### **Supporting Information**

# Diterpenoids with novel 6/5-5 spiro tricyclic skeleton from Orthosiphon wulfenioides and their NLRP3 inflammasome inhibitory

### activity

Wen-Chao Tu,<sup>‡a,b</sup> Xing-Jie Zhang,<sup>‡a</sup> Ying-Xin Zhao,<sup>‡a</sup> Wei-Chi Chen,<sup>b</sup> Xing-Yu Zhang,<sup>b</sup> Chang-Lin Yang,<sup>b</sup> Muhammad Aurang Zeb,<sup>a</sup> Xiao-Li Li,<sup>\*a</sup> Kaunda-Joseph Sakah,<sup>a</sup> Rui-Han Zhang,<sup>a</sup> Mei-Feng Liu,<sup>\*b</sup> Wei-Lie Xiao<sup>\*a</sup>

<sup>a</sup>Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China

<sup>b</sup>Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China

<sup>‡</sup>These authors contributed equally.

#### **Corresponding Author**

Xiao-Li Li\*: E-mail: lixiaoli@ynu.edu.cn Mei-Feng Liu\*: E-mail: liumf@scut.edu.cn Wei-Lie Xiao\*: E-mail: <u>xiaoweilie@ynu.edu.cn</u>

## Contents

| Figure S1. Possible isomers 1A and 1B for compound 1                                              | 4    |
|---------------------------------------------------------------------------------------------------|------|
| Figure S2. Conformers of isomer 1A                                                                | 4    |
| Table S1. Important thermodynamic parameters and Boltzmann distributions of the optimi            | ized |
| isomer <b>1A</b> at B3LYP/6-31+ G (d, p) level in gas phase                                       | 4    |
| Table S2. Optimized Z-matrixes of isomer 1A in the gas phase (Å) at B3LYP/6-31+ G (d,             | p)   |
| level                                                                                             | 4    |
| Figure S3. Conformers of isomer 1B                                                                | 6    |
| Table S3. Important thermodynamic parameters and Boltzmann distributions of the optimi            | ized |
| isomer <b>1B</b> at B3LYP/6-31+ G (d, p) level in gas phase.                                      | 6    |
| Table S4. Optimized Z-matrixes of isomer 1B in the gas phase (Å) at B3LYP/6-31+ G (d,             | p)   |
| level.                                                                                            | 6    |
| Table S5. Experimental and calculated <sup>13</sup> C NMR data for compound 1A ( <i>A</i> in ppm) | 7    |
| Table S6. Experimental and calculated <sup>13</sup> C NMR data for compound 1B ( <i>A</i> in ppm) | 8    |
| Table S7. Experimental chemical shifts of compound 1, calculated shielding tensors and            |      |
| chemical shifts of isomer 1 in gas phase with TMS as reference                                    | 9    |
| Table S8. Experimental chemical shifts of compound 1, calculated shielding tensors and            |      |
| chemical shifts of isomer 1 in chloroform with TMS as reference                                   | 10   |
| Figure. S4. Detailed DP4+ probability of compound 1 (calculated at mPW1PW91/6-31G (               | (d,  |
| p) level in gas with PCM model.                                                                   | 11   |
| Figure. S5. Detailed DP4+ probability of compound 1 (calculated at mPW1PW91/6-31G (               | (d,  |
| p) level in chloroform with PCM model.                                                            | 12   |
| Figure S6. Possible conformers of 2 for ECD calculation.                                          | 12   |
| Table S9. Important thermodynamic parameters and Boltzmann distributions of the optimi            | ized |
| isomer <b>2</b> at B3LYP/6-31 + G (d, p) level in the gas phase.                                  | 12   |
| Table S10. Optimized Z-matrixes of compound 2 in the gas phase (Å) at B3LYP/6-31+ G               | (d,  |
| p) level                                                                                          | 12   |
| Table S11. Key transitions, oscillator strengths, and rotatory strengths in the ECD spectra       | of   |
| conformers <b>2A</b> at the B3LYP/6-31 + G (d, p) level in MeOH with PCM.                         | 14   |
| Figure S7-12. NMR spectrum of wulfenioidin A (1) in chloroform (600 MHz)                          | 17   |
| Figure S13. HRESIMS spectrum of wulfenioidin A (1)                                                | 23   |
| Figure S14. IR spectrum of wulfenioidin A (1)                                                     | 24   |
| Figure S15. UV spectrum of wulfenioidin A (1)                                                     | 25   |
| Figure S16. CD spectrum of wulfenioidin A (1)                                                     | 26   |
| Figure S17. OR report of wulfenioidin A (1)                                                       | 27   |
| Figure S18-23. NMR spectrum of wulfenioidin B (2) in chloroform (400 MHz)                         | 28   |
| Figure S24. HRESIMS spectrum of wulfenioidin B (2)                                                | 34   |
| Figure S25. IR spectrum of wulfenioidin B (2)                                                     | 35   |
| Figure S26. UV spectrum of wulfenioidin B (2)                                                     | 36   |
| Figure S27. CD spectrum of wulfenioidin B (2)                                                     | 37   |
| Figure S28. OR report of wulfenioidin B (2)                                                       | 38   |
| Figure S29-34. NMR spectrum of wulfenioidin C (3) in chloroform (600 MHz)                         | 39   |
| Figure S35. HRESIMS spectrum of wulfenioidin C (3)                                                | 45   |

| Figure S36. IR spectrum of wulfenioidin C (3)                              |  |
|----------------------------------------------------------------------------|--|
| Figure S37. UV spectrum of wulfenioidin C (3)                              |  |
| Figure S38. CD spectrum of wulfenioidin C (3)                              |  |
| Figure S39. OR report of wulfenioidin C (3)                                |  |
| Figure S40. The full raw data of western blots (E, F, and G) of compound 3 |  |



