Supporting Information

Visible-light-induced alkoxycarbonylation/cyclization of 1,7-enynes:

synthesis of dihydropyranones containing all-carbon quaternary

centers

Jian-Qiang Chen,^a Qi Chen,^a Baofu Chen*^a and Jie Wu*^{a,b,c}

^a Taizhou Central Hospital (Taizhou University Hospital) & School of Pharmaceutical and Materials Engineering, Taizhou University, 999 Donghai Avenue, Taizhou, 318000, China.

^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

^c School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.

Corresponding author: chenbf@tzc.edu.cn; jie_wu@fudan.edu.cn

Contents

1. General information	2
2. General experimental procedure	3
3. General procedure for dihydropyranone	5
4. Synthetic applications	б
5. Devices for the photocatalytic reactions	8
6. Mechanistic study	9
7. X-ray data for compound 3e (CCDC 2203307)	10
8. Characterization of new substrates and all products	11
9. References	20
10. NMR spectra of compounds	21

1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200–300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM-400 (400 MHz). The spectra were recorded in deuterochloroform (CDCl₃) as solvent at room temperature, ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.0$ ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet, br = broad), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. Electrospray–ionisation HRMS data were acquired on a Q–TOF mass spectrometer (Waters SYNAPT G2-Si) LC-MS TOF.

2. General experimental procedure

1. General procedure for the synthesis of substrates 1a-1r and 1t-1w.¹

Preparation of the compound (S3): Nitrogen was bubbled through neat triethylamine (50 mL) for 20 min. Aryl iodide S1 (20 mmol), Pd(PPh₃)₂Cl₂ (280.8 mg, 0.4 mmol, 2 mol%), CuI (152.4 mg, 0.8 mmol, 4 mol%) and terminal acetyle S2 (24 mmol) were solubilized in triethylamine. The resulting mixture was stirred at room temperature for 2 h under N₂ atmosphere. Then the crude mixture was filtered through a shot pad of celite and washed with DCM (20 mL) for three times, and the combined organic layer was concentrated under reduced pressure. The resulting crude mixture was purified by flash chromatography using ethyl acetate and petroleum ether as eluent to afford the desired product S3.

Preparation of the compound (S4): In a 100 mL flask with a stir-bar was charged with S3 (10 mmol, 1.0 equiv) in DCM (0.5 M). The solution was stirred at 0 °C, triethylamine (2.0 g, 20 mmol, 2.0 equiv) and acryloyl chloride (15 mmol, 1.5 equiv) was added. The solution was warmed up to room temperature and stirred at room temperature for 12 h. The mixture was diluted with DCM (50 mL) and saturated NH₄Cl solution (50 mL). The organic and aqueous layers were separated. The aqueous layer was extracted with DCM (50 mL x 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by flash chromatography and then recrystallized from PE/EtOAc to afford the products S4.

Preparation of the compound (1): Compound S4 (5 mmol) was solubilized in THF

(20 mL) under N₂ atmosphere. NaH 60% (300 mg, 7.5 mmol) was added portionwise at 0 °C. MeI (778 μ L, 12,5 mmol), EtI (1.0 mL, 12.5 mmol), allyl bromide (1.08 mL, 12.5 mmol) or BrBn (1.48 mL, 12.5 mmol) were added dropwise. The resulting mixture was stirred at room temperature for 3 h under N₂ atmosphere. The reaction mixture was quenched with H₂O (40 mL). THF was removed under reduced pressure. The aqueous layer was extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine (30 mL) and dried over MgSO₄. The crude material was concentrated under reduced pressure and purified by flash column chromatography on silica gel (1:4, EtOAc/hexane).

2. General procedure for the synthesis of substrates 1s.²

Preparation of the compound (S5): Nitrogen was bubbled through neat triethylamine (50 mL) for 20 min. 2-iodoaniline (10 mmol), $Pd(PPh_3)_2Cl_2$ (140.4 mg, 0.2 mmol, 2 mol%), CuI (76.2 mg, 0.4 mmol, 4 mol%) and phenylacetylene (12 mmol) were solubilized in triethylamine. The resulting mixture was stirred at room temperature for 2 h under N₂ atmosphere. Then the crude mixture was filtered through a shot pad of celite and washed with DCM (10 mL) for three times, and the combined organic layer was concentrated under reduced pressure. The resulting crude mixture was purified by flash chromatography using ethyl acetate and petroleum ether as eluent to afford the desired product S5.

Preparation of the compound (S6): To a mixture of S5 (963 mg, 5 mmol) and potassium carbonate (1.38 g, 10 mmol) in DMF (12 mL) was added propargyl bromide (1.19 g, 10 mmol) under argon atmosphere at room temperature. The resulting mixture was stirred at ambient temperature overnight. Water (12 mL) was added and the mixture was extracted by dichloromethane for 3 times (20 mL×3). The collected organic phases

were dried over magnesium sulfate, then concentrated and purified by silica gel column chromatography (eluent: petrol ether/ ethyl acetate = 75:1) to afford product **S6**.

