H]⁺ 276.1958, found 276.1960.

ethyl 2-morpholino-2-phenylacetate (31)¹⁴

Light yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 7.0 Hz, 2H), 7.38-7.29 (m, 3H), 4.23-4.06 (m, 2H), 3.96 (s, 1H), 3.73 (t, J = 4.5 Hz, 4H), 2.46-2.43 (m, 4H), 1.20 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 135.4, 128.8, 128.5, 128.4, 74.4, 66.8, 60.9, 51.5, 14.0; HRMS (ESI⁺) m/z calcd for C₁₄H₂₀NO₃ [M+H]⁺ 250.1438, found 250.1446.

ethyl 2-phenyl-2-thiomorpholinoacetate (32)

Light yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 7.0 Hz, 2H), 7.37-7.29 (m, 3H), 4.24-4.10 (m, 3H), 2.84-2.78 (m, 2H), 2.77-2.71 (m, 2H), 2.70-2.66 (m, 4H), 1.22 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 135.6, 128.7, 128.5, 128.2, 73.9, 60.8, 52.7,

ethyl 2-phenyl-2-(phenylamino)acetate (33)¹²

White solid; mp: 86-87 °C; ¹**H NMR** (600 MHz, CDCl₃) δ 7.49 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.13-7.09 (m, 2H), 6.68 (t, J = 7.2 Hz, 1H), 6.55 (d, J = 7.2 Hz, 2H), 5.06 (s, 1H), 4.95 (s, 1H), 4.25-4.19 (m, 1H), 4.15-4.10 (m, 1H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.9, 146.1, 137.8, 129.3, 128.8, 128.2, 127.2, 118.1, 113.5, 61.8, 60.9, 14.1; **HRMS** (ESI⁺) m/z calcd for C₁₆H₁₈NO₂ [M+H]⁺ 256.1332, found 256.1334.

ethyl 2-((4-methoxyphenyl)amino)-2-phenylacetate (34)¹²

Yellow oil; ¹**H** NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.0 Hz, 2H), 7.34 (t, J = 7.0 Hz, 2H), 7.29 (t, J = 7.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 2H), 6.53 (d, J = 9.0 Hz, 2H), 5.00 (s, 1H), 4.67 (s, 1H), 4.24-4.19 (m, 1H), 4.15-4.10 (m, 1H), 3.69 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 152.5, 140.2, 137.9, 128.7, 128.1, 127.2, 114.8, 114.7, 61.7, 61.6, 55.7, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₇H₂₀NO₃ [M+H]⁺ 286.1438, found 286.1442.

ethyl 2-((4-(tert-butyl)phenyl)amino)-2-phenylacetate (35)¹⁵

White solid; mp: 94-95 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.15 (d, J = 8.4, 2H), 6.52 (d, J = 8.4 Hz, 2H), 5.02 (s, 1H), 4.85 (s, 1H), 4.25-4.20 (m, 1H), 4.16-4.10 (m, 1H), 1.23 (s, 9H), 1.20 (t, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 143.7, 140.8, 138.0, 128.8, 128.1, 127.2, 126.0, 113.0, 61.7, 61.1, 33.8, 31.5, 14.0; **HRMS** (ESI⁺) m/z calcd for C₂₀H₂₅NNaO₂ [M+Na]⁺ 334.1778, found 334.1780.

ethyl 2-([1,1'-biphenyl]-4-ylamino)-2-phenylacetate (36)¹⁵

White solid; mp: 95-97 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.53-7.45 (m, 4H), 7.41-7.28 (m, 7H), 7.23 (t, J = 7.0 Hz, 1H), 6.63 (d, J = 10.5 Hz, 2H), 5.10 (s, 1H), 5.06 (br, 1H), 4.28-4.22 (m, 1H), 4.18-4.12 (m, 1H), 1.22 (t, J = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 145.4, 141.1, 137.6, 130.9, 128.9, 128.6, 128.3, 127.9, 127.2, 126.3, 126.1, 113.6, 61.9, 60.8, 14.0; HRMS (ESI⁺) m/z calcd for C₂₂H₂₁NNaO₂ [M+Na]⁺ 354.1465, found 354.1466.

```
.....
```


ethyl 4-((2-ethoxy-2-oxo-1-phenylethyl)amino)benzoate (37)