Figure S1. Possible isomers 1A and 1B for compound 1



Figure S2. Conformers of isomer 1A

Table S1. Important thermodynamic parameters and Boltzmann distributions of the optimized isomer 1A at B3LYP/6-31+ G (d, p) level in gas phase.

| Conformations | Energy (a.u) | ⊿G(kcal/mol) | %    | Number of<br>imaginary<br>frequencies |
|---------------|--------------|--------------|------|---------------------------------------|
| 1A-1          | -1079.680290 | 0            | 50.1 | 0                                     |
| 1A-2          | -1079.680288 | 0            | 49.9 | 0                                     |

|   |          | 1A-1     |          |   |          | 1A-2     |          |
|---|----------|----------|----------|---|----------|----------|----------|
| С | 3.08277  | -1.34019 | 1.711662 | С | 3.082751 | -1.34016 | 1.711686 |
| С | 3.943443 | -1.15487 | 0.451776 | С | 3.943332 | -1.15496 | 0.451738 |
| С | 2.071615 | 0.064263 | -0.62393 | С | 2.071564 | 0.064246 | -0.62392 |
| С | 1.148694 | -0.12049 | 0.619327 | С | 1.148676 | -0.12037 | 0.619367 |
| С | 1.576795 | -1.38151 | 1.390263 | С | 1.57674  | -1.38135 | 1.390416 |
| С | 3.599601 | 0.102223 | -0.3908  | С | 3.599547 | 0.102143 | -0.39085 |
| С | 4.137176 | 1.379703 | 0.283026 | С | 4.137146 | 1.379646 | 0.282868 |
| С | 4.298205 | -0.02238 | -1.76013 | С | 4.298149 | -0.02254 | -1.76017 |
| С | 1.160514 | 1.091317 | 1.579178 | С | 1.160394 | 1.091557 | 1.579101 |
| С | 1.387983 | 1.185575 | -1.424   | С | 1.387957 | 1.18558  | -1.42399 |
| С | -0.1029  | 0.850598 | -1.27195 | С | -0.10292 | 0.850566 | -1.27198 |
| С | -0.23034 | -0.20639 | -0.11181 | С | -0.23033 | -0.20637 | -0.11175 |
| С | -1.5368  | 0.241331 | 0.572235 | С | -1.53678 | 0.241376 | 0.57223  |

Table S2. Optimized Z-matrixes of isomer 1A in the gas phase (Å) at B3LYP/6-31+ G (d, p) level.

| С | -1.64475 | 1.722524 | 0.217976 | С | -1.64462 | 1.72255  | 0.217999 |
|---|----------|----------|----------|---|----------|----------|----------|
| 0 | -2.29291 | 2.537135 | 0.83626  | 0 | -2.29255 | 2.537196 | 0.83651  |
| 0 | -0.89821 | 2.008293 | -0.86044 | 0 | -0.8983  | 2.008255 | -0.86055 |
| 0 | -1.63113 | 0.057223 | 1.973824 | 0 | -1.63106 | 0.057401 | 1.973851 |
| С | -2.63163 | -0.6156  | -0.08375 | С | -2.63161 | -0.61553 | -0.08382 |
| С | -2.08269 | -1.64194 | -0.75685 | С | -2.08265 | -1.64192 | -0.75684 |
| С | -0.6144  | -1.54901 | -0.77366 | С | -0.61434 | -1.54903 | -0.77353 |
| 0 | 0.148337 | -2.34486 | -1.29727 | 0 | 0.148447 | -2.34498 | -1.29691 |
| С | -4.08521 | -0.29571 | 0.118714 | С | -4.08519 | -0.29561 | 0.11853  |
| С | -4.59486 | 0.585461 | -1.04447 | С | -4.59491 | 0.585024 | -1.04502 |
| С | -4.9453  | -1.55833 | 0.269765 | С | -4.94522 | -1.55823 | 0.270136 |
| Η | 1.919844 | -0.85406 | -1.20347 | Н | 1.919703 | -0.85409 | -1.20344 |
| Η | 3.297961 | -0.54501 | 2.434945 | Η | 3.298084 | -0.54497 | 2.434913 |
| Н | 3.368423 | -2.27655 | 2.204675 | Η | 3.368356 | -2.27652 | 2.204732 |
| Η | 5.00603  | -1.12291 | 0.72491  | Η | 5.005949 | -1.12312 | 0.724772 |
| Η | 3.811383 | -2.03784 | -0.18841 | Η | 3.811112 | -2.03792 | -0.18843 |
| Н | 0.990251 | -1.47651 | 2.311136 | Η | 0.990256 | -1.47617 | 2.311342 |
| Н | 1.37845  | -2.26773 | 0.781108 | Η | 1.378258 | -2.26763 | 0.78138  |
| Н | 3.75745  | 2.28333  | -0.20516 | Η | 3.758245 | 2.283185 | -0.20613 |
| Н | 5.229846 | 1.400206 | 0.204623 | Η | 5.229892 | 1.399599 | 0.205375 |
| Η | 3.89038  | 1.445275 | 1.342866 | Η | 3.889431 | 1.445887 | 1.34244  |
| Н | 3.918271 | -0.8822  | -2.32287 | Η | 3.918331 | -0.88248 | -2.3228  |
| Н | 4.149121 | 0.876203 | -2.36899 | Η | 4.14894  | 0.875941 | -2.36915 |
| Η | 5.377749 | -0.15601 | -1.62767 | Η | 5.377714 | -0.15601 | -1.62771 |
| Н | 2.124435 | 1.187779 | 2.072654 | Η | 2.124101 | 1.187713 | 2.073064 |
| Η | 0.962987 | 2.041396 | 1.077386 | Η | 0.963427 | 2.041643 | 1.077108 |
| Н | 0.410472 | 0.952661 | 2.356761 | Η | 0.409902 | 0.953212 | 2.3563   |
| Η | 1.686375 | 1.204352 | -2.4745  | Η | 1.686364 | 1.20435  | -2.47448 |
| Η | 1.582587 | 2.176688 | -1.00586 | Η | 1.582575 | 2.176697 | -1.00585 |
| Η | -0.5493  | 0.500268 | -2.20534 | Η | -0.54927 | 0.500167 | -2.20537 |
| Н | -2.07353 | 0.845594 | 2.331722 | Η | -2.07472 | 0.845284 | 2.331311 |
| Η | -2.60558 | -2.45202 | -1.25048 | Η | -2.60552 | -2.45202 | -1.25046 |
| Н | -4.16873 | 0.291749 | 1.040566 | Η | -4.16878 | 0.292238 | 1.040127 |
| Η | -5.63734 | 0.867387 | -0.86615 | Η | -5.63735 | 0.867111 | -0.86676 |
| Η | -4.01399 | 1.505554 | -1.14673 | Η | -4.01398 | 1.50503  | -1.14778 |
| Η | -4.5431  | 0.035374 | -1.98991 | Η | -4.54325 | 0.034505 | -1.99022 |
| Η | -5.98375 | -1.28262 | 0.47789  | Η | -5.98366 | -1.28249 | 0.478226 |
| Η | -4.58407 | -2.18718 | 1.088595 | Η | -4.58387 | -2.18672 | 1.08919  |
| Η | -4.93883 | -2.15496 | -0.64876 | Н | -4.93876 | -2.15521 | -0.64815 |