Preparation of the compound (1s): In a 100 mL flask with a stir-bar was charged with S6 (2 mmol, 1.0 equiv) in DCM (0.5 M). The solution was stirred at 0 °C, triethylamine (405 mg, 4 mmol, 2.0 equiv) and methacryloyl chloride (3 mmol, 1.5 equiv) was added. The solution was warmed up to room temperature and stirred at room temperature for 12 h. The mixture was diluted with DCM (10 mL) and saturated NH₄Cl solution (10 mL). The organic and aqueous layers were separated. The aqueous layer was extracted with DCM (10 mL x 3). The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue, which was purified by flash chromatography and then recrystallized from PE/EtOAc to afford the products 1s.

3. General procedure for dihydropyranone

All optimization reactions were set up in a glove box under N₂ atmosphere. Substrate **1** (0.2 mmol, 1.0 equiv), methyl chlorooxoacetate **2b** (0.6 mmol, 3.0 equiv) and 2,6-lutidine (0.3 mmol, 1.5 equiv) were added to a solution of photocatalyst $Ir(ppy)_3$ (2 mol %) in dry MeCN (4 mL) at room temperature. The heterogenous mixture was placed in the irradiation apparatus equipped with blue LEDs. The resulting mixture was stirred for 36 h. Upon completion of the reaction, the mixture was diluted with ethyl acetate (30 mL), washed with brine (10 ml x 2), dried with Na₂SO₄ and the solvent was evaporated. The crude product was purified by column chromatography on silica gel to afford the desired product **3**.

4. Synthetic applications

1. General procedure for the synthesis of 3d-I

All optimization reactions were set up in a glove box under N₂ atmosphere. Substrate 1d (0.2 mmol, 1.0 equiv), methyl chlorooxoacetate 2b (0.6 mmol, 3.0 equiv) and 2,6lutidine (0.3 mmol, 1.5 equiv) were added to a solution of photocatalyst Ir(ppy)₃ (2 mol %) in dry MeCN (4 mL) at room temperature. The heterogenous mixture was placed in the irradiation apparatus equipped with blue LEDs. The resulting mixture was stirred for 36 h. Upon completion of the reaction, the mixture was diluted with methyl acetate (30 mL), washed with brine (10 x 3 mL), dried with Na₂SO₄. After evaporation of the solvent, the crude product was used in the following step without further purification. To a solution of crude product in MeCN (4.0 mL) was added p-TsOH·H₂O (0.2 mmol, 1.0 equiv) and [(hydroxy)-tosyloxyiodo]benzene (0.8 mmol, 4.0 equiv) in one portion. The reaction mixture was stirred at rt for 4 h, and then the reaction was quenched with the addition of brine (15 mL) and diluted with EtOAc (30 mL). The combined organic layers were washed with brine (3 \times 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography with gradient eluents (petroleum ether / ethyl acetate = 3/1) to provide compound **3d-I**.

2. General procedure for the synthesis of 3d-II

All optimization reactions were set up in a glove box under N_2 atmosphere. Substrate **1d** (0.2 mmol, 1.0 equiv), methyl chlorooxoacetate **2b** (0.6 mmol, 3.0 equiv) and 2,6-

lutidine (0.3 mmol, 1.5 equiv) were added to a solution of photocatalyst Ir(ppy)₃ (2 mol %) in dry MeCN (4 mL) at room temperature. The heterogenous mixture was placed in the irradiation apparatus equipped with blue LEDs. The resulting mixture was stirred for 36 h. Upon completion of the reaction, KOH (2.0 mmol, 10.0 equiv) and H₂O (1 mL) were added. The reaction mixture was stirred at rt for 12 h, and then the reaction was quenched with 6 M HCl (2.0 mL) and diluted with EtOAc (30 mL). The combined organic layers were washed with brine (3 × 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography with gradient eluents (petroleum ether / ethyl acetate = 1/1) to provide compound **3d-II**.

3. General procedure for the synthesis of 3d-III

All optimization reactions were set up in a glove box under N₂ atmosphere. Substrate **1d** (0.2 mmol, 1.0 equiv), methyl chlorooxoacetate **2b** (0.6 mmol, 3.0 equiv) and 2,6-lutidine (0.3 mmol, 1.5 equiv) were added to a solution of photocatalyst Ir(ppy)₃ (2 mol %) in dry MeCN (4 mL) at room temperature. The heterogenous mixture was placed in the irradiation apparatus equipped with blue LEDs. The resulting mixture was stirred for 36 h. Upon completion of the reaction, the mixture was diluted with methyl acetate (30 mL), washed with brine (10 x 3 mL), dried with Na₂SO₄. After evaporation of the solvent, the crude product was used in the following step without further purification. To a solution of crude product in THF (4.0 mL) was added methylamine hydrochloride (2.0 mmol, 10.0 equiv) in one portion. The reaction mixture was stirred at rt for 12 h, and then the reaction was quenched with the addition of brine (15 mL) and diluted with EtOAc (30 mL). The combined organic layers were washed with brine (3 × 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography with gradient eluents (petroleum ether / ethyl acetate = 3/2) to provide compound **3d-III**.