White solid; mp: 120-121 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 9.0 Hz, 2H), 7.46 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 6.51 (d, J = 9.0 Hz, 2H), 5.47 (s, 1H), 5.11 (s, 1H), 4.30-4.20 (m, 3H), 4.16-4.10 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.1, 166.6, 149.4, 136.8, 131.3, 128.9, 128.4, 127.0, 119.6, 112.3, 62.0, 60.1, 60.0, 14.3, 13.9; HRMS (ESI⁺) m/z calcd for C₁₉H₂₁NNaO₄ [M+Na]⁺ 350.1363, found 350.1365.

ethyl 2-((4-iodophenyl)amino)-2-phenylacetate (38)¹²

White solid; mp: 122-123 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 7.2 Hz, 2H), 7.37-7.33 (m, 4H), 7.30 (t, *J* = 7.2 Hz, 1H), 6.33 (d, *J* = 8.4 Hz, 2H), 5.04 (s, 1H), 5.00 (s, 1H), 4.26-4.21 (m, 1H), 4.16-4.10 (m, 1H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.4, 145.4, 137.8, 137.1, 128.9, 128.4, 127.1, 115.6, 78.9, 62.0, 60.5, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₆H₁₇INO₂ [M+H]⁺ 382.0299, found 382.0295.

ethyl 2-((4-cyanophenyl)amino)-2-phenylacetate (39)¹⁶

.....

Yellow solid; mp: 100-102 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 7.2 Hz, 2H), 7.38-7.29 (m, 5H), 6.51 (d, J = 9.0 Hz, 2H), 5.59 (d, J = 5.4 Hz, 1H), 5.07 (d, J = 6.0 Hz, 1H), 4.27-4.22 (m, 1H), 4.17-4.12 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃)

δ 170.8, 148.9, 136.3, 133.6, 129.0, 128.6, 126.9, 120.0, 113.0, 99.8, 62.2, 59.8, 13.9; **HRMS** (ESI⁺) m/z calcd for C₁₇H₁₇N₂O₂ [M+H]⁺ 281.1285, found 382.0292.

ethyl 2-phenyl-2-(m-tolylamino)acetate (40)¹²

White solid; mp: 108-109 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 6.99 (t, J = 7.8 Hz, 1H), 6.51 (d, J = 7.2 Hz, 1H), 6.41 (s, 1H), 6.35 (d, J = 8.4 Hz, 1H), 5.05 (s, 1H), 4.88 (s, 1H), 4.25-4.20 (m, 1H), 4.15-4.10 (m, 1H), 2.21 (s, 3H), 1.20 (t, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.8, 146.0, 138.9, 137.8, 129.1, 128.7, 128.1, 127.1, 119.0, 114.3, 110.4, 61.7, 60.8, 21.5, 14.0; HRMS (ESI⁺) m/z calcd for C₁₇H₂₀NO₂ [M+H]⁺ 270.1489, found 270.1492.

ethyl 2-((3-isopropylphenyl)amino)-2-phenylacetate (41)

White solid; mp: 115-116 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.50 (d, J = 7.8 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.29 (t, J = 7.8 Hz, 1H), 7.04 (t, J = 7.8 Hz, 1H), 6.58 (d, J = 7.2 Hz, 1H), 6.47 (t, J = 2.4 Hz, 1H), 6.36 (dd, J = 7.8, 2.4 Hz, 1H), 5.05 (s, 1H), 4.91 (s, 1H), 4.26-4.21 (m, 1H), 4.16-4.10 (m, 1H), 2.78-2.74 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H), 1.19-1.15 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 171.9, 150.0, 146.1, 137.9, 129.1, 128.8, 128.1, 127.2, 116.4, 112.0, 110.7, 61.7, 61.0, 34.1, 23.9, 23.8, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₉H₂₃NNaO₂ [M+Na]⁺ 320.1621, found 320.1631.

