Construction of alkynyl and acyl disulfides directly through

thiol-modification with N-alkynylthio phthalimides under

acid catalysis

Yao-Nan Xue, Kai Feng, Jun Tian, * Juan Zhang, a Hong-Hong Chang, and Wen-Chao Gao*

gaowenchao@tyut.edu.cn

Table of Contents

1. General information	S2
2. General procedure	
3. Condition optimization	S4
4. Characterization of products	S5
5. Possible mechanism for S-S bond formation	
6. Copies of NMR spectra	S27

1. General information

NMR

¹H and ¹³C spectra were collected on 300 M, 400 M or 500 M Hz NMR spectrometers (Bruker AVANCE). Chemical shifts for protons are reported in parts per million (ppm) downfield and are referenced to residual protium in the NMR solvent. (CHCl₃ = 7.26 ppm, DMSO = 2.50 ppm). Chemical for carbon are reported in parts per million downfield and are referenced to the carbon resonances of solvent (CHCl₃ = 77.0 ppm, DMSO = 39.52 ppm). Date are represented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = double, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), integration.

MS

High-resolution mass spectra (HRMS) were performed on a micrOTOF-Q II instrument with an ESI or EI source.

Chromatography

All solvents were obtained from commercial sources and were purified according to standard procedures. Petroleum ether (PE), where used, has the boiling point range 60-90 °C. Column chromatography was performed with silica gel (200-300 mesh).

Analytical and preparative HPLC information

Analytical and preparative HPLC measurements were performed on Shimadzu Essentia LC-16 with DGU-20A detector using C18 column (250 x 4.6 mm, 5 μm). Water (solvent A) and acetonitrile containing 0.1%TFA (solvent B) were used as the mobile phase, at a flow rate of 0.7 mL/min. Analytic method: 10% B to 90%B (0-20 min), 90%B (20-30 min), 90%B-10%B (30-35 min), 10%B (35-40 min);

Preparation method: 10% B to 90%B (0-10 min), 90%B (10-15 min), 90%B-10%B (15-20 min), 10%B (20-25 min).

2. General procedure

2.1 General procedure for the synthesis of alkynyl disulfides

In a 10 mL flask, *N-n*-butylethynylthio phthalimide **1a** (0.18 mmol, 1.2 equiv.) and cyclohexanethiol **2a** (0.15 mmol, 1.0 equiv.), trifluoroacetic acid (2 μ L, 10 mol%) were dissolved in 1 mL of dry MeOH. The reaction mixture was stirred at room temperature for 10 min after cyclohexanethiol was completely consumed. The solvent was removed in vacuum and the crude product was purified by flash column chromatography to give the product **3a** as colorless oil (84% yield).

2.1 General procedure for disulfuration and oxyarylation

N-n-butylethynylthio phthalimide **1a** (0.15 mmol), cyclohexanethiol **2a** (0.18 mmol, 1.2 equiv.), phenyl sulfoxide (0.3 mmol, 2.5 equiv.) and TMSOTf (2.7 μ L, 10 mol%), were added one portion into a 10 mL flask. The reaction mixture was stirred at 30°C for 20 h. The solvent was removed in vacuum and the crude product was purified by flash column chromatography to give the desired product **4a** as colorless oil (82% yield).

3. Condition optimization

3.1 Table S1. Condition optimization for disulfuration^a

^{*a*}. Conditions: **1a** (0.18 mmol), **2a** (0.15 mmol) and catalyst (10 mol%) in solvent (1.5 mL) were stirred at room temperature until **2a** was consumed completely. ^{*b*} Isolated yield.

	c		u			
(N−s +		O Cat.	temp	S ^{-S} ⁻ Bu
	1a	b	2a	3a		<mark>Ö</mark> 4a
	Entry	Solvent	Cat. (mol%)	sulfoxide (equiv.)	Temp. (°C)	Yield (%) ^b
	1	c	TfOH (10)	2.5	16	23%
	2	^c	TfOH (10)	2.5	30	70%
	3	^c	TfOH (10)	2.5	50	67%
	4	^c	TfOH (10)	2.5	80	60%
	5	^c	TfOH (10)	1.5	30	65%
	6	c	TfOH (10)	4.0	30	26%
	7	c	Tf ₂ NH (10)	2.5	30	47%
	8	c	Tf ₂ O (10)	2.5	30	78%
	9	c	TFA(10)	2.5	30	<10%

Table S2 Condition optimization for disulfuration and oxyarylation^a

10	^c	TMSOTf (10)	2.5	30	82%
11	^c	TMSOTf(10)	1.2	30	69%
12	^c	TMSOTf(10)	1.5	30	77%
13	TFE	TfOH(10)	2.5	30	47%
14	CH_2Cl_2	TfOH (10)	2.5	50	19%

^a Conditions: **1a** (0.15 mmol), **2a** (1.2 equiv), **3a** (m equiv) and **catalyst** (n mol%) were stirred at indicated temperature for 20 h. ^b Isolated yield. ^c No solvent was added.

4. Characterization of products

1-Eyclohexyl-2-(hex-1-yn-1-yl)disulfane (3a)

Yield: 28.7 mg (84%); time: 30 s; colorless liquid; TLC, $R_f = 0.40$ (PE:EtOAc = 99:1); ¹H NMR (CDCl₃, 400 MHz): δ 3.00 (tt, J = 10.8, 3.6 Hz, 1H), 2.33 (t, J = 6.8 Hz, 2H), 2.18-2.03 (m, 2H), 1.83-1.79 (m, 2H), 1.66-1.61 (m, 1H), 1.54-1.27 (m, 9H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 95.5, 70.7, 49.9, 32.5, 30.5, 26.0, 25.6, 21.9, 19.9, 13.6. HRMS (ESI) m/z calcd. for C₁₂H₂₁S₂ [M+H]⁺: 229.1079, found: 229.1083.

1-Benzyl-2-(hex-1-yn-1-yl)disulfane (3b)

Yield: 21.2 mg (60%); time: 30 s; yellow liquid; TLC, $R_f = 0.20$ (PE); ¹H NMR (CDCl₃, 400 MHz): δ 7.35-7.34 (m, 3H), 7.32-7.28 (m, 2H), 4,12 (s, 2H), 2.32 (t, J = 6.8 Hz, 2H), 1.53-1.46 (m, 2H), 1.43-1.38 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 136.3, 129.5, 128.5, 127.6, 97.3, 68.9, 42.6, 30.5, 21.9, 19.9, 13.6. HRMS (ESI) m/z calcd. for C₁₃H₁₇S₂ [M+H]⁺: 237.0766, found: 237.0762.