4. General procedure for the synthesis of 3d-IV

All optimization reactions were set up in a glove box under N₂ atmosphere. Substrate **1d** (0.2 mmol, 1.0 equiv), methyl chlorooxoacetate **2b** (0.6 mmol, 3.0 equiv) and 2,6-lutidine (0.3 mmol, 1.5 equiv) were added to a solution of photocatalyst Ir(ppy)₃ (2 mol %) in dry MeCN (4 mL) at room temperature. The heterogenous mixture was placed in the irradiation apparatus equipped with blue LEDs. The resulting mixture was stirred for 36 h. Upon completion of the reaction, the mixture was diluted with methyl acetate (30 mL), washed with brine (10 x 3 mL), dried with Na₂SO₄. After evaporation of the solvent, the crude product was used in the following step without further purification. To a solution of crude product in EtOH (4.0 mL) was added K₂CO₃ (2.0 mmol, 10.0 equiv) in one portion. The reaction mixture was stirred at rt for 4 h, and then the reaction was quenched with the addition of brine (15 mL) and diluted with EtOAc (30 mL). The combined organic layers were washed with brine (3 × 10 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography with gradient eluents (petroleum ether / ethyl acetate = 4/1) to provide compound **3d-IV**.

5. Devices for the photocatalytic reactions

Irradiation of visible light was performed with a 36 W Blue LED strip. All photocatalyzed alkoxycarbonylation/cyclization reactions were carried out at room temperature (r.t.) with fan-assisted cooling to maintain a temperature of approximately 40-45 °C. The distance between tube and lamp was approximately 3 cm. Manufacture of the light source: LED strip Manufacturer: Greethink Model: GT-5050-Blue Wavelength of peak intensity: 460-470 nm Material of the irradiation vessel: borosilicate glass Distance of the irradiation vessel from the light source: approximately 3 cm.

Figure S1. The reaction set-up for the photocatalytic reactions

6. Mechanistic study

a) Mechanistic study

7. X-ray data for compound 3e (CCDC 2203307)

	NOMOVE EDBCED	$P_{cob} = 50$	
		Temp = 296	$\equiv \underbrace{F_{H}}_{N} \underbrace$
Bond precision:	C-C =	= 0.0022 A	Wavelength=0.71073
Cell: a=23.	665(3)	b=9.9238(11)	c=18.980(2)
alpha	=90	beta=117.870(2)	gamma=90
Temperature: 296 K	•		
	Calculat	ted	Reported
Volume	3940.4(8)	3940.4(8)
Space group	C 2/c		C 1 2/c 1
Hall group	-C 2yc		-C 2yc
Moiety formula	C25 H1	8 F N O3	C25 H18 F N O3
Sum formula	C25 H1	8 F N O3	C25 H18 F N O3
Mr	399.40		399.40
Dx,g cm-3	1.347		1.347
Z	8		8
Mu (mm-1)	0.095		0.095
F000	1664.0		1664.0
F000'	1664.87	,	
h,k,lmax	28,11,22	2	28,11,22
Nref	3472		3462
Tmin,Tmax	0.976,0.	.979	
Tmin'	0.976		
Correction method=	Not given		
Data completeness=	- 0.997	Theta(max)	= 24.997
R(reflections)= 0.0378(2768)			wR2(reflections)= 0.1155(3462)
S = 1.041	Npa	ar = 272	

8. Characterization of new substrates and all products

6-methyl-1,4a-diphenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3a)

Purification by flash chromatography (DCM). Colorless oil; 64% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.62–7.59 (m, 2H), 7.44–7.35 (m, 3H), 7.31 (d, *J* = 7.1 Hz, 1H), 7.26–7.17 (m, 3H), 7.10 (td, *J* = 7.8, 1.3 Hz, 1H), 6.96 (dd, *J* = 7.8, 1.0 Hz, 1H), 6.89 (d, *J* =

8.0 Hz, 1H), 6.71 (td, *J* = 7.6, 0.7 Hz, 1H), 3.49–3.44 (m, 4H), 3.33 (d, *J* = 15.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.3, 166.2, 148.9, 138.5, 137.3, 132.6, 130.1, 129.9, 129.7, 129.2, 128.7, 128.6, 128.2, 126.1, 123.0, 120.6, 115.4, 110.4, 50.4, 40.2, 30.8; HRMS (ESI) for C₂₅H₂₀NO₃ [M+H]⁺ calcd. 382.1438, found 382.1440.

6-methyl-4a-phenyl-1-(p-tolyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3b)

Purification by flash chromatography (DCM). Colorless oil; 52% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.49 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 7.4 Hz, 2H), 7.25–7.15 (m, 5H), 7.10 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 6.73

(t, J = 7.5 Hz, 1H), 3.47–3.42 (m, 4H), 3.32 (d, J = 15.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.3, 166.4, 149.0, 140.4, 138.4, 137.3, 129.8, 129.6, 129.6, 129.3, 129.2, 128.6, 128.2, 126.1, 123.0, 120.9, 115.3, 109.7, 50.4, 40.2, 30.8, 21.5; HRMS (ESI) for C₂₆H₂₂NO₃ [M+H]⁺ calcd. 396.1594, found 396.1605.