Figure S3. Conformers of isomer 1B

Table S3. Important thermodynamic parameters and Boltzmann distributions of the optimized isomer 1B at B3LYP/6-31+G(d, p) level in gas phase.

| Conformations | Energy (a.u) | ⊿G(kcal/mol) | %    | Number of<br>imaginary<br>frequencies |
|---------------|--------------|--------------|------|---------------------------------------|
| 1B-1          | -1079.513778 | 0            | 41.0 | 0                                     |
| 1B-2          | -1079.51412  | -0.21        | 59.0 | 0                                     |

Table S4. Optimized Z-matrixes of isomer 1B in the gas phase (Å) at B3LYP/6-31+ G (d, p) level.

|   |          | 1B-1     |          |   |          | 1 <b>B-2</b> |          |
|---|----------|----------|----------|---|----------|--------------|----------|
| С | 2.178301 | -1.72619 | -1.80749 | С | -2.30866 | 2.071928     | -1.3265  |
| С | 3.373828 | -1.6275  | -0.81725 | С | -3.51872 | 1.613477     | -0.46309 |
| С | 2.117778 | 0.404761 | -0.18025 | С | -2.10725 | -0.41198     | -0.33671 |
| С | 0.858735 | -0.55866 | 0.054363 | С | -0.94477 | 0.543972     | 0.215007 |
| С | 0.751782 | -1.35591 | -1.26027 | С | -0.871   | 1.676516     | -0.82794 |
| С | 3.503377 | -0.25653 | -0.05329 | С | -3.54866 | 0.079972     | -0.10583 |
| С | 4.51521  | 0.633439 | -0.80724 | С | -4.45729 | -0.64489     | -1.1223  |
| С | 4.033138 | -0.4419  | 1.377349 | С | -4.1317  | -0.17455     | 1.293105 |
| С | 1.037592 | -1.59814 | 1.183397 | С | -1.24623 | 1.219459     | 1.571509 |
| С | 1.752962 | 1.841208 | 0.335893 | С | -1.63205 | -1.90253     | -0.2138  |
| С | 0.350916 | 1.732729 | -0.24615 | С | -0.22909 | -1.52983     | -0.67055 |
| С | -0.29698 | 0.534043 | 0.428461 | С | 0.290114 | -0.5186      | 0.339123 |
| С | -1.77751 | 0.800818 | 0.013916 | С | 1.80189  | -0.55013     | -0.04909 |
| С | -1.70712 | 1.853966 | -1.08814 | С | 1.859632 | -1.26135     | -1.39816 |
| 0 | -2.35264 | 2.074017 | -2.06953 | 0 | 2.557319 | -1.15676     | -2.36313 |
| 0 | -0.68401 | 2.718918 | -0.60525 | 0 | 0.89872  | -2.29722     | -1.22855 |
| 0 | -2.35445 | 1.71184  | 1.043064 | 0 | 2.417742 | -1.66625     | 0.724337 |
| С | -2.47622 | -0.49074 | 0.384988 | С | 2.370531 | 0.63836      | 0.701061 |
| С | -1.89962 | -0.79815 | 1.571399 | С | 1.730642 | 0.559163     | 1.89116  |
| С | -0.74634 | 0.147809 | 1.878259 | С | 0.654931 | -0.5179      | 1.86344  |