1-Ethyl-2-(hex-1-yn-1-yl)disulfane (3c)

Yield: 15.4 mg (59%); time: 30 s; yellow liquid; TLC, $R_f = 0.40$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 2.92 (q, J = 7.2 Hz, 2H), 2.34 (t, J = 6.8 Hz, 2H), 1.53-1.47 (m, 2H), 1.45-1.38 (m, 5H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 96.5, 69.7, 32.5, 30.5, 21.9, 19.9, 14.2, 13.6. HRMS (ESI) m/z calcd. for C₈H₁₅S₂ [M+H]⁺: 175.0610, found: 175.0603.

6-Ethyl 3-(hex-1-yn-1-yldisulfanyl)propanoate (3d)

Yield: 29.5 mg (80%); time: 30 s; yellow liquid; TLC, $R_f = 0.30$ (PE:EtOAc = 19:1); ¹H NMR (CDCl₃, 400 MHz): δ 4.18-4.11 (m, 3H), 3.13 (t, J =7.2 Hz, 2H), 2.83 (t, J = 7.2 Hz, 2H), 2.32 (t, J = 6.8 Hz, 2H), 1.52-1.47 (m, 2H), 1.42-1.38 (m, 2H), 1.27-1.25 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 171.5, 97.2, 69.2, 60.8, 33.9, 33.2, 30.4, 21.9, 19.9, 14.2, 13.5. HRMS (ESI) m/z calcd. for C₁₁H₁₉O₂S₂ [M+H]⁺: 247.0821, found: 247.0816.

2-(Hex-1-yn-1-yldisulfanyl)ethan-1-ol (3e)

Yield: 26.0 mg (91%); time: 30 s; yellow liquid; TLC, $R_f = 0.25$ (PE:EtOAc = 17:3); ¹H NMR (CDCl₃, 400 MHz): δ 3.99 (t, J = 5.6 Hz, 2H), 3.07 (t, J = 5.6 Hz, 2H), 2.35 (t, J = 7.2 Hz, 2H), 2.13 (s, 1H), 1.55-1.48 (m, 2H), 1.44-1.35 (m, 2H), 0.91 (t, J = 7.2Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 97.8, 69.5, 59.7, 41.4, 30.4, 21.9, 19.8, 13.5. HRMS (ESI) m/z calcd. for C₈H₁₅OS₂ [M+H]⁺: 191.0559, found: 191.0559.

1-(Tert-butyl)-2-(hex-1-yn-1-yl)disulfane (3f)

Yield: 26.7 mg (88%); time: 30 s; yellow liquid; TLC, $R_f = 0.20$ (PE); ¹H NMR (CDCl₃, 400 MHz): δ 2.30 (t, J = 6.8 Hz, 2H), 1.52-1.45 (m, 2H), 1.42 (s, 9H), 1.40-1.35 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 94.4, 71.4, 49.2, 30.5, 29.7, 21.9, 19.8, 13.5. HRMS (ESI) m/z calcd. for C₁₀H₁₉S₂ [M +H]⁺: 203.0923, found: 203.0910.

1-(Hex-1-yn-1-yl)-2-trityldisulfane (3g)

Yield: 46.0 mg (79%); time: 30 s; yellow liquid; TLC, $R_f = 0.35$ (PE:EtOAc =49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.36-7.27 (m, 14H), 7.25-7.23 (m, 1H), 2.24 (t, J = 6.8 Hz, 2H), 1.48-1.41 (m, 2H), 1.40-1.31 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 143.4, 130.3, 127.8, 127.2, 97.0, 72.7, 68.9, 30.5, 21.9, 19.9, 13.6. HRMS (ESI) m/z calcd. for C₂₅H₂₄S₂Na [M+Na]⁺: 411.1212, found: 411.1211.

Yield: 36.1 mg (86%); time: 30 s; yellow liquid; TLC, $R_f = 0.4$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 2.30 (t, J = 6.8 Hz, 2H), 2.10 (s, 3H), 1.94 (d, J = 3.6, 6H), 1.7 (t, J = 2.4 Hz, 6H), 1.53-1.44 (m, 2H), 1.42-1.35 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 94.0, 71.9, 50.7, 42.3, 36.0, 30.5, 29.7, 21.9, 19.8, 13.5. HRMS (ESI) m/z calcd. for C₁₆H₂₅S₂ [M+H]⁺: 281.1392, found: 281.1399.

1-Allyl-2-(hex-1-yn-1-yl)disulfane (3i)

Yield: 24.3 mg (87%); time: 30 s; yellow liquid; TLC, $R_f = 0.20$ (PE); ¹H NMR (CDCl₃, 400 MHz): δ 5.94-5.84 (m, 1H), 5.27 (dq, J = 16.8, 3.0 Hz, 1H), 5.21 (dt, J = 10.0, 0.4 Hz, 1H), 3.53 (dt, J = 7.2, 0.8 Hz, 2H), 2.35 (t, J = 7.2 Hz, 2H), 1.53-1.50 (m, 2H), 1.44-1.40 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 132.3, 119.3, 97.1, 69.2, 41.1, 30.5, 21.9, 19.9, 13.6. HRMS (ESI) m/z calcd. for C₉H₁₅S₂ [M+H]⁺: 187.0610, found: 187.0609.

1-(Hex-1-yn-1-yl)-2-(prop-2-yn-1-yl)disulfane (3j)

Yield: 20.1 mg (73%); time: 30 s; yellow liquid; TLC, $R_f = 0.20$ (PE); ¹H NMR (CDCl₃, 400 MHz): δ 3.66 (d, J = 2.8 Hz, 2H), 2.37-2.33 (m, 3H), 1.54-1.48 (m, 2H), 1.43-1.38 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 98.3, 78.5, 72.7, 68.3, 30.4, 26.4, 21.09, 19.9, 13.6. HRMS (ESI) m/z calcd. for C₉H₁₃S₂ [M +H]⁺: 185.0453, found: 185.0441.

1-Eyclohexyl-2-(prop-1-yn-1-yl)disulfane compound with triisopropyl- λ^3 -silane (1:1) (3k)

Yield: 42.7 mg (83%); time: 30 s; yellow liquid; TLC, $R_f = 0.40$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 3.04 (tt, J = 10.8, 3.6 Hz, 1H), 2.12-2.08 (m, 2H), 1.83-1.79 (m, 2H), 1.66-1.61 (m, 1H), 1.55-1.48 (m, 2H), 1.40-1.30 (m, 3H), 1.07 (s, 21H); ¹³C NMR (CDCl₃, 100 MHz): δ 98.6, 97.7, 50.4, 32.6, 26.0, 25.5, 18.5, 11.3. HRMS (ESI) m/z calcd. for C₁₈H₃₆S₂Si [M+H]⁺: 344.2022, found: 344.2024.