1-([1,1'-biphenyl]-4-yl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3c)

Purification by flash chromatography (DCM). White solid; mp 241-243°C; 53% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.68 (d, *J* = 8.1 Hz, 2H), 7.65–7.59 (m, 4H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.27–7.19

(m, 3H), 7.10 (t, J = 7.9 Hz, 2H), 6.91 (d, J = 8.1 Hz, 1H), 6.75 (t, J = 7.6 Hz, 1H),

3.49–3.45 (m, 4H), 3.35 (d, J = 15.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.3, 166.2, 148.5, 142.7, 139.9, 138.5, 137.3, 131.4, 130.2, 129.9, 129.2, 128.9, 128.8, 128.3, 127.9, 127.1, 127.0, 126.1, 123.1, 120.7, 115.4, 110.5, 50.5, 40.2, 30.8; HRMS (ESI) for C₃₁H₂₄NO₃ [M+H]⁺ calcd. 458.1751, found 458.1762.

1-(4-(tert-butyl)phenyl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-

3,5(6H)-dione (3d)

Purification by flash chromatography (DCM). Colorless oil; 65% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.53 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 7.5 Hz, 2H), 7.23–7.16 (m, 3H), 7.09–7.03 (m, 2H), 6.87 (d, *J* = 8.2 Hz, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 3.47–3.42 (m, 4H), 3.31 (d, *J* = 15.8

Hz, 1H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.3, 166.3, 153.5, 148.9, 138.4, 137.3, 129.8, 129.6, 129.4, 129.1, 128.6, 128.2, 126.1, 125.5, 123.0, 120.8, 115.3, 109.8, 50.4, 40.2, 34.8, 31.1, 30.7; HRMS (ESI) for C₂₉H₂₈NO₃ [M+H]⁺ calcd. 438.2064, found 438.2075.

1-(4-fluorophenyl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)dione (3e)

Purification by flash chromatography (DCM). White solid; mp 218-220°C; 59% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.62–7.57 (m, 2H), 7.29 (d, J = 7.4 Hz, 2H), 7.26–7.18 (m, 3H), 7.14–7.04 (m, 3H), 6.96 (d, J = 7.3 Hz, 1H), 6.90 (d, J = 8.2 Hz,

1H), 6.75 (t, J = 7.5 Hz, 1H), 3.48–3.43 (m, 4H), 3.33 (d, J = 15.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.2, 166.2, 163.5 (d, J = 249.7 Hz), 147.8, 138.6, 137.2, 131.8 (d, J = 8.3 Hz), 129.7, 129.2, 128.9, 128.7 (d, J = 3.4 Hz), 128.3, 126.1, 123.1, 120.4, 115.8 (d, J = 21.8 Hz), 115.5, 110.5, 50.4, 40.2, 30.8;HRMS (ESI) for C₂₅H₁₉FNO₃ [M+H]⁺ calcd. 400.1343, found 400.1350.

1-(4-chlorophenyl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-

dione (3f)

Purification by flash chromatography (DCM). White solid; mp 174-176°C; 30% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.55 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 7.30–7.19 (m, 5H), 7.15–7.10 (m, 1H), 6.97 (d, J = 7.7 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 3.48–3.43 (m, 4H), 3.32 (d, J = 15.8

Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.2, 166.0, 147.6, 138.6, 137.1, 136.1, 131.1, 129.8, 129.2, 129.1, 128.9, 128.3, 126.1, 123.2, 120.3, 115.5, 111.1, 50.5, 40.2, 30.8; HRMS (ESI) for C₂₅H₁₉ClNO₃ [M+H]⁺ calcd. 416.1048, found 416.1057.

9-chloro-6-methyl-1,4a-diphenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione

(3g)

Purification by flash chromatography (DCM). Colorless oil; 55% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.59 (d, *J* = 7.2 Hz, 2H), 7.50–7.39 (m, 3H), 7.29–7.21 (m, 5H), 7.06 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.86 (d, *J* = 2.2 Hz, 1H), 6.82 (d, *J* = 8.8 Hz, 1H),

3.48–3.43 (m, 4H), 3.33 (d, J = 15.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.0, 165.8, 150.1, 137.1, 136.9, 131.9, 130.6, 129.6, 129.4, 129.3, 128.8, 128.5, 128.5, 128.3, 126.0, 122.3, 116.6, 109.2, 50.2, 40.1, 30.9; HRMS (ESI) for C₂₅H₁₉ClNO₃ [M+H]⁺ calcd. 416.1048, found 416.1057.