CI CO₂Et

ethyl 2-((3-chlorophenyl)amino)-2-phenylacetate (42)¹²

Light yellow solid; mp: 86-87 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.0 Hz, 2H), 7.30 (t, J = 7.0 Hz, 1H), 7.00 (t, J = 8.0 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 6.53 (s, 1H), 6.40 (dd, J = 8.0, 2.0 Hz, 1H), 5.09 (s, 1H), 5.02 (s, 1H), 4.27-4.19 (m, 1H), 4.16-4.08 (m, 1H), 1.20 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.4, 147.1, 137.2, 134.9, 130.2, 128.9, 128.4, 127.1, 117.9, 113.2, 111.6, 62.0, 60.5, 14.0; HRMS (ESI⁺) m/z calcd for C₁₆H₁₇ClNO₂ [M+H]⁺ 290.0948, found 290.0948.

.....

ethyl 2-phenyl-2-(o-tolylamino)acetate (43)¹²

.....

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.0 Hz, 2H), 7.29 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.64 (t, J = 7.5 Hz, 1H), 6.33 (d, J = 8.0 Hz, 1H), 5.09 (s, 1H), 4.90 (s, 1H), 4.28-4.19 (m, 1H), 4.18-4.10 (m, 1H), 2.28 (s, 3H), 1.21 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.0, 144.0, 137.8, 130.2, 128.8, 128.1, 127.1, 127.0, 122.4, 117.6, 110.7, 61.8, 60.7, 17.5, 14.0. HRMS (ESI⁺) m/z calcd for C₁₇H₂₀NO₂ [M+H]⁺ 270.1489, found 270.1488.

ethyl 2-([1,1'-biphenyl]-2-ylamino)-2-phenylacetate (44)

White solid; mp: 121-122 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.47 (m, 4H), 7.44 (d, J = 7.0 Hz, 2H), 7.38 (t, J = 7.0 Hz, 1H), 7.33 (t, J = 7.0 Hz, 2H), 7.28 (t, J = 7.0 Hz, 1H), 7.13 (dd, J = 7.5, 1.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.76 (dd, J = 7.5, 6.5 Hz, 1H), 6.43 (d, J = 8.0 Hz, 1H), 5.33 (s, 1H), 5.07 (s, 1H), 4.18-4.11 (m, 1H), 4.11-4.04 (m, 1H), 1.15 (t, J = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.5, 142.8, 139.2, 137.6, 130.3, 129.2, 129.0, 128.8, 128.5, 128.2, 128.1, 127.4, 127.1, 117.7, 111.3, 61.7, 60.9, 13.9; HRMS (ESI⁺) m/z calcd for C₂₂H₂₂NO₂ [M+H]⁺ 332.1645, found 332.1648.

ethyl 2-((2,6-diisopropylphenyl)amino)-2-phenylacetate (45)¹⁶

Yellow oil; ¹**H NMR** (600 MHz, CDCl₃) δ 7.39 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 7.06-6.99 (m, 3H), 4.64 (s, 1H), 4.33 (s, 1H), 4.21-4.09 (m, 2H), 3.20-3.11 (m, 2H), 1.19-1.16 (m, 9H), 1.09 (d, J = 7.2 Hz, 6H); ¹³**C NMR** (150 MHz, CDCl₃) δ 173.3, 141.9, 141.5, 138.7, 128.6, 128.0, 126.9, 123.6, 123.5, 66.9, 61.4, 27.7, 24.3, 24.0, 14.0; **HRMS** (ESI⁺) m/z calcd for C₂₂H₃₀NO₂ [M+H]⁺ 340.2271, found 340.2276.

ethyl 2-((3-chloro-4-methylphenyl)amino)-2-phenylacetate (46)