1-1-Eyclohexyl-2-(cyclopropylethynyl)disulfane (3l)

Yield: 27.3 mg (86%); time: 30 s; colorless liquid; TLC, $R_f = 0.40$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 3.00 (tt, J = 10.4, 3.6 Hz, 1H), 2.10-2.06 (m, 2H), 1.83-1.79 (m, 2H), 1.66-1.61 (m, 1H), 1.50-1.41 (m, 2H), 1.40-1.27 (m, 4H), 0.85-0.80 (m, 2H), 0.78-0.74 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 99.6, 66.7, 49.8, 32.5, 25.9, 25.6, 9.2, 0.9. HRMS (ESI) m/z calcd. for C₁₁H₁₆S₂Na [M+Na]⁺: 235.0586, found: 235.0586.

1-Eyclohexyl-2-(phenylethynyl)disulfane (3m)

Yield: 28.3 mg (76%); time: 30 s; yellow liquid; TLC, $R_f = 0.30$ (PE); ¹H NMR (CDCl₃, 400 MHz): δ 7.45-7.42 (m, 2H), 7.32-7.29 (m, 3H), 3.09 (tt, J = 10.8, 3.6 Hz, 1H), 2.16-2.12 (m, 2H), 1.87-1.81 (m, 2H), 1.67-1.63 (m, 1H), 1.55-1.48 (m, 2H), 1.43-1.31 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 131.8, 128.6, 128.3, 122.8, 93.2, 81.4, 50.1, 32.5, 26.0, 25.5. HRMS (ESI) m/z calcd. for C₁₄H₁₇S₂ [M+H]⁺: 249.0766, found: 249.0775. **Eyclohexyl-2-(p-tolylethynyl)disulfane (3n)**

Yield: 19.7 mg (50%); time: 30 s; yellow liquid; TLC, $R_f = 0.20$ (PE); ¹H NMR (CDCl₃, 400 MHz): δ 7.33 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 3.09 (tt, J = 10.8, 3.6 Hz, 1H), 2.35 (s, 1H), 2.16-2.12 (m, 2H), 1.85-1.81 (m, 2H), 1.67-1.61 (m, 1H), 1.54-1.47 (m, 2H), 1.42-1.31 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 139.0, 131.9, 129.1, 119.7, 93.5, 80.5, 50.1, 32.5, 26.0, 25.6, 21.5. HRMS (ESI) m/z calcd. for C₁₅H₁₉S₂ [M+H]⁺: 263.0923, found: 263.0938.

1-Eyclohexyl-2-((4-fluorophenyl)ethynyl)disulfane (30)

Yield: 19.2 mg (48%); time: 30 s; light yellow liquid; TLC, $R_f = 0.30$ (PE); ¹H NMR (CDCl₃, 400 MHz): δ 7.45-7.40 (m, 2H), 7.01 (tt, J = 8.4, 2 Hz, 2H), 3.08 (tt, J = 10.8, 3.6 Hz, 1H), 2.16-2.11 (m, 2H), 1.86-1.81 (m, 2H), 1.68-1.63 (m, 1H), 1.50 (td, J = 10.4, 2.4 Hz, 2H), 1.43-1.31 (m, 3H) ; ¹³C NMR (CDCl₃, 100 MHz): δ 162.7 (J = 249.0 Hz), 134.0 (J = 9.0 Hz), 118.9 (J = 4.0 Hz), 115.67 (J = 22.0 Hz), 92.1, 81.2, 50.2, 32.5, 26.0, 25.6; ¹⁹F NMR (CDCl₃, 376.3 MHz): δ -109.84. HRMS (ESI) m/z calcd. for C₁₄H₁₆FS₂ [M+H]⁺: 267.0672, found: 267.0669.

Methyl N-(tert-butoxycarbonyl)-S-(hex-1-yn-1-ylthio)-L-cysteinate (3p)

Yield: 38.0 mg (73%); time: 30 s; yellow liquid; TLC, $R_f = 0.30$ (PE:EtOAc =10:1); ¹H NMR (CDCl₃, 400 MHz): δ 5.45 (d, J = 8.0 Hz, 1H), 4.72-4.67 (m, 1H), 3.78 (s, 3H), 3.37 (d, J = 4.8 Hz, 2H), 2.37 (t, J = 6.8 Hz, 2H), 1.57-1.49 (m, 2H), 1.45 (s, 9H), 1.42-1.38 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.9, 155.1, 98.7, 80.2, 68.7, 52.6, 40.6, 30.4, 28.3, 28.1, 21.9, 19.9, 13.6. HRMS (ESI) m/z calcd. for C₁₅H₂₅NO₄S₂Na [M+Na]⁺: 370.1117, found: 370.1129.

N-Acetyl-S-(hex-1-yn-1-ylthio)-L-cysteine (3q)

Yield: 22.7 mg (55%); time: 30 s; yellow liquid; TLC, $R_f = 0.30$ (MeOH:DCM = 1.5:10); ¹H NMR (CDCl₃, 400 MHz): δ 8.93 (s, 1H), 6.82 (d, J = 7.2 Hz, 1H), 4.95 (d, J = 4.0 Hz, 1H), 3.42 (qd, J = 14.8, 4.0 Hz, 2H), 2.37 (t, J = 6.8 Hz, 2H), 2.1 (s, 3H), 1.56-1.49 (m, 2H), 1.45-1.36 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 171.6, 167.7, 98.9, 69.0, 52.4, 39.7, 30.4, 22.9, 22.0, 20.0, 13.6. HRMS (ESI) m/z calcd. for C₁₁H₁₇NO₃S₂Na [M+Na]⁺: 298.0542, found: 298.0558.