9-bromo-6-methyl-1,4a-diphenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione

(3h)

Purification by flash chromatography (DCM). Colorless oil; 51% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.59 (d, J = 7.1 Hz, 2H), 7.50–7.40 (m, 3H), 7.29–7.21 (m, 5H), 7.20 (dd, J = 8.8, 2.2 Hz, 1H), 7.00 (d, J = 2.2 Hz, 1H), 6.76 (d, J = 8.8 Hz, 1H),

3.48–3.43 (m, 4H), 3.32 (d, J = 15.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.0, 165.8, 150.1, 137.6, 136.9, 132.2, 131.9, 131.4, 130.6, 129.6, 129.4, 128.8, 128.5, 126.0, 122.6, 116.9, 115.7, 109.1, 50.2, 40.1, 30.9; HRMS (ESI) for C₂₅H₁₉BrNO₃ [M+H]⁺ calcd. 460.0543, found 460.0548.

$\label{eq:constraint} 6-methyl-3, 5-dioxo-1, 4a-diphenyl-4, 4a, 5, 6-tetrahydro-3H-pyrano [4, 3-c] quinoline-9-diphenyl-4, 5, 6-tetrahydro-3H-pyrano [4, 3-c] quinolin$

carbonitrile (3i)

Purification by flash chromatography (DCM). White solid; mp 195-197°C; 57% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.56 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.44–7.35 (m, 3H), 7.30–7.21 (m, 5H), 7.19 (s, 1H), 6.97 (d, *J* = 8.6 Hz, 1H), 3.49 (s,

3H), 3.44 (d, J = 15.8 Hz, 1H), 3.35 (d, J = 15.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 168.3, 165.2, 151.0, 141.8, 136.4, 133.4, 132.2, 131.4, 131.1, 129.6, 129.5, 129.1, 128.7, 125.8, 121.9, 118.0, 116.0, 107.9, 106.4, 50.2, 40.0, 30.9; HRMS (ESI) for C₂₆H₁₉N₂O₃ [M+H]⁺ calcd. 407.1390, found 407.1400.

4a,6-dimethyl-1-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3j)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). White solid; mp 103-105°C; 60% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.49 (d, J = 7.0 Hz, 2H), 7.38–7.30 (m, 3H), 7.22 (td, J = 7.8, 1.1 Hz, 1H), 7.04 (d, J = 8.2 Hz, 1H), 6.87 (dd, J = 7.8,

0.9 Hz, 1H), 6.75 (t, J = 7.4 Hz, 1H), 3.45 (s, 3H), 3.23 (d, J = 15.9 Hz, 1H), 2.98 (d, J = 15.9 Hz, 1H), 1.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.6, 167.1, 146.5, 138.6, 132.8, 130.0, 129.8, 129.6, 128.9, 128.5, 122.9, 119.6, 115.1, 112.5, 42.1, 37.4, 30.4, 23.1; HRMS (ESI) for C₂₀H₁₇NO₃Na [M+Na]⁺ calcd. 342.1101, found 342.1110.

4a,6-dimethyl-1-(p-tolyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3k)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). Colorless oil; 57% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.37 (d, *J* = 8.1 Hz, 2H), 7.24–7.19 (m, 1H), 7.12 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.92 (dd, *J* = 7.8, 1.2

Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 3.44 (s, 3H), 3.21 (d, J = 15.9 Hz, 1H), 2.96 (d, J = 15.9 Hz, 1H), 2.37 (s, 3H), 1.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.7,

167.2, 146.6, 140.1, 138.6, 130.0, 129.8, 129.5, 129.2, 128.7, 122.9, 119.9, 115.1, 111.9, 42.1, 37.4, 30.4, 23.1, 21.4; HRMS (ESI) for C₂₁H₁₉NO₃Na [M+Na]⁺ calcd. 356.1257, found 356.1266.

4a,6-dimethyl-1-(m-tolyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3l)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). Colorless oil; 57% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.35 (s, 1H), 7.25–7.17 (m, 4H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.89 (dd, *J* = 8.0, 1.3 Hz, 1H), 6.75 (t, *J* = 7.4 Hz, 1H),

3.44 (s, 3H), 3.22 (d, *J* = 15.9 Hz, 1H), 2.97 (d, *J* = 15.9 Hz, 1H), 2.32 (s, 3H), 1.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.7, 167.1, 146.7, 138.5, 138.4, 132.7, 130.6, 130.0, 130.0, 128.8, 128.3, 126.9, 122.8, 119.7, 115.0, 112.3, 42.1, 37.4, 30.4, 23.1, 21.3; HRMS (ESI) for C₂₁H₁₉NO₃Na [M+Na]⁺ calcd. 356.1257, found 356.1264.

1-(3,5-dimethoxyphenyl)-4a,6-dimethyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3m)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). Colorless oil; 53% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.24–7.19 (m, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.95 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.79 (t, *J* = 7.6 Hz, 1H), 6.61 (d, *J* = 2.2 Hz, 2H), 6.47 (t, *J* = 2.2 Hz, 1H), 3.71 (s, 6H), 3.44 (s, 3H),

3.22 (d, *J* = 15.9 Hz, 1H), 2.97 (d, *J* = 15.9 Hz, 1H), 1.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.6, 167.0, 160.7, 146.2, 138.5, 134.5, 130.1, 129.0, 122.9, 119.4, 115.0, 112.9, 107.5, 102.5, 55.5, 42.1, 37.4, 30.4, 23.1; HRMS (ESI) for C₂₂H₂₁NO₅Na [M+Na]⁺ calcd. 402.1312, found 402.1320.