| 0 | -0.28512 | 0.432022 | 2.960555 | 0 | 0.182636 | -1.12525 | 2.79774  |
|---|----------|----------|----------|---|----------|----------|----------|
| С | -3.63173 | -1.09677 | -0.34529 | С | 3.493059 | 1.515764 | 0.250703 |
| С | -3.21407 | -1.45921 | -1.78602 | С | 4.763245 | 0.684537 | -0.01657 |
| С | -4.22665 | -2.30035 | 0.391057 | С | 3.080716 | 2.304939 | -1.00794 |
| Η | 2.155508 | -2.74358 | -2.21143 | Η | -2.36401 | 3.159806 | -1.43708 |
| Η | 2.397264 | -1.07878 | -2.66412 | Η | -2.44531 | 1.670455 | -2.33695 |
| Η | 4.291467 | -1.79702 | -1.39276 | Η | -4.43073 | 1.862796 | -1.0181  |
| Η | 3.332021 | -2.44943 | -0.09861 | Η | -3.57053 | 2.207864 | 0.45225  |
| Η | 2.100586 | 0.575046 | -1.25961 | Η | -2.04486 | -0.27641 | -1.41928 |
| Η | 0.152526 | -2.25798 | -1.09732 | Η | -0.35896 | 2.543108 | -0.39659 |
| Н | 0.229149 | -0.7701  | -2.02624 | Η | -0.27732 | 1.365326 | -1.69612 |
| Н | 4.59831  | 1.624049 | -0.34784 | Η | -4.46644 | -1.72663 | -0.95205 |
| Н | 5.509933 | 0.175625 | -0.79164 | Η | -5.48823 | -0.28613 | -1.03415 |
| Н | 4.225179 | 0.770138 | -1.85554 | Η | -4.12725 | -0.46746 | -2.1525  |
| Η | 3.407157 | -1.09228 | 1.986612 | Η | -3.58209 | 0.33035  | 2.086226 |
| Н | 5.037829 | -0.87918 | 1.349726 | Η | -5.16969 | 0.175151 | 1.334221 |
| Н | 4.108165 | 0.525153 | 1.886829 | Η | -4.13565 | -1.24689 | 1.517648 |
| Н | 1.790424 | -2.33162 | 0.911888 | Η | -2.05224 | 1.939453 | 1.46892  |
| Н | 1.314787 | -1.16241 | 2.140566 | Η | -1.51174 | 0.519801 | 2.360636 |
| Н | 0.107742 | -2.15627 | 1.318999 | Η | -0.37269 | 1.788696 | 1.899414 |
| Н | 2.384315 | 2.60383  | -0.12414 | Η | -2.18032 | -2.55438 | -0.89666 |
| Н | 1.754505 | 1.948296 | 1.423289 | Η | -1.65508 | -2.3058  | 0.801438 |
| Н | 0.539984 | 1.358784 | -1.25675 | Η | -0.42014 | -0.90754 | -1.5497  |
| Н | -1.91646 | 2.577317 | 0.978755 | Η | 2.05346  | -2.50897 | 0.404732 |
| Н | -2.21304 | -1.56307 | 2.271768 | Η | 1.956177 | 1.12773  | 2.786814 |
| Н | -4.39823 | -0.3105  | -0.41736 | Η | 3.698469 | 2.227468 | 1.060186 |
| Н | -4.07372 | -1.85088 | -2.33854 | Н | 5.586089 | 1.346778 | -0.30492 |
| Η | -2.83883 | -0.58434 | -2.32423 | Η | 5.061202 | 0.120846 | 0.871384 |
| Η | -2.43354 | -2.22773 | -1.77892 | Η | 4.596525 | -0.0255  | -0.83209 |
| Η | -5.08079 | -2.69995 | -0.16358 | Η | 3.894004 | 2.968333 | -1.31892 |
| Η | -4.5705  | -2.0274  | 1.393362 | Η | 2.191109 | 2.914824 | -0.82363 |
| Н | -3.48625 | -3.10256 | 0.489906 | Н | 2.86883  | 1.622755 | -1.83807 |

Table S5. Experimental and calculated  ${}^{13}$ C NMR data for compound 1A (  $\varDelta$  in ppm)

| 1A (gas phase) |                 |                       |                    |         |        | 1A (PC                | CM)                |        |        |
|----------------|-----------------|-----------------------|--------------------|---------|--------|-----------------------|--------------------|--------|--------|
| NO.            | $\delta e(exp)$ | $\delta u$ (unsacled) | $\delta s(sacled)$ | δu-δe   | δs-δe  | $\delta u$ (unsacled) | $\delta s(sacled)$ | δu-δe  | δs-δe  |
| 1              | 31.9            | 32.3008               | 32.9431            | 0.4008  | 1.0431 | 33.3024               | 33.9647            | 1.4024 | 2.0647 |
| 2              | 19              | 21.9772               | 22.4143            | 2.9772  | 3.4143 | 22.4051               | 22.8506            | 3.4051 | 3.8506 |
| 3              | 40.4            | 40.5021               | 41.3076            | 0.1021  | 0.9076 | 41.1735               | 41.9923            | 0.7735 | 1.5923 |
| 4              | 33.1            | 36.0196               | 36.7360            | 2.9196  | 3.6360 | 36.7204               | 37.4507            | 3.6204 | 4.3507 |
| 5              | 52.6            | 52.4447               | 53.4877            | -0.1553 | 0.8877 | 53.4415               | 54.5043            | 0.8415 | 1.9043 |
| 6              | 30.3            | 31.7388               | 32.3700            | 1.4388  | 2.0700 | 32.2433               | 32.8845            | 1.9433 | 2.5845 |