Methyl N-((tert-butoxycarbonyl)glycyl)-S-(hex-1-yn-1-ylthio)-L-cysteinate (3r)

Yield: 44.8 mg (74%); time: 30 s; yellow liquid; TLC, $R_f = 0.3$ (PE:EtOAc = 7:3); ¹H NMR (CDCl₃, 400 MHz): δ 7.00 (d, J = 7.2 Hz, 1H), 5.19 (s, 1H), 4.98 (dt, J = 7.6, 2.8 Hz, 1H), 3.86 (d, J = 5.2 Hz, 2H), 3.78 (s, 3H), 3.39 (ddd, J = 24.0, 14.8, 4.8 Hz, 2H), 2.37 (t, J = 6.8 Hz, 2H), 1.54-1.48 (m, 2H), 1.45 (s, 9H), 1.43-1.37 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.3, 169.2, 155.7, 98.9, 80.3, 68.6, 52.8, 51.7, 44.1, 39.6, 30.4, 28.3, 21.9, 19.9, 13.5. HRMS (ESI) m/z calcd. for C₁₇H₂₈N₂O₅S₂Na [M+Na]⁺: 427.1332, found: 427.1326.

Yield: 65.6 mg (95%); time: 30 s; yellow liquid; TLC, $R_f = 0.30$ (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.02 (d, J = 7.2 Hz, 1H), 4.94-4.87 (m, 2H), 4.16 (s, 1H), 3.77 (s, 3H), 3.48 (ddd, J = 42.8, 14.8, 4.8 Hz), 2.37 (t, J = 6.8 Hz, 2H), 1.72-1.65 (m, 2H), 1.55-1.37 (m, 14H), 0.94-0.89 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 170.3, 155.5, 98.6, 80.2, 68.7, 53.0, 52.7, 51.7, 41.0, 39.4, 30.4, 28.3, 24.7, 22.9, 21.9, 19.9, 13.5. HRMS (ESI) m/z calcd. for C₂₁H₃₆N₂O₅S₂Na [M+Na]⁺: 483.1958, found: 483.1959.

Methyl *N*-((*tert*-butoxycarbonyl)-*L*-phenylalanyl)-*S*-(hex-1-yn-1-ylthio)-*L*cysteinate (3t)

Yield: 65 mg (88%); time: 30 s; white solid; TLC, $R_f = 0.2$ (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.35-7.26 (m, 2H), 7.25-7.18 (m, 3H), 6.82 (d, 1H, J = 8.0 Hz), 4.96 (brs, 1H), 4.90-4.80 (m, 1H), 4.41 (brs, 1H), 3.76 (s, 3H), 3.40 (dd, 1H, J = 12.0, 4.0 Hz), 3.30 (dd, 1H, J = 12.0, 4.0 Hz), 3.15-3.01 (m, 2H), 2.36 (t, 2H, J = 8.0 Hz), 1.56-1.48 (m, 2H), 1.41 (m, 11H), 0.91 (t, 3H, J = 8.0 Hz); ¹³C NMR (CDCl₃, 100 MHz): δ 171.1, 170.1, 155.3, 136.4, 129.3, 128.7, 127.0, 98.8, 80.4, 68.7, 55.6, 52.7, 51.8, 39.5, 38.1, 30.43, 28.2, 21.9, 19.9, 13.5. HRMS (ESI) m/z calcd. for C₂₄H₃₅N₂O₅S₂ [M+H]⁺: 495.1982, found: 495.1982.

Methyl *N*-((*S*)-2-((*tert*-butoxycarbonyl)amino)-2-phenylacetyl)-*S*-(hex-1-yn-1-ylthio)-*L*-cysteinate (3u)

Yield: 64.1 mg (89%); time: 30 s; white solid; TLC, $R_f = 0.2$ (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.40-7.30 (m, 5H), 6.75 (d, J = 11.2 Hz, 1H), 5.69 (s, 1H), 5.21 (s, 1H), 4.94-4.90 (m, 1H), 3.71 (s, 3H), 3.39 (ddd, J = 42.6, 14.4, 4.4 Hz, 2H), 2.34 (t, J = 6.8 Hz, 2H), 1.55-1.47 (m, 2H), 1.42 (s, 9H), 1.39-1.35 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.0, 154.9, 137.7, 128.9, 128.4, 127.3, 123.4, 98.8, 80.1, 68.6, 58.7, 52.7, 52.0, 39.4, 30.4, 28.2, 21.9, 19.9, 13.5; HRMS (ESI) m/z calcd. for C₂₃H₃₂N₂O₅S₂Na [M+Na]⁺: 503.1645, found: 503.1659.

tert-Butyl (*S*)-2-(((*R*)-3-(hex-1-yn-1-yldisulfanyl)-1-methoxy-1-oxopropan-2-yl) carbamoyl)pyrrolidine-1-carboxylate (3v)

Yield: 50.0 mg (75%); time: 30 s; yellow liquid; TLC, $R_f = 0.30$ (PE:EtOAc = 7:3); ¹H NMR (isomers, CDCl₃, 400 MHz): δ 7.64 (s, 0.5H), 6.93 (s, 0.5H), 4.91 (d, J = 27.6 Hz, 1H), 4.28 (d, J = 36 Hz, 1H), 3.75 (s, 3H), 3.45-3.32 (m, 4H), 2.34 (t, J = 6.8 Hz, 2H), 2.13 (s, 1H), 1.90-1.83 (m, 2H), 1.53-1.47 (m, 2H), 1.44 (s, 9H), 1.40-1.33 (m, 3H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (isomers, CDCl₃, 100 MHz): δ 172.6 (171.9), 170.4 (170.1), 155.7 (154.6), 98.8 (98.3), 80.7 (80.4), 68.4, 61.1(59.8), 52.6, 51.5, 47.0, 39.6, 31.0, 30.3, 28.2, 24.5(23.7), 21.9, 19.9, 13.5; HRMS (ESI) m/z calcd. for C₂₀H₃₂N₂O₅S₂Na [M+Na]⁺: 467.1645, found: 467.1641.

Ac-Ala-Cys-Gly-Phe-NH₂-SS-alkynyl-TIPS (3w)

The product was purified by preparative HPLC. Yield: 42 mg (66%); time: 2 h; white solid; LRMS (MALDI/QTOF) m/z: $[M+Na]^+$ C₃₀H₄₇N₅O₅S₂SiNa, Calcd. 672.264, found 672.268; $[M+K]^+$ C₃₀H₄₇N₅O₅S₂SiK, Calcd. 688.242, found 688.235; HRMS (ESI/micrOTOF) m/z: $[M+H]^+$ C₃₀H₄₈N₅O₅S₂Si Calcd. 650.2861, found: 650.2860.