White solid; mp: 109-110 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.47 (d, J = 7.8 Hz, 2H), 7.35 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 6.93 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 2.4 Hz, 1H), 6.37 (dd, J = 8.4, 2.4 Hz, 1H), 5.00 (s, 1H), 4.90 (s, 1H), 4.26-4.21 (m, 1H), 4.16-4.10 (m, 1H), 2.20 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.6, 145.0, 137.3, 134.7, 131.3, 128.9, 128.3, 127.1, 124.9, 113.8, 112.0, 61.9, 60.7, 18.9, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₇H₁₉ClNO₂ [M+H]⁺ 304.1099, found 304.1101.

ethyl 2-((3,5-dimethoxyphenyl)amino)-2-phenylacetate (47)

Brown oil; ¹**H** NMR (600 MHz, CDCl₃) δ 7.47 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.29 (t, J = 7.2 Hz, 1H), 5.86 (s, 1H), 5.75 (s, 2H), 5.03 (s, 1H), 4.98 (s, 1H), 4.29-4.06 (m, 2H), 3.69 (s, 6H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 161.6, 147.9, 137.7, 128.8, 128.2, 127.1, 92.3, 90.5, 61.8, 60.8, 55.1, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₂NO₄ [M+H]⁺ 316.1543, found 316.1545.

.....

methyl 2-(mesitylamino)-2-phenylacetate (48)¹²

Colorless oil; ¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, J = 7.2 Hz, 2H), 7.32 (t, J = 7.2 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 6.76 (s, 2H), 4.85 (s, 1H), 4.28 (s, 1H), 4.22-4.05 (m, 2H), 2.20 (s, 6H), 2.19 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 173.4, 141.8, 138.8, 131.0, 129.5, 128.9, 128.6, 127.9, 127.0, 64.2, 61.4, 20.5, 18.8, 14.0; **HRMS** (ESI⁺) m/z calcd for C₁₉H₂₄INO₂ [M+H]⁺ 298.1802, found 298.1803.

ethyl 2-(naphthalen-1-ylamino)-2-phenylacetate (49)¹²

Brown oil; ¹**H** NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 7.2 Hz, 2H), 7.52-7.43 (m, 2H), 7.35 (t, J = 7.2 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.23-7.15 (m, 2H), 6.34 (d, J = 7.2 Hz, 1H), 5.80 (br, 1H), 5.23 (s, 1H), 4.31-4.25 (m, 1H), 4.21-4.16 (m, 1H), 1.24 (t, J = 6.6 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.9, 141.0, 137.5, 134.3, 128.8, 128.6, 128.3, 127.2, 126.3, 125.8, 124.9, 123.4, 120.1, 118.0, 105.6, 62.0, 60.9, 14.0; **HRMS** (ESI⁺) m/z calcd for C₂₀H₁₉NNaO₂ [M+Na]⁺ 328.1308, found 328.1309.

```
.....
```


ethyl 2-(methyl(phenyl)amino)-2-phenylacetate (50)¹²

White solid; mp: 72-73 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.31 (m, 3H), 7.30-7.25 (m, 4H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.80 (t, *J* = 7.0 Hz, 1H), 5.64 (s, 1H), 4.32-4.20 (m, 2H), 2.80 (s, 3H), 1.27 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.8, 150.0, 136.0, 129.2, 128.6, 128.4, 128.0, 118.0, 113.5, 65.8, 61.0, 34.6, 14.3. HRMS (ESI⁺) m/z calcd for C₁₇H₂₀NO₂ [M+H]⁺ 270.1489, found 270.1490.

ethyl 2-(ethyl(phenyl)amino)-2-phenylacetate (51)

White solid; mp: 75-76 °C; ¹**H** NMR (500 MHz, CDCl₃) δ 7.40-7.31 (m, 5H), 7.25 (t, *J* = 7.5 Hz, 2H), 6.85 (d, *J* = 8.0 Hz, 2H), 6.79 (t, *J* = 7.5 Hz, 1H), 5.52 (s, 1H), 4.30-4.14 (m, 2H), 3.32 (q, *J* = 7.0 Hz, 2H), 1.24 (t, *J* = 7.5 Hz, 3H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 172.1, 148.6, 136.1, 129.2, 128.9, 128.6, 128.1, 118.1, 114.5, 66.2, 61.1, 42.5, 14.2, 13.5; **HRMS** (ESI⁺) m/z calcd for C₁₈H₂₂NO₂ [M+H]⁺ 284.1645, found 284.1648.