| 7  | 85.1                                                     | 86.5693  | 88.2910  | 1.4693  | 3.1910  | 87.5816  | 89.3235                                                 | 2.4816  | 4.2235  |  |
|----|----------------------------------------------------------|----------|----------|---------|---------|----------|---------------------------------------------------------|---------|---------|--|
| 8  | 68.3                                                     | 69.7779  | 71.1656  | 1.4779  | 2.8656  | 70.8134  | 72.2217                                                 | 2.5134  | 3.9217  |  |
| 9  | 45.3                                                     | 48.9450  | 49.9184  | 3.6450  | 4.6184  | 49.6829  | 50.6710                                                 | 4.3829  | 5.3710  |  |
| 10 | 203.8                                                    | 201.0637 | 205.0624 | -2.7363 | 1.2624  | 203.3524 | 207.3966                                                | -0.4476 | 3.5966  |  |
| 11 | 127.8                                                    | 124.1684 | 126.6378 | -3.6316 | -1.1622 | 125.5617 | 128.0589                                                | -2.2383 | 0.2589  |  |
| 12 | 179.5                                                    | 182.9270 | 186.5650 | 3.4270  | 7.0650  | 184.9751 | 188.6539                                                | 5.4751  | 9.1539  |  |
| 13 | 85.5                                                     | 86.3601  | 88.0776  | 0.8601  | 2.5776  | 87.3040  | 89.0402                                                 | 1.8040  | 3.5402  |  |
| 14 | 175.6                                                    | 173.8034 | 177.2599 | -1.7966 | 1.6599  | 175.6099 | 179.1024                                                | 0.0099  | 3.5024  |  |
| 15 | 27.2                                                     | 30.3813  | 30.9855  | 3.1813  | 3.7855  | 31.3402  | 31.9635                                                 | 4.1402  | 4.7635  |  |
| 16 | 22.8                                                     | 24.6703  | 25.1610  | 1.8703  | 2.3610  | 24.8720  | 25.3666                                                 | 2.0720  | 2.5666  |  |
| 17 | 22.9                                                     | 22.1259  | 22.5660  | -0.7741 | -0.3340 | 22.3783  | 22.8234                                                 | -0.5217 | -0.0766 |  |
| 18 | 34                                                       | 33.4670  | 34.1326  | -0.5330 | 0.1326  | 33.8242  | 34.4968                                                 | -0.1758 | 0.4968  |  |
| 19 | 22.1                                                     | 22.7745  | 23.2274  | 0.6745  | 1.1274  | 23.1837  | 23.6448                                                 | 1.0837  | 1.5448  |  |
| 20 | 16.2                                                     | 16.1710  | 16.4926  | -0.0290 | 0.2926  | 16.6784  | 17.0100                                                 | 0.4784  | 0.8100  |  |
|    | MAE = 2.07, and CMAE = 0.74 ppm. R <sup>2</sup> = 0.9990 |          |          |         |         |          | MAE = 3.00, and CMAE =1.65 ppm. R <sup>2</sup> = 0.9989 |         |         |  |

Table S6. Experimental and calculated  $^{13}$ C NMR data for compound 1B (  $\triangle$  in ppm)