S14

Ala-Cys-Tyr-Gly-Ala-Leu-NH2-SS- alkynyl-TIPS (3x)

The product was purified by preparative HPLC. Yield: 48 mg (60%); time: 2 h; white solid; LRMS (MALDI/QTOF) m/z: $[M+Na]^+$ C₃₇H₆₁N₇O₇S₂SiNa, Calcd. 830.374, found 830.384; $[M+K]^+$ C₃₇H₆₁N₇O₇S₂SiK, Calcd. 846.346, found 846.364.HRMS (ESI/micrOTOF) m/z: $[M+H]^+$ C₃₇H₆₂N₇O₇S₂Si Calcd. 808.3916, found: 808.3909.

Yield: 38.4 mg (93%); time: 30 s; light yellow solid; TLC, $R_f = 0.30$ (MeOH:DCM =1:4); ¹H NMR (CDCl₃, 400 MHz): δ 8.82 (s, 1H), 6.83 (t, J = 4.4 Hz, 1H), 4.13 (ddd, J = 28.4, 28.8 5.2 Hz, 2H), 3.79 (q, J = 7.2 Hz, 1H), 2.33 (t, J = 7.2 Hz, 2H), 1.60 (d, J_{S16}

= 7.2 Hz, 3H), 1.53-1.46 (m, 2H), 1.43-1.34 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 173.3, 171.6, 98.2, 68.5, 49.1, 41.7, 30.4, 21.9, 19.9, 17.0, 13.5; HRMS (ESI) m/z calcd. for C₁₁H₁₇NO₃S₂Na [M+Na]⁺: 298.0542, found: 298.0533.

((S)-3-(hex-1-yn-1-yldisulfanyl)-2-methylpropanoyl)-L-proline (3z)

Yield: 46.4 mg (94%); time: 30 s; yellow liquid; TLC, $R_f = 0.30$ (MeOH:DCM = 1:9); ¹H NMR (CDCl₃, 400 MHz): δ 9.80 (s, 1H), 4.60-4.58 (m, 1H), 3.71-3.65 (m, 2H), 3.29-3.16 (m, 2H), 2.88 (dd, J = 12.8, 4.8 Hz, 1H), 2.33 (t, J = 6.8 Hz, 3H), 2.16-2.01 (m, 3H), 1.53-1.46 (m, 2H), 1.43-1.34 (m, 2H), 1.28 (d, J = 6.8 Hz, 3H), 0.90 (t, J = 7.2Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.5, 174.0, 97.5, 68.9, 59.5, 47.4, 41.2, 37.5, 30.5, 27.9, 24.8, 21.9, 19.9, 16.6, 13.5. HRMS (ESI) m/z calcd. for C₁₅H₂₃NO₃S₂Na [M+Na]⁺: 352.1012, found: 352.1012.

(S)-2-amino-3-methyl-3-(((triisopropylsilyl)ethynyl)disulfanyl)butanoic acid(3aa')

The product was purified by preparative HPLC. Yield: 40.0 mg (74%); time: 4 h; light yellow oil; TLC, $R_f = 0.1$ (MeOH:DCM = 1:10); ¹H NMR (CDCl₃, 400 MHz): δ 7.49 (s, 2H), 4.12 (s, 1H), 1.76 (s, 3H), 1.45 (s, 3H), 1.06 (s, 21H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.3, 100.7, 95.2, 59.8, 52.8, 26.9, 21.8, 18.5, 11.3. HRMS (ESI) m/z calcd. for C₁₆H₃₁NO₂S₂SiNa [M+Na]⁺: 384.1458, found: 384.1464.

(2*R*,3*R*,4*S*,5*R*,6*S*)-2-(Acetoxymethyl)-6-(hex-1-yn-1-yldisulfanyl)tetrahydro-2*H*pyran-3,4,5-triyl triacetate (3ab')

Yield: 47.8 mg (67%); time: 30 s; white solid; TLC, $R_f = 0.30$ (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 5.25 (t, J = 9.2 Hz, 1H), 5.19-5.11 (m, 2H), 4.72 (d, J = 9.6 Hz, 1H), 4.25 (dd, J = 12.4, 4.4 Hz, 1H), 4.15 (dd, J = 12.4, 2.4 Hz, 1H), 3.77 (dq, J = 10.0, 2.4 Hz, 1H), 2.31 (t, J = 6.8 Hz, 2H), 2.07 (s, 3H), 2.02 (d, J = 2.0 Hz, 5H), 2.00 (s, 3H), 1.51-1.44 (m, 2H), 1.42-1.33 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 170.2, 169.3, 169.1, 97.7, 87.0, 76.2, 73.7, 69.5, 68.7, 67.9, 61.9, 30.3, 21.9, 20.7, 20.60, 20.57, 20.5, 19.8, 13.5. HRMS (ESI) m/z calcd. for C₂₀H₂₈O₉S₂Na [M+Na]⁺: 499.1067, found: 499.1074.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R)-4,5-diacetoxy-2-

(acetoxymethyl)-6-(((triisopropylsilyl)ethynyl)disulfanyl)tetrahydro-2*H*-pyran-3yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate(3ac²)

Yield: 58.3 mg (45%); time: 30 s; colorless liquid; TLC, $R_f = 0.25$ (PE:EtOAc = 7:3); ¹H NMR (CDCl₃, 400 MHz): δ 5.40-5.31 (m, 3H), 5.05 (t, J = 9.6 Hz, 1H), 4.95 (t, J = 9.2 Hz, 1H), 4.87-4.82 (m, 2H), 4.41 (dd, J = 12.0, 2.4 Hz, 1H), 4.23 (dd, J = 12.4, 4.4 Hz, 2H), 4.05-3.93 (m, 3H), 3.79-3.75 (m, 1H), 2.14 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H) 1.99 (s, 6H), 1.06 (s, 21H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 170.54, 170.49, 170.1, 169.9, 169.6, 169.4, 101.3, 95.7, 94.9, 86.5, 76.5, 76.1, 72.8, 70.6, 70.0, 69.3, 68.6, 67.9, 63.2, 61.5, 35.4, 29.7, 20.9, 20.8, 20.7, 20.62, 20.60, 18.6, 11.2. HRMS (ESI) m/z calcd. for C₃₇H₆₀O₁₇S₂SiN [M+NH4]⁺: 882.3066, found: 882.3065.