4a,6-dimethyl-1-phenyl-9-(trifluoromethyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3n)

Purification by flash chromatography (petroleum ether/ethyl acetate = 4/1). White solid; mp 115-117°C; 66% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.46–7.40 (m, 4H), 7.37–7.33 (m, 2H), 7.11 (d, *J* = 8.6 Hz, 1H), 7.05 (d, *J* = 1.3 Hz, 1H), 3.47 (s,

3H), 3.25 (d, J = 16.0 Hz, 1H), 3.01 (d, J = 16.0 Hz, 1H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.7, 166.4, 148.2, 141.1, 131.9, 130.5, 129.4, 128.8, 127.2 (q, J = 3.8 Hz), 125.5 (q, J = 3.7 Hz), 125.0 (q, J = 33.0 Hz), 123.4 (q, J = 270.2 Hz), 120.0, 115.1, 111.0, 41.9, 37.3, 30.6, 23.3; HRMS (ESI) for C₂₁H₁₆F₃NO₃Na [M+Na]⁺ calcd. 410.0974, found 410.0979.

9-fluoro-4a,6-dimethyl-1-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (30)

Purification by flash chromatography (petroleum ether/ethyl acetate = 4/1). White solid; mp 158-160°C; 55% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.50 (d, *J* = 7.1 Hz, 2H), 7.46–7.36 (m, 3H), 7.02–6.91 (m, 2H), 6.55 (dd, *J* = 9.7, 2.7 Hz, 1H), 3.45

(s, 3H), 3.24 (d, J = 16.0 Hz, 1H), 3.00 (d, J = 16.0 Hz, 1H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.3, 166.6, 158.2 (d, J = 241.1 Hz), 147.7, 135.0 (d, J = 2.4 Hz), 132.2, 130.4, 129.6, 128.8, 121.5 (d, J = 8.3 Hz), 116.4 (d, J = 12.4 Hz), 116.3 (d, J = 3.9 Hz), 115.6 (d, J = 22.8 Hz), 111.7 (d, J = 2.1 Hz), 41.9, 37.3, 30.7, 23.1; HRMS (ESI) for C₂₀H₁₆FNO₃Na [M+Na]⁺ calcd. 360.1006, found 360.1013.

6-ethyl-4a-methyl-1-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3p)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). White solid; mp 142-144°C; 57% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.49–7.46 (m, 2H), 7.39–7.29 (m, 3H), 7.20 (td, *J* = 7.8, 1.5 Hz, 1H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.88 (dd, *J* = 7.9, 1.4 Hz, 1H), 6.73 (td, *J* = 7.6, 0.8 Hz, 1H), 4.23–4.13 (m, 1H), 3.96–3.86

(m, 1H), 3.19 (d, *J* = 16.0 Hz, 1H), 3.01 (d, *J* = 16.0 Hz, 1H), 1.32 (t, *J* = 7.1 Hz, 3H), 1.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.1, 167.2, 146.3, 137.6, 132.9, 130.4, 129.8, 129.7, 128.9, 128.5, 122.7, 119.8, 114.9, 112.5, 42.0, 38.4, 37.3, 23.0, 12.5; HRMS (ESI) for C₂₁H₁₉NO₃Na [M+Na]⁺ calcd. 356.1257, found 356.1267.

6-benzyl-4a-methyl-1-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3q)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). Colorless oil; 53% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.50 (d, J = 7.0 Hz, 2H), 7.40–7.28 (m, 6H), 7.22 (d, J = 7.4Hz, 2H), 7.06 (td, J = 7.8, 0.9 Hz, 1H), 6.93–6.87 (m, 2H), 6.70 (t, J = 7.6 Hz, 1H), 5.54 (d, J = 16.2 Hz, 1H), 4.91 (d, J = 16.2 Hz, 1H), 3.25 (d, J = 16.0Hz, 1H), 3.09 (d, J = 16.0 Hz, 1H), 1.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.9, 167.0, 146.6, 138.0, 136.4, 132.8, 130.1, 129.9, 129.7, 128.9, 128.9, 128.6, 127.3, 126.0, 123.0, 119.8, 116.0, 112.2, 47.0, 42.3, 37.4, 23.3; HRMS (ESI) for C₂₆H₂₁NO₃Na [M+Na]⁺ calcd. 418.1414, found 418.1422.