methyl 2-(benzyl(phenyl)amino)-2-phenylacetate (52)

White solid; mp: 103-104 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.33 (d, *J* = 7.0 Hz, 2H), 7.30-7.23 (m, 3H), 7.21-7.09 (m, 7H), 6.84-6.76 (m, 3H), 5.72 (s, 1H), 4.55 (ABq, *J* = 17.5 Hz, 2H), 4.19 (q, *J* = 7.0 Hz, 2H), 1.21 (t, *J* = 7.0 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ 171.9, 149.2, 139.5, 135.5, 129.1, 128.9, 128.5, 128.2, 128.0, 126.5, 126.3, 118.7, 114.9, 66.4, 61.2,

ethyl 2-((cyanomethyl)(phenyl)amino)-2-phenylacetate (53)

White solid; mp: 137-138 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.47-7.30 (m, 7H), 7.03-6.99 (m, 3H), 5.53 (s, 1H), 4.29-4.18 (m, 2H), 4.06 (s, 2H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.0, 147.2, 134.1, 129.6, 129.2, 129.1, 128.6, 121.5, 116.2, 116.1, 65.7, 61.5, 38.0, 14.0; HRMS (ESI⁺) m/z calcd for C₁₈H₁₉N₂O₂ [M+H]⁺ 295.1441, found 295.1444.

ethyl 2-(diphenylamino)-2-phenylacetate (54)

White solid; mp: 110-112 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.56-7.42 (m, 7H), 7.41-7.24 (m, 4H), 7.13-7.07 (m, 2H), 6.76 (t, J = 7.2 Hz, 1H), 6.43 (d, J = 7.8 Hz, 1H), 5.34 (s, 1H), 5.07 (s, 1H), 4.23-3.99 (m, 2H), 1.14 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.5, 142.8, 139.1, 137.6, 130.3, 129.2, 128.9, 128.7, 128.5, 128.1, 127.4, 127.1, 117.7, 111.2, 61.7, 60.8, 13.9; **HRMS** (ESI⁺) m/z calcd for C₂₂H₂₂NO₂ [M+H]⁺ 332.1645, found 332.1646.

ethyl 2-(3,4-dihydroquinolin-1(2H)-yl)-2-phenylacetate (56)

Colorless oil; ¹**H** NMR (500 MHz, CDCl₃) δ 7.39-7.27 (m, 5H), 7.06 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 7.5 Hz, 1H), 6.67 (dd, J = 13.0, 7.5 Hz, 2H), 5.63 (s, 1H), 4.34-4.19 (m, 2H), 3.33-3.29 (m, 1H), 2.98-2.89 (m, 1H), 2.87-2.77 (m, 1H), 2.73-2.68 (m, 1H), 1.88-1.75 (m, 2H), 1.27 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 172.1, 145.5, 135.6, 129.4, 128.7, 128.6, 128.0, 127.0, 123.8, 117.0, 110.4, 64.4, 61.0, 44.6, 28.2, 22.4, 14.3; **HRMS** (ESI⁺) m/z calcd for C₁₉H₂₂NO₂ [M+H]⁺ 296.1645, found 296.1648.

methyl 2-(mesitylamino)-2-phenylacetate (57)¹⁷

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 7.0 Hz, 2H), 7.36-7.28 (m, 3H), 6.76 (s, 2H), 4.87 (d, J = 10.0 Hz, 1H), 4.25 (d, J = 10.0 Hz, 1H), 3.68 (s, 3H), 2.20 (s, 6H), 2.19 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.0, 141.6, 138.7, 131.2, 129.6, 129.0, 128.7, 128.1, 127.0, 64.1, 52.4, 20.5, 18.8; HRMS (ESI⁺) m/z calcd for C₁₈H₂₂NO₂ [M+H]⁺ 284.1645, found 284.1649.