Cyclohexyl 2-(2-(phenylthio)phenyl)hexane (dithioperoxoate) (4a)

Yield: 52.0 mg (82%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.41 (t, J = 8.0 Hz, 2H), 7.35-7.27 (m, 2H), 7.26-7.22 (m, 3H), 7.21-7.17 (m, 2H), 4.75 (t, J = 8.0 Hz, 1H), 2.69-2.63 (m, 1H), 2.16-2.07 (m, 1H), 1.85-1.89 (m, 1H), 1.73-1.68 (m, 1H), 1.56-1.53 (m, 1H), 1.28-1.17 (m, 9H), 0.80 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 199.6, 140.1, 136.7, 134.9, 134.4, 131.0, 129.6, 129.1, 128.8, 128.5, 128.3, 127.0, 126.5, 55.3, 49.6, 33.6, 32.5, 29.5, 25.9, 25.4, 22.4, 13.8; HRMS (ESI) m/z calcd. for C₂₄H₃₀NaOS₃ [M+Na]⁺: 453.1351, found: 453.1351.

Yield: 51.1 mg (71%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.425 (dd, J = 12.0, 8.0 Hz, 2H), 7.33-7.28 (m, 2H), 7.27-7.18 (m, 5H), 4.80 (t, J = 8.0 Hz, 1H), 2.16-2.10 (m, 1H), 2.00 (s, 3H), 1.72 (s, 7H), 1.66-1.54 (m, 7H), 1.29-1.12 (m, 4H), 0.81 (t, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): 199.6, 140.2, 136.7, 134.8, 134.5, 129.6, 129.1, 128.7, 128.4, 128.2, 126.5, 55.3, 50.6, 42.2, 35.9, 33.5, 29.8, 29.5, 22.4, 13.8; HRMS (ESI) m/z calcd. for C₂₈H₃₄NaOS₃ [M+Na]⁺: 505.1664, found: 505.1657.

Ethyl 3-((2-(2-(phenylthio)phenyl)hexanoyl)disulfaneyl)propanoate (4c)

Yield: 17.3 mg (24%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.44 (d, J = 8.0 Hz, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.27-7.24 (m, 3H), 7.23-7.19 (m, 3H), 4.72 (t, J = 8.0 Hz, 1H), 4.164.11 (m, 2H), 2.86-2.83 (m, 2H), 2.55-2.52 (m, 2H), 2.17-2.08 (m, 1H), 1.77-1.68 (m, 1H), 1.25 (t, *J* = 8.0 Hz, 7H), 0.82-0.79 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.6, 171.3, 139.8, 136.6, 135.0, 134.4, 129.5, 129.2, 128.9, 128.6, 128.4, 126.6, 60.8, 55.5, 33.9, 33.4, 29.7, 29.5, 22.4, 14.2, 13.8; HRMS (ESI) m/z calcd. for C₂₃H₂₈NaO₃S₃ [M+Na]⁺: 471.1093, found: 471.1094.

2-(Acetoxymethyl)-6-((2-(2-(phenylthio)phenyl)hexanoyl)disulfaneyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (4d)

Yield: 41.5 mg (41%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.37 (d, J = 8.0 Hz, 1H), 7.33-7.27 (m, 2H), 7.24-7.15 (m, 6H), 5.13-5.06 (m, 1H), 4.97-4.88 (m, 2H), 4.66-4.62 (m, 1H), 4.28 (dd, J = 28.0, 12.0 Hz, 1H), 4.17-4.04 (m, 1H), 3.97-3.93 (m, 1H), 3.58-3.47 (m, 1H), 2.05 (d, J = 4.0 Hz, 3H), 2.00 (d, J = 4.0 Hz, 3H), 1.94-1.93 (d, J = 4.0 Hz, 6H), 1.73-1.59 (m, 2H), 1.21-1.16 (m, 4H), 0.74 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.4, 170.6, 170.1, 169.5, 169.3, 139.5, 136.5, 134.9, 134.8, 129.7, 129.2, 128.8, 128.7, 128.6, 126.7, 87.2, 87.0, 76.1, 73.7, 69.6, 67.8, 61.9, 55.6, 33.2, 29.3, 26.9, 22.4, 20.7, 20.5, 13.8; HRMS (ESI) m/z calcd. for C₃₂H₃₈NaO₁₀S₃ [M+Na]⁺:701.1519, found: 701.1518.

(p-Tolyl) 2-(2-(phenylthio)phenyl)hexane(dithioperoxoate) (4e)

Yield: 39.3 mg (60%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.32 (m, 2H), 7.25-7.20 (m, 3H), 7.18-7.10 (m, 6H), 6.96 (d, J = 8.0 Hz, 2H), 4.65 (t, J = 4.0 Hz, 1H), 2.22 (s, 3H), 2.10-2.01 (m, 1H), 1.701.60 (m, 1H), 1.22-1.00 (m, 4H), 0.72 (t, J = 4.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.1, 139.7, 138.3, 136.5, 134.8, 134.7, 132.5, 130.7, 129.7, 129.7, 129.2, 128.7, 128.6, 128.4, 126.6, 55.3, 33.5, 29.5, 22.4, 21.1, 13.8; HRMS (ESI) m/z calcd. for C₂₅H₂₆OS₃ [M+Na]⁺: 461.1038 , found: 461.1032 .

Yield: 47.5 mg (67%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (d, J = 2.0 Hz, 1H), 7.82 (t, J = 4.0 Hz, 3H), 7.76-7.71 (m, 2H), 7.52-7.44 (m, 6H), 7.36 (t, J = 8.0 Hz, 1H), 7.32-7.29 (m, 1H), 7.27-7.26 (m, 3H), 7.23-7.20 (m, 1H), 4.84 (t, J = 8.0 Hz, 1H), 2.25-2.16 (m, 1H), 1.84-1.74 (m, 1H), 1.34-1.23 (m, 4H), 0.84 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 197.7, 139.5, 136.4, 134.8, 134.7, 133.3, 133.0, 132.6, 129.7, 129.2, 128.8, 128.8, 128.7, 128.6, 128.5, 127.7, 127.5, 127.0, 126.6, 126.5, 55.4, 33.4, 29.5, 22.4, 13.8; HRMS (ESI) m/z calcd. for C₂₈H₂₆OS₃ [M+H]⁺: 475.1219, found: 475.1216.