|     |                 |                       | 1B (gas            | phase)            |          | 1B (PCM)              |                                                        |          |         |  |
|-----|-----------------|-----------------------|--------------------|-------------------|----------|-----------------------|--------------------------------------------------------|----------|---------|--|
| NO. | $\delta e(exp)$ | $\delta u$ (unsacled) | $\delta s(sacled)$ | δu-δe             | δs-δe    | $\delta u$ (unsacled) | $\delta s(sacled)$                                     | δu-δe    | δs-δe   |  |
| 1   | 31.9            | 38.4728               | 39.2379            | 6.5728            | 7.3379   | 38.6888               | 39.4582                                                | 6.7888   | 7.5582  |  |
| 2   | 19              | 23.8331               | 24.3071            | 4.8331            | 5.3071   | 24.2430               | 24.7251                                                | 5.2430   | 5.7251  |  |
| 3   | 40.4            | 41.4318               | 42.2558            | 1.0318            | 1.8558   | 41.8837               | 42.7166                                                | 1.4837   | 2.3166  |  |
| 4   | 33.1            | 39.6545               | 40.4431            | 6.5545            | 7.3431   | 40.4373               | 41.2415                                                | 7.3373   | 8.1415  |  |
| 5   | 52.6            | 64.3267               | 65.6060            | 11.7267           | 13.0060  | 64.3961               | 65.6768                                                | 11.7961  | 13.0768 |  |
| 6   | 30.3            | 28.8953               | 29.4700            | -1.4047           | -0.8300  | 29.7344               | 30.3257                                                | -0.5657  | 0.0257  |  |
| 7   | 85.1            | 88.9202               | 90.6886            | 3.8202            | 5.5886   | 89.7270               | 91.5115                                                | 4.6270   | 6.4115  |  |
| 8   | 68.3            | 82.8889               | 84.5373            | 14.5889           | 16.2373  | 84.5926               | 86.2749                                                | 16.2926  | 17.9749 |  |
| 9   | 45.3            | 53.1488               | 54.2058            | 7.8488            | 8.9058   | 54.3955               | 55.4773                                                | 9.0955   | 10.1773 |  |
| 10  | 203.8           | 189.1033              | 192.8642           | -14.6967          | -10.9358 | 192.7415              | 196.5747                                               | -11.0585 | -7.2253 |  |
| 11  | 127.8           | 138.4043              | 141.1569           | 10.6043           | 13.3569  | 138.9320              | 141.6951                                               | 11.1320  | 13.8951 |  |
| 12  | 179.5           | 166.2388              | 169.5449           | -13.2612          | -9.9551  | 168.5058              | 171.8570                                               | -10.9942 | -7.6430 |  |
| 13  | 85.5            | 93.7152               | 95.5790            | 8.2152            | 10.0790  | 94.6738               | 96.5566                                                | 9.1738   | 11.0566 |  |
| 14  | 175.6           | 167.4266              | 170.7564           | -8.1734           | -4.8436  | 169.6705              | 173.0449                                               | -5.9295  | -2.5551 |  |
| 15  | 27.2            | 36.7267               | 37.4571            | 9.5267            | 10.2571  | 37.2865               | 38.0280                                                | 10.0865  | 10.8280 |  |
| 16  | 22.8            | 24.7412               | 25.2332            | 1.9412            | 2.4332   | 25.2253               | 25.7270                                                | 2.4253   | 2.9270  |  |
| 17  | 22.9            | 23.5896               | 24.0588            | 0.6896            | 1.1588   | 23.8777               | 24.3525                                                | 0.9777   | 1.4525  |  |
| 18  | 34              | 27.5129               | 28.0600            | -6.4871           | -5.9400  | 27.8182               | 28.3715                                                | -6.1818  | -5.6285 |  |
| 19  | 22.1            | 35.4180               | 36.1224            | 13.3180           | 14.0224  | 35.5508               | 36.2578                                                | 13.4508  | 14.1578 |  |
| 20  | 16.2            | 29.8841               | 30.4784            | 13.6841           | 14.2784  | 30.2610               | 30.8628                                                | 14.0610  | 14.6628 |  |
|     |                 | MAE = 4.93, a         | nd CMAE =3.5       | 55 ppm. $R^2 = 0$ | .9842    | MAE =5.87, ar         | MAE =5.87, and CMAE =4.46 ppm. R <sup>2</sup> = 0.9851 |          |         |  |

|        |        | 14     | -1     | 1A     | -2     | 1B     | -1     | 1B     | -2     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Nuclie | exptl. | σiso   | Δ      | σiso   | Δ      | σiso   | Δ      | σiso   | Δ      |
| 1      | 31.9   | 163.94 | 32.30  | 163.94 | 32.30  | 160.54 | 35.70  | 155.84 | 40.40  |
| 2      | 19     | 174.26 | 21.98  | 174.26 | 21.98  | 175.15 | 21.09  | 170.50 | 25.74  |
| 3      | 40.4   | 155.74 | 40.50  | 155.74 | 40.50  | 157.72 | 38.52  | 152.79 | 43.45  |
| 4      | 33.1   | 160.22 | 36.02  | 160.22 | 36.02  | 159.77 | 36.47  | 154.37 | 41.87  |
| 5      | 52.6   | 143.79 | 52.45  | 143.80 | 52.44  | 135.08 | 61.16  | 129.71 | 66.53  |
| 6      | 30.3   | 164.50 | 31.74  | 164.50 | 31.74  | 169.48 | 26.76  | 165.86 | 30.38  |
| 7      | 85.1   | 109.67 | 86.57  | 109.67 | 86.57  | 110.49 | 85.75  | 105.12 | 91.12  |
| 8      | 68.3   | 126.46 | 69.78  | 126.46 | 69.78  | 116.33 | 79.91  | 111.28 | 84.96  |
| 9      | 45.3   | 147.29 | 48.95  | 147.30 | 48.94  | 146.31 | 49.93  | 140.85 | 55.39  |
| 10     | 203.8  | -4.82  | 201.06 | -4.82  | 201.06 | 9.57   | 186.67 | 5.44   | 190.80 |
| 11     | 127.8  | 72.07  | 124.17 | 72.07  | 124.17 | 59.85  | 136.39 | 56.44  | 139.80 |
| 12     | 179.5  | 13.31  | 182.93 | 13.32  | 182.93 | 32.04  | 164.20 | 28.58  | 167.66 |
| 13     | 85.5   | 109.88 | 86.36  | 109.88 | 86.36  | 105.16 | 91.08  | 100.69 | 95.55  |
| 14     | 175.6  | 22.44  | 173.80 | 22.44  | 173.80 | 31.03  | 165.21 | 27.27  | 168.97 |
| 15     | 27.2   | 165.86 | 30.38  | 165.86 | 30.38  | 164.46 | 31.78  | 156.08 | 40.17  |
| 16     | 22.8   | 171.57 | 24.67  | 171.57 | 24.67  | 173.69 | 22.55  | 169.98 | 26.26  |
| 17     | 22.9   | 174.12 | 22.12  | 174.11 | 22.13  | 177.03 | 19.21  | 169.61 | 26.63  |
| 18     | 34     | 162.77 | 33.47  | 162.77 | 33.47  | 170.88 | 25.36  | 167.23 | 29.01  |
| 19     | 22.1   | 173.47 | 22.77  | 173.47 | 22.78  | 163.09 | 33.15  | 159.25 | 36.99  |
| 20     | 16.2   | 180.07 | 16.17  | 180.07 | 16.17  | 168.74 | 27.50  | 164.70 | 31.54  |
| H-1α   | 1.95   | 29.55  | 2.05   | 29.55  | 2.05   | 30.11  | 1.48   | 30.12  | 1.48   |
| Η-1β   | 1.53   | 30.10  | 1.49   | 30.10  | 1.49   | 30.28  | 1.32   | 30.31  | 1.29   |
| Η-2α   | 1.44   | 30.26  | 1.34   | 30.26  | 1.34   | 30.32  | 1.28   | 30.38  | 1.21   |
| Η-2β   | 1.63   | 29.87  | 1.73   | 29.87  | 1.73   | 29.85  | 1.75   | 29.86  | 1.74   |
| Η-3α   | 1.45   | 30.27  | 1.32   | 30.27  | 1.32   | 29.78  | 1.81   | 29.83  | 1.76   |
| Η-3β   | 1.26   | 30.29  | 1.31   | 30.29  | 1.31   | 29.65  | 1.94   | 29.68  | 1.92   |
| H-5    | 2.3    | 28.93  | 2.67   | 28.93  | 2.67   | 30.12  | 1.47   | 30.15  | 1.44   |
| Η-6α   | 2.26   | 29.50  | 2.09   | 29.50  | 2.09   | 29.71  | 1.88   | 29.81  | 1.79   |
| Η-6β   | 1.81   | 29.73  | 1.87   | 29.73  | 1.87   | 29.18  | 2.42   | 29.27  | 2.33   |
| Η-7α   | 4.43   | 27.35  | 4.25   | 27.35  | 4.25   | 27.26  | 4.34   | 27.29  | 4.31   |
| H-11   | 5.99   | 25.56  | 6.03   | 25.56  | 6.03   | 25.55  | 6.04   | 25.70  | 5.89   |
| H-15   | 2.76   | 28.88  | 2.72   | 28.88  | 2.71   | 28.69  | 2.90   | 29.04  | 2.55   |
| H-16a  | 1.12   | 30.42  | 1.18   | 30.42  | 1.18   | 30.41  | 1.19   | 30.58  | 1.01   |
| H-16b  |        | 30.38  | 1.22   | 30.38  | 1.22   | 29.81  | 1.78   | 30.42  | 1.17   |
| H-16c  |        | 31.01  | 0.58   | 31.01  | 0.58   | 30.96  | 0.63   | 30.00  | 1.59   |
| H-17a  | 1.27   | 30.43  | 1.17   | 30.43  | 1.17   | 30.50  | 1.10   | 30.46  | 1.14   |
| H-17b  |        | 30.40  | 1.20   | 30.40  | 1.20   | 30.26  | 1.33   | 30.69  | 0.91   |
| H-17c  |        | 30.38  | 1.22   | 30.38  | 1.22   | 30.64  | 0.95   | 30.23  | 1.36   |
| H-18a  | 0.92   | 30.89  | 0.70   | 30.89  | 0.70   | 30.29  | 1.31   | 30.35  | 1.25   |