~

methyl 2-phenyl-2-(phenylamino)acetate (58)¹⁸

.....

White solid; mp: 80-82 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.8 Hz, 2H), 6.69 (t, J = 7.6 Hz, 2H), 6.55 (d, J = 7.8 Hz, 2H), 5.07 (s, 1H), 4.95 (s, 1H), 3.72 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.4, 146.0, 137.7, 129.3, 128.9, 128.4, 127.3, 118.2, 113.4, 60.8, 52.8; HRMS (ESI⁺) m/z calcd for C₁₅H₁₆NO₂ [M+H]⁺ 242.1176, found 242.1180.

methyl 2-(4-(tert-butyl)phenyl)-2-(phenylamino)acetate (59)19

White solid; mp: 115-116 °C; ¹**H NMR** (600 MHz, CDCl₃) δ 7.40 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.12 (t, J = 7.8 Hz, 2H), 6.70 (t, J = 7.2 Hz, 1H), 6.57 (d, J = 7.8 Hz, 2H), 5.06 (s, 1H), 4.86 (br, 1H), 3.72 (s, 3H), 1.30 (s, 9H). ¹³**C NMR** (150 MHz, CDCl₃) δ 172.6, 151.3, 146.2, 134.4, 129.3, 126.9, 125.9, 118.1, 113.4, 60.5, 52.7, 31.3; **HRMS** (ESI⁺) m/z calcd for C₁₉H₂₃NNaO₂ [M+Na]⁺ 320.1621, found 320.1626.

H CO₂Me

methyl 2-(4-bromophenyl)-2-(phenylamino)acetate (60) White solid; mp: 115-116 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.11 (t, J = 7.8 Hz, 2H), 6.71 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 7.8 Hz, 2H), 5.03 (s, 1H), 4.98 (s, 1H), 3.73 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 171.7, 145.6, 136.8, 132.0, 129.3, 129.0, 122.3, 118.4, 113.5, 60.2, 53.0; **HRMS** (ESI⁺) m/z calcd for C₁₅H₁₄BrNNaO₂ [M+Na]⁺ 342.0100, found 342.0102.

benzyl 2-phenyl-2-(phenylamino)acetate (61)

Colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 7.0 Hz, 2H), 7.36-7.27 (m, 6H), 7.18-7.15 (m, 2H), 7.11 (dd, J = 8.5, 7.5 Hz, 2H), 6.69 (t, J = 7.0 Hz, 1H), 6.56 (d, J = 7.5 Hz, 2H), 5.22-5.09 (m, 3H), 4.95 (d, J = 5.5 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 171.7, 145.9, 137.5, 135.3, 129.2, 128.8, 128.5, 128.30, 128.29, 127.9, 127.3, 118.2, 113.5, 67.3, 60.9; **HRMS** (ESI⁺) m/z calcd for C₂₁H₂₀NO₂ [M+H]⁺ 318.1489, found 318.1490.

1,2-diphenyl-2-(phenylamino)ethan-1-one (62)

White solid; mp: 89-90 °C; ¹**H** NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.43 (dd, J = 15.0, 7.5 Hz, 4H), 7.27 (t, J = 7.5 Hz, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.5 Hz, 2H), 6.68 (t, J = 8.5 Hz, 3H), 6.02 (s, 1H), 5.41 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 197.0, 146.1, 137.7, 135.0, 133.5, 129.2, 129.0, 128.8, 128.7, 128.09, 128.07, 117.8, 113.5, 62.7; **HRMS** (ESI⁺) m/z calcd for C₂₀H₁₈NO [M+H]⁺ 288.1383, found 288.1380.

.....