Benzyl 2-(2-(phenylthio)phenyl)hexane(dithioperoxoate) (4g)

Yield: 39.9 mg (61%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.36 (d, J = 8.0 Hz, 1H), 7.31-7.23 (m, 2H), 7.19-7.14 (m, 6H), 7.12-7.07 (m, 5H), 4.63 (t, J = 8.0 Hz, 1H), 3.71 (dd, J = 17.2, 12.0 Hz, 2H), 2.06-1.92 (m, 1H), 1.66-1.57 (m, 1H), 1.21-1.16 (m, 4H), 0.74 (t, J = 4.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.4, 139.9, 136.6, 136.1, 134.9, 134.5, 129.6, 129.4, 129.2, 128.8, 128.5, 128.4, 128.3, 127.6, 126.5, 55.3, 42.4, 33.5, 29.4, 22.4, 13.8; HRMS (ESI) m/z calcd. for C₂₅H₂₆OS₃ [M+H]⁺: 439.1219 , found: 439.1226. **Cyclohexyl 3,3-dimethyl-2-(2-(phenylthio)phenyl)butane(dithioperoxoate) (4h)**

Yield: 45.6 mg (71%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, J = 8.0 Hz, 1H), 7.40 (dd, J = 7.6, 1.6 Hz, 1H), 7.27-7.26 (m, 5H), 7.24-7.22 (m, 1H), 7.21-7.20 (m, 1H), 4.95 (s, 1H), 2.71-2.64 (m, 2H), 1.90-1.84 (m, 2H), 1.29-1.17 (m, 6H), 1.08 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.4, 136.9, 136.7, 136.5, 134.7, 130.1, 130.1, 129.1, 128.2, 127.4, 126.6, 63.3, 49.5, 36.9, 32.4, 28.1, 25.9, 25.4; HRMS (ESI) m/z calcd. for C₂₄H₃₀OS₃ [M+Na]⁺: 453.1351 , found: 453.1345.

Cyclohexyl 2-(2-(phenylthio)phenyl)-2-(triisopropylsilyl)ethane(dithioperoxoate) (4i)

Yield: 31.6 mg (40%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.77 (d, J = 8.0 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.32-7.26 (m, 3H), 7.24-7.21 (m, 2H), 7.18-7.15 (m, 2H), 5.12 (s, 1H), 2.45 (m, 1H), 1.90-1.72 (m, 6H), 1.29-1.17 (m, 5H), 1.08 (m, 21 H); ¹³C NMR (CDCl₃, 100 MHz): δ 196.78, 138.24, 136.79, 135.07, 133.35, 131.68, 131.52, 130.99, 130.40, 129.60, 129.34, 129.15, 129.11, 128.27, 127.20, 126.40, 49.14, 48.65, 32.56, 32.50, 25.93, 25.46, 18.80, 18.70, 12.11.; HRMS (ESI) m/z calcd. for C₂₉H₄₂OS₃Si [M+Na]⁺: 553.2059 , found: 553.2047.

Cyclohexyl 2-phenyl-2-(2-(phenylthio)phenyl)ethane(dithioperoxoate) (4j)

Yield: 45.1 mg (67%); time: 20 h; yellow oil; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.43 (dd, J = 7.6, 1.6 Hz, 1H), 7.34-7.27 (m, 6 H), 7.24-7.21 (m, 4H), 7.20-7.15 (m, 3H), 6.11 (s, 1H), 2.71-2.64 (m, 1H), 1.93-1.89 (m, 2H), 1.74-1.70 (m, 2H), 1.29-1.22 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.3, 163.3, 140.0, 135.0, 130.1, 129.4 129.2, 128.8, 128.7, 128.6, 127.6, 126.6, 119.6, 113.1, 60.6, 49.7, 32.6(32.5), 29.7, 25.9 (25.5); HRMS (ESI) m/z calcd. for C₂₆H₂₆NaOS₃ [M+Na]⁺: 473.1038, found: 473.1030.

Cyclohexyl 2-(2-(benzylthio)phenyl)hexane(dithioperoxoate) (4k)

Yield: 51.3 mg (77%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.39 (dd, J = 7.6, 1.6 Hz, 1H), 7.31-7.23 (m, 6 H), 7.22-7.18 (m, 2H), 4.76 (t, J = 7.2 Hz, 3H), 4.11 (s, 2H), 2.71-2.65 (m, 1H), 2.15-2.06 (m, 1H), 1.92-1.86 (m, 2H), 1.74-1.70 (m, 2H), 1.63-1.54 (m, 2H), 1.32-1.12 (m, 9H), 0.85 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 199.5, 139.3, 137.2, 135.6, 132.6, 128.9, 128.5, 128.0, 127.8, 127.6, 127.3, 55.2, 49.5, 40.5, 33.5, 32.4, 29.5, 25.9, 25.4, 22.5, 13.9; HRMS (ESI) m/z calcd. for C₂₅H₃₂OS₃ [M+Na]⁺: 467.1507 , found: 467.1500.

Cyclohexyl 2-(5-methyl-2-(p-tolylthio)phenyl)hexane(dithioperoxoate) (41)

Yield: 44.5 mg (65%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.31 (dd, J = 8.0 Hz, 1H), 7.17 (s, 1 H), 7.14-7.11 (m, 2H), 7.07-7.05 (m, 2H), 7.04-7.01 (m, 1H), 4.74 (t, J = 4.0 Hz, 1H), 2.71-2.63 (m, 1H), 2.31 (d, J = 8.0 Hz, 6H), 2.14-2.05 (m, 1H), 1.92-1.86 (m, 1H), 1.74-1.56 (m, 4H), 1.26-1.23 (m, 9H), 0.81 (t, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 199.7, 139.9, 138.8, 136.4, 134.8, 133.5, 131.4, 129.9, 129.7, 129.1, 128.9, 55.2, 49.5, 33.7, 32.5, 29.6, 26.0, 25.4, 22.5, 21.2, 21.0, 13.8; HRMS (ESI) m/z calcd. for C₂₆H₃₄OS₃ [M+Na]⁺: 481.1664 , found: 481.1655.

Cyclohexyl 2-(dibenzo[b,d]thiophen-4-yl)hexane(dithioperoxoate) (4m)

Yield: 48.7 mg (76%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 8.17-8.15 (m, 1H), 8.10 (dd, J = 7.6, 1.6 Hz, 1H), 7.90-7.87 (m, 1H), 7.50-7.45 (m, 4H), 4.24 (t, J = 4.0 Hz, 1H), 2.68-2.61 (m, 1H), 2.33-2.23 (m, 1H), 2.10-2.01 (m, 1H), 1.89-1.80 (m, 2H), 1.72-1.64 (m, 2H), 1.57-1.49 (m, 3H), 1.43-1.30 (m, 3H), 1.28-1.08 (m, 4H), 0.86 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.9, 139.9, 138.8, 136.1, 136.0, 132.3, 127.0, 125.5, 125.2, 124.6, 122.8, 121.8, 120.9, 57.9, 49.6, 32.6, 32.4, 29.5, 25.8, 25.4, 22.5, 13.8; HRMS (ESI) m/z calcd. for C₂₄H₂₈OS₃ [M+Na]⁺: 451.1194 , found: 451.1193.