6-allyl-4a-methyl-1-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3r)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). Colorless oil; 48% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.51–7.48 (m, 2H), 7.40–7.30 (m, 3H), 7.17 (td, *J* = 7.8, 1.4 Hz, 1H), 7.05 (d, J = 8.2 Hz, 1H), 6.88 (dd, J = 7.8, 1.2 Hz, 1H), 6.73 (td, J=7.6, 0.8 Hz, 1H), 5.99–5.89 (m, 1H), 5.27–5.23 (m, 1H),

5.16 (d, *J* = 17.8 Hz, 1H), 4.93–4.87 (m, 1H), 4.35–4.29 (m, 1H), 3.21 (d, *J* = 16.0 Hz, 1H), 3.02 (d, J = 16.0 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.4, 167.1, 146.5, 137.9, 132.8, 131.8, 130.1, 129.9, 129.7, 128.8, 128.6, 122.9, 119.7, 116.5, 115.8, 112.3, 45.8, 42.2, 37.3, 23.2; HRMS (ESI) for C₂₂H₁₉NO₃Na [M+Na]⁺ calcd. 368.1257, found 368.1270.

4a-methyl-1-phenyl-6-(prop-2-yn-1-yl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3s)

Purification by flash chromatography (petroleum ether/ethyl acetate = 6/1). White solid; mp 156-158°C; 62% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.50–7.47 (m, 2H), 7.39–7.30 (m, 3H), 7.25 (d, *J* = 3.8 Hz, 2H), 6.89 (d, *J* = 7.8 Hz, 2H), 6.80–6.75 (m, 1H), 5.00–4.94 (m, 1H), 4.58–4.52 (m, 1H), 3.22 (d, *J* = 16.0 Hz, 1H), 3.01 (d, *J* =

16.0 Hz, 1H), 2.29 (t, J = 2.4 Hz, 1H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.1, 166.8, 146.8, 137.0, 132.7, 130.2, 129.9, 129.6, 128.9, 128.6, 127.9, 123.3, 119.8, 115.5, 112.0, 78.0, 72.4, 42.2, 37.2, 32.8, 22.9; HRMS (ESI) for C₂₂H₁₇NO₃Na [M+Na]⁺ calcd. 366.1101, found 366.1111.

9b-(4-(tert-butyl)benzoyl)-5-methyl-3a-phenyl-3,3a,5,9b-tetrahydrofuro[3,2-c]quinoline-2,4-

dione (3d-I)

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1). Colorless oil; 58% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.37 (dd, J = 8.8, 2.3 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.19–7.06 (m, 10H), 3.51 (s, 3H), 3.25 (d, J = 17.4 Hz, 1H), 3.19 (d, J = 17.4 Hz, 1H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.3, 172.3,

167.4, 157.1, 137.1, 134.7, 132.4, 131.1, 129.3, 129.2, 128.9, 128.7, 128.6, 128.4, 125.0, 116.6, 92.0, 57.6, 38.8, 35.0, 30.8, 30.7; HRMS (ESI) for C₂₉H₂₇NO₄Na [M+Na]⁺ calcd. 476.1832, found 476.1839.

2-(4-(4-(tert-butyl)benzoyl)-1-methyl-2-oxo-3-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)acetic acid (3d-II)

Purification by flash chromatography (petroleum ether/ethyl acetate = 1/1). White solid; mp 208-210°C; 61% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.04 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.27–7.19 (m, 4H), 7.17–7.08 (m, 3H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.83 (t, *J* = 7.5 Hz, 1H), 5.40

(s, 1H), 3.58 (s, 3H), 3.54 (d, J = 14.8 Hz, 1H), 2.86 (d, J = 14.8 Hz, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 196.5, 174.2, 171.4, 158.1, 139.1, 136.2, 132.8, 129.3, 128.9, 128.8, 128.1, 126.1, 126.0, 123.9, 122.2, 115.8, 54.4, 50.4, 44.1, 35.2, 31.0, 30.8; HRMS (ESI) for C₂₉H₂₉NO₄Na [M+H]⁺ calcd. 478.1989, found 478.2004.

2-(4-(4-(tert-butyl)benzoyl)-1-methyl-2-oxo-3-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)-Nmethylacetamide (3d-III)

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/2). White solid; mp 168-170°C; 54% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.27–7.22 (m, 1H), 7.20–7.12 (m, 3H), 7.09 (t, *J* = 7.3 Hz, 1H), 7.00

(d, J = 8.1 Hz, 1H), 6.94 (t, J = 7.4 Hz, 1H), 6.18 (q, J = 4.2 Hz, 1H), 5.51 (s, 1H), 3.51 (s, 3H), 3.11 (d, J = 16.0 Hz, 1H), 2.89 (d, J = 16.0 Hz, 1H), 2.49 (d, J = 4.7 Hz, 3H), 1.30 (s, 9H); ¹³**C NMR (100 MHz, CDCl**₃) δ (ppm) 196.9, 171.8, 170.0, 157.0, 139.5, 137.8, 133.6, 129.0, 128.6, 128.6, 128.5, 127.8, 126.9, 125.6, 123.3, 123.1, 115.2, 53.7, 49.6, 43.2, 35.0, 31.0, 30.7, 26.2; HRMS (ESI) for C₃₀H₃₂N₂O₃Na [M+Na]⁺ calcd. 491.2305, found 491.2316.

ethyl 2-(4-(4-(tert-butyl)benzoyl)-1-methyl-2-oxo-3-phenyl-1,2,3,4-tetrahydroquinolin-3yl)acetate (3d-IV)