**Table S7.** Experimental chemical shifts of compound **1**, calculated shielding tensors and chemical shifts of isomer **1** in gas phase with TMS as reference.

| H-18b |      | 30.50 | 1.10 | 30.50 | 1.10 | 30.82 | 0.78 | 30.88 | 0.71 |
|-------|------|-------|------|-------|------|-------|------|-------|------|
| H-18c |      | 30.87 | 0.72 | 30.87 | 0.72 | 30.70 | 0.89 | 30.77 | 0.82 |
| H-19a | 0.94 | 30.62 | 0.98 | 30.62 | 0.98 | 30.40 | 1.20 | 30.44 | 1.15 |
| H-19b |      | 31.10 | 0.49 | 31.10 | 0.49 | 30.89 | 0.70 | 30.96 | 0.64 |
| H-19c |      | 30.28 | 1.32 | 30.28 | 1.32 | 30.58 | 1.02 | 30.64 | 0.96 |
| H-20a | 1.18 | 30.31 | 1.28 | 30.31 | 1.28 | 30.33 | 1.26 | 30.41 | 1.18 |
| H-20b |      | 30.96 | 0.64 | 30.96 | 0.64 | 30.15 | 1.45 | 30.16 | 1.44 |
| H-20c |      | 29.91 | 1.69 | 29.91 | 1.69 | 30.70 | 0.89 | 30.82 | 0.77 |
| OH    | 2.96 | 28.83 | 2.76 | 28.83 | 2.76 | 27.88 | 3.72 | 27.86 | 3.73 |

**Table S8.** Experimental chemical shifts of compound 1, calculated shielding tensors and chemical shifts of isomer 1 in chloroform with TMS as reference.