Cyclohexyl 2-(2-(ethylthio)phenyl)hexane(dithioperoxoate) (4n)

Yield: 26 mg (44%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.43-7.41 (m, 1H), 7.32-7.29 (m, 1H), 7.25-7.17 (m, 2H), 4.74 (t, J = 8.0 Hz, 1H), 2.96 (q, J = 8.0 Hz, 2H), 2.79-2.65 (m, 2H), 2.20-2.10 (m, 1H), 2.00-1.96 (m, 1H), 1.92-1.87 (m, 2H), 1.82-1.66 (m, 5H), 1.34-1.30 (m, 3H), 1.27-1.19 (m, 6H), 0.86 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 199.6, 138.4, 136.3, 130.7, 128.0, 127.9, 126.8, 55.0, 49.5, 33.4, 32.4, 29.5, 29.0, 25.9, 25.5, 22.5, 14.4, 13.9; HRMS (ESI) m/z calcd. for C₂₀H₃₀OS₃ [M+Na]⁺: 383.1532 , found: 383.1526.

Cyclohexyl 2-(2-(methylthio)phenyl)-2-phenylethane(dithioperoxoate) (40)

Yield: 31.4 mg (54%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.37-7.27 (m, 7H), 7.24-7.21 (m, 1H), 7.17-7.13 (m, 1H), 5.99 (s, 1H), 2.74-2.67 (m, 1H), 2.45 (s, 3H), 1.97-1.92 (m, 2H), 1.77-1.72 (m, 2H), 1.35-1.14 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 198.5, 138.0, 136.8, 136.5, 129.3, 129.1, 128.7, 128.3, 127.8, 127.7, 125.7, 60.1, 49.6, 32.5, 25.9, 25.5, 17.1; HRMS (ESI) m/z calcd. for C₂₁H₂₄OS₃ [M+Na]⁺: 411.0881 , found: 411.0877

Cyclohexyl 2-(2-((trifluoromethyl)thio)phenyl)hexane(dithioperoxoate) (4p)

Yield: 25.2 mg (40%); time: 20 h; yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 49:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.75 (d, 1H), 7.53-7.47 (m, 2H), 7.36-7.31 (m, 1H), 4.86 (t, J = 8.0 Hz, 1H), 2.72-2.65 (m, 1H), 2.25-2.16 (m, 1H), 2.02-1.83 (m, 4H), 1.79-1.70 (m, 2H), 1.25-1.20 (m, 9H), 0.87 (t, J = 4.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 199.2, 143.3, 138.2, 131.9, 129.3(q, J = 309 Hz), 128.6 (d, J = 58 Hz), 124.28, 55.5, 49.6, 42.4, 33.9, 32.5, 31.1, 29.7, 25.9, 25.2, 22.5, 13.8; ¹⁹F (376 MHz, CDCl₃) δ -42.1. HRMS (ESI) m/z calcd. for C₁₉H₂₆F₃OS₃ [M+H]⁺: 423.1092 , found: 423.1094. **5-(((3s,5s,7s)-Adamantan-1-vl)disulfanyl)-1-benzyl-4-butyl-1***H***-1,2,3-triazole (6)**

Yield: 25.4 mg (70%); time: 12 h; light yellow solid; TLC, $R_f = 0.30$ (PE:EtOAc = 9:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.35-7.26 (m, 5H), 5.67 (s, 2H), 2.78 (t, J = 7.6 Hz, 2H), 2.05 (s, 3H), 1.76-1.59 (m, 14H), 1.40 (q, J = 7.6 Hz, 2H), 0.94 (t, J = 7,2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 150.6, 135.0, 128.7, 128.1, 128.0, 127.9, 52.4, 50.8, 42.4, 35.9, 31.1, 29.7, 25.6, 22.6, 13.9. HRMS (ESI) m/z calcd. for C₂₃H₃₂N₃S₂ [M+H]⁺: 414.2032, found: 414.2049.

2-(2-(Phenylthio)phenyl)hexanoic acid (7)

Yield: 34.5 mg (77%); time: 2 h; light yellow liquid; TLC, $R_f = 0.20$ (PE:EtOAc = 3:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.45-7.41 (m, 2H), 7.32 (t, J = 8.0 Hz, 1H), 7.26-7.15 (m, 6H), 4.41 (t, J = 8.0 Hz, 1H), 2.08-2.00 (m, 1H), 1.74-1.64 (m, 1H), 1.31-1.08 (m, 5H), 0.81 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 179.9, 141.2, 136.8, 134.8, 134.1, 129.4, 129.0, 128.7, 128.1, 128.0, 126.4, 47.7, 32.9, 29.6, 22.4, 13.8; HRMS (ESI) m/z calcd. for C₁₈H₁₉O₂S [M-H]⁺: 299.1111 , found: 299.1113.

2-(2-(Phenylthio)phenyl)hexanamide (8)

Yield: 33.1 mg (74%); time: 2 h; light yellow solid; TLC, $R_f = 0.20$ (PE:EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz): δ 7.49 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H), 7.22-7.09 (m, 6H), 5.29 (d, J = 76.0 Hz, 2H), 4.06 (t, J = 8.0 Hz, 1H), 2.07-1.98 (m, 1H), 1.62-1.53 (m, 1H), 1.20-1.12 (m, 3H), 1.06-0.94 (m, 1H), 0.74 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 175.5, 142.7, 137.0, 135.1, 132.7, 129.4, 129.3, 129.0, 128.3, 127.9, 126.5, 48.1, 32.8, 29.7, 22.5, 13.9; HRMS (ESI) m/z calcd. for C₁₈H₂₁NOS [M+Na]⁺: 322.1236 , found: 322.1234.

5. Possible mechanism for S-S bond formation

6. Copies of NMR spectra

3m

¹H NMR 400 MHz CDCI₃

---109.84

19F NMR 376.3 MHz CDCl₃

3s

'n

-1

ò

S83

S107

	Copies of NM	IR spectra	
4p	7.76 -7.74 -7.51 -7.51 -7.49 -7.49 -7.47 -7.33 -7.35 -7.33 -7.35 -7.35 -7.35 -7.45 -7.45 -7.75 -	4.88 4.86 4.86	$\sum_{\substack{1.267\\-1.72}} 2.65$
	S-S Bu 1H NMR 400 MHz CDCI ₃		
1 1 1 1		1.00 ₹	3 3

S113

S116