Purification by flash chromatography (petroleum ether/ethyl acetate = 3/1). Colorless oil; 58% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.15 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 7.7 Hz, 2H), 7.25 (d, J = 6.8 Hz, 2H), 7.21–7.16 (m, 2H), 7.12 (d, J = 7.2 Hz, 1H), 7.07–7.02 (m,

1H), 6.83 (d, J = 7.4 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 6.19 (s, 1H), 3.88–3.74 (m, 2H), 3.47 (d, J = 15.7 Hz, 1H), 3.40 (s, 3H), 2.95 (d, J = 15.7 Hz, 1H), 1.35 (s, 9H), 0.89 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 197.2, 171.7, 170.7, 157.2, 139.8, 137.5, 133.4, 129.6, 129.2, 128.3, 128.2, 127.2, 126.9, 125.7, 122.7, 122.2, 115.3, 60.1, 48.9, 48.7, 41.0, 35.1, 31.0, 30.5, 13.8; HRMS (ESI) for C₃₁H₃₃NO₄Na [M+Na]⁺ calcd. 506.2302, found 506.2309.

ethyl 2-(2,2,5-trimethyl-4-oxo-1-phenyl-2,3,4,5-tetrahydro-3aH-cyclopenta[c]quinolin-3a-

yl)acetate (3y')

Purification by flash chromatography (petroleum ether/ethyl acetate = 8/1). Colorless oil; 58% yield; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.37–7.29 (m, 3H), 7.19–7.14 (m, 1H), 7.11–7.09 (m, 2H), 7.01 (d, *J* = 8.2 Hz, 1H), 6.71 (d, *J* = 4.0 Hz,

2H), 4.03–3.90 (m, 2H), 3.42 (s, 3H), 2.64–2.40 (m, 4H), 1.38 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H), 0.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 172.7, 170.2, 150.2, 139.6, 136.2, 130.8, 129.0, 128.3, 128.1, 127.5, 127.2, 122.3, 121.4, 114.7, 60.6, 54.3, 48.0, 46.1, 43.3, 30.1, 29.4, 29.0, 14.1; HRMS (ESI) for C₂₅H₂₈NO₃ [M+H]⁺ calcd. 390.2064, found 390.2072.

9. References

- B. A. L. Sacchelli, B. C. Rocha, L. H. Andrade, Cascade reactions assisted by microwave irradiation: ultrafast construction of 2-quinolinone-fused γ-lactones from *N*-(*o*-ethynylaryl)acrylamides and formamide, *Org. Lett.*, 2021, 23, 5071– 5075.
- 2 Z. Cao, D. M. Bassani and B. Bibal, Photoreduction of thioether gold(III) complexes: mechanistic insight and homogeneous catalysis, *Chem. Eur. J.* 2018, 24, 18779–18787.

10. NMR spectra of compounds

6-methyl-1,4a-diphenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3a)

6-methyl-4a-phenyl-1-(p-tolyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3b)

1-([1,1'-biphenyl]-4-yl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3c)

1-(4-(tert-butyl)phenyl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3d)

1-(4-fluorophenyl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)dione (3e)

1-(4-chlorophenyl)-6-methyl-4a-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)dione (3f)

9-chloro-6-methyl-1,4a-diphenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3g)

9-bromo-6-methyl-1,4a-diphenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3h)

6-methyl-3,5-dioxo-1,4a-diphenyl-4,4a,5,6-tetrahydro-3H-pyrano[4,3-c]quinoline-9carbonitrile (3i)

4a,6-dimethyl-1-(p-tolyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3k)

4a,6-dimethyl-1-(m-tolyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3l)

1-(3,5-dimethoxyphenyl)-4a,6-dimethyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3m)

4a,6-dimethyl-1-phenyl-9-(trifluoromethyl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)dione (3n)

6-ethyl-4a-methyl-1-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3p)

6-benzyl-4a-methyl-1-phenyl-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione (3q)

4a-methyl-1-phenyl-6-(prop-2-yn-1-yl)-4,4a-dihydro-3H-pyrano[4,3-c]quinoline-3,5(6H)-dione

(3s)

9b-(4-(tert-butyl)benzoyl)-5-methyl-3a-phenyl-3,3a,5,9b-tetrahydrofuro[3,2-c]quinoline-2,4dione (3d-I)

2-(4-(4-(tert-butyl)benzoyl)-1-methyl-2-oxo-3-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)acetic acid (3d-II)

2-(4-(4-(tert-butyl)benzoyl)-1-methyl-2-oxo-3-phenyl-1,2,3,4-tetrahydroquinolin-3-yl)-Nmethylacetamide (3d-III)

ethyl 2-(4-(4-(tert-butyl)benzoyl)-1-methyl-2-oxo-3-phenyl-1,2,3,4-tetrahydroquinolin-3-

yl)acetate (3d-IV)

ethyl 2-(2,2,5-trimethyl-4-oxo-1-phenyl-2,3,4,5-tetrahydro-3aH-cyclopenta[c]quinolin-3ayl)acetate (3y')