6 **Refferences**

- 1 Z. Liu, S. Cao, W. Yu, J. Wu, F. Yi, E. A. Anderson, X. Bi, Site-selective C–H benzylation of alkanes with *N*-triftosylhydrazones leading to alkyl aromatics, *Chem* 2020, **6**, 2110–2124.
- Gaussian 16 Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.
- 3 J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615–6620.
- 4 F. Weigend, R. Ahlrichs, Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297–3305.
- (a) A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, *Phys. Rev. A* 1988, **38**, 3098–3100. (b) A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, *J. Chem. Phys.* 1993, **98**, 5648–5652. (c) C. Lee, W. Yang, R. G. Parr, Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density, *Phys. Rev. B* 1988, **37**, 785–789. (d) X. Qi, H. Zhang, A. Shao, L. Zhu, T. Xu, M. Gao, C. Liu, Y. Lan, Silver migration facilitates isocyanide-alkyne [3 + 2] cycloaddition reactions: combined experimental and theoretical study, *ACS Catal.* 2015, **5**, 6640–6647.
- 6 S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.* 2010, **132**, 154104.
- 7 C. Gonzalez, H. B. Schlegel, An improved algorithm for reaction path following, *J. Chem. Phys.*, 1989, **90**, 2154–2161.
- 8 C. Gonzalez, H. B. Schlegel, Reaction path following in mass-weighted internal coordinates, *J. Chem. Phys.*, 1990, **94**, 5523–5527.
- 9 A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, *J. Phys. Chem. B*, 2009, **113**, 6378–6396.
- 10 C. Y. Legault, CYLview, 1.0b; Université de Sherbrooke: Canada, 2009. Available at: http://www.cylview.org (accessed September, 2014).
- 11 I. Mizota, Y. Tadano, Y. Nakamura, T. Haramiishi, M. Hotta, M. Shimizu, Tandem N,N-dialkylation reaction of N-trimethylsilyl α -iminoesters utilizing an umpolung reaction and characteristics of the silyl substituent: synthesis of pyrrolidine, piperidine, and iminodiacetate,

Org. Lett. 2019, 21, 2663–2667.

- 12 Q.-H. Deng, H.-W. Xu, A. W.-H. Yuen, Z.-J. Xu, C.-M. Che, Ruthenium-catalyzed one-pot carbenoid N-H insertion reactions and diastereoselective synthesis of prolines, *Org. Lett.* 2008, 10, 1529–1532.
- 13 M. Ortega, M. A. Rodríguez and P. J. Campos, Photoreduction of imines. An environmentally friendly approach to obtain amines, *Tetrahedron* 2005, **61**, 11686–11691.
- 14 H. Wang, X. Sun, M. Hu, X. Zhang, L. Xie, S. Gu, Bromination of α-diazo phenylacetate derivatives using cobalt(II) bromide, *Adv. Synth. Catal.* 2020, 362, 3347–3351.
- H. Saito, D. Morita, T. Uchiyama, M. Miyake, S. Miyairi, Cinchona alkaloids induce asymmetry in the insertion reaction of thermally generated carbenes into N–H bonds, *Tetrahedron Lett* 2012, 53, 6662–6664.
- 16 K. Ramakrishna, C. Sivasankar, Phosphine ligands stabilized Cu(I) catalysts for carbene insertion into the N–H bond, *J Organomet Chem* 2016, **805**, 122–129.
- 17 H. Huang, C. Yu, X. Li, Y. Zhang, Y. Zhang, X. Chen, P. S. Mariano, H. Xie, W. Wang, Synthesis of aldehydes by organocatalytic formylation reactions of boronic acids with glyoxylic acid, *Angew. Chem. Int. Ed.* 2017, 56, 8201–8205.
- 18 L. G. Furniel, A. C. B. Burtoloso, Copper-catalyzed N–H insertion reactions from sulfoxonium ylides, *Tetrahedron* 2020, **76**, 131313.
- 19 X. Xu, C. Li, Z. Tao, Y. Pan, Hemin-catalyzed, cyclodextrin-assisted insertion of carbenoids into N-H bonds, *Adv. Synth. Catal.* 2015, 357, 3341–3345.

7 Copies of ¹H-, ¹³C- and ¹⁹F- Spectra

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