|        |        | 1A-1   |        | 1A-2   | 1A-2   |        | 1B-1   |        | 1B-2   |  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--|
| Nuclie | exptl. | σ iso  | Δ      |  |
| 1      | 31.9   | 163.57 | 33.30  | 163.57 | 33.30  | 160.96 | 35.91  | 156.26 | 40.62  |  |
| 2      | 19     | 174.47 | 22.41  | 174.47 | 22.41  | 175.39 | 21.48  | 170.71 | 26.16  |  |
| 3      | 40.4   | 155.70 | 41.17  | 155.70 | 41.17  | 157.92 | 38.96  | 152.96 | 43.92  |  |
| 4      | 33.1   | 160.15 | 36.72  | 160.15 | 36.72  | 159.62 | 37.25  | 154.22 | 42.65  |  |
| 5      | 52.6   | 143.43 | 53.44  | 143.43 | 53.44  | 135.64 | 61.23  | 130.28 | 66.60  |  |
| 6      | 30.3   | 164.63 | 32.24  | 164.63 | 32.24  | 169.28 | 27.60  | 165.65 | 31.22  |  |
| 7      | 85.1   | 109.29 | 87.58  | 109.29 | 87.58  | 110.31 | 86.56  | 104.95 | 91.93  |  |
| 8      | 68.3   | 126.06 | 70.82  | 126.06 | 70.81  | 115.28 | 81.60  | 110.20 | 86.67  |  |
| 9      | 45.3   | 147.19 | 49.69  | 147.19 | 49.68  | 145.70 | 51.17  | 140.24 | 56.64  |  |
| 10     | 203.8  | -6.48  | 203.35 | -6.48  | 203.35 | 6.58   | 190.29 | 2.43   | 194.44 |  |
| 11     | 127.8  | 71.31  | 125.56 | 71.31  | 125.56 | 60.00  | 136.88 | 56.51  | 140.36 |  |
| 12     | 179.5  | 11.90  | 184.98 | 11.90  | 184.97 | 30.34  | 166.53 | 27.00  | 169.88 |  |
| 13     | 85.5   | 109.57 | 87.31  | 109.57 | 87.30  | 104.83 | 92.05  | 100.38 | 96.50  |  |
| 14     | 175.6  | 21.26  | 175.61 | 21.26  | 175.61 | 29.38  | 167.50 | 25.69  | 171.18 |  |
| 15     | 27.2   | 165.53 | 31.34  | 165.54 | 31.34  | 164.09 | 32.79  | 156.46 | 40.41  |  |
| 16     | 22.8   | 172.00 | 24.87  | 172.00 | 24.87  | 174.13 | 22.74  | 169.92 | 26.95  |  |
| 17     | 22.9   | 174.50 | 22.38  | 174.49 | 22.38  | 177.44 | 19.43  | 169.91 | 26.97  |  |
| 18     | 34     | 163.05 | 33.83  | 163.05 | 33.82  | 171.22 | 25.65  | 167.55 | 29.32  |  |
| 19     | 22.1   | 173.47 | 23.41  | 173.92 | 22.96  | 163.61 | 33.27  | 159.74 | 37.14  |  |
| 20     | 16.2   | 180.20 | 16.68  | 180.20 | 16.68  | 169.01 | 27.86  | 164.95 | 31.93  |  |
|        |        |        |        |        |        |        |        |        |        |  |
| H-1α   | 1.95   | 29.64  | 1.95   | 29.64  | 1.95   | 30.04  | 1.55   | 30.04  | 1.55   |  |
| Η-1β   | 1.53   | 30.13  | 1.46   | 30.13  | 1.46   | 30.21  | 1.38   | 30.25  | 1.34   |  |
| Η-2α   | 1.44   | 30.24  | 1.35   | 30.24  | 1.35   | 30.27  | 1.32   | 30.34  | 1.25   |  |
| Η-2β   | 1.63   | 29.81  | 1.78   | 29.81  | 1.78   | 29.78  | 1.81   | 29.79  | 1.79   |  |
| Η-3α   | 1.45   | 30.34  | 1.25   | 30.33  | 1.25   | 29.65  | 1.94   | 29.70  | 1.89   |  |
| Η-3β   | 1.26   | 30.23  | 1.36   | 30.23  | 1.36   | 29.63  | 1.96   | 29.66  | 1.93   |  |
| H-5    | 2.3    | 29.04  | 2.55   | 29.04  | 2.55   | 30.08  | 1.51   | 30.12  | 1.47   |  |
| Η-6α   | 2.26   | 29.36  | 2.23   | 29.36  | 2.23   | 29.56  | 2.03   | 29.66  | 1.93   |  |

| Η-6β  | 1.81 | 29.69 | 1.90 | 29.69 | 1.90 | 29.25 | 2.33 | 29.34 | 2.25 |
|-------|------|-------|------|-------|------|-------|------|-------|------|
| Η-7α  | 4.43 | 27.15 | 4.44 | 27.15 | 4.44 | 27.09 | 4.50 | 27.11 | 4.48 |
| H-11  | 5.99 | 25.40 | 6.19 | 25.40 | 6.19 | 25.43 | 6.16 | 25.57 | 6.01 |
| H-15  | 2.76 | 28.83 | 2.76 | 28.83 | 2.76 | 28.68 | 2.91 | 28.87 | 2.72 |
| H-16a | 1.12 | 30.33 | 1.26 | 30.33 | 1.26 | 30.32 | 1.26 | 30.45 | 1.14 |
| H-16b |      | 30.51 | 1.08 | 30.51 | 1.08 | 29.95 | 1.64 | 30.49 | 1.09 |
| H-16c |      | 30.89 | 0.70 | 30.89 | 0.70 | 30.81 | 0.78 | 30.20 | 1.39 |
| H-17a | 1.27 | 30.35 | 1.24 | 30.35 | 1.24 | 30.43 | 1.16 | 30.39 | 1.20 |
| H-17b |      | 30.44 | 1.15 | 30.44 | 1.15 | 30.27 | 1.32 | 30.56 | 1.03 |
| H-17c |      | 30.27 | 1.32 | 30.27 | 1.32 | 30.55 | 1.04 | 30.36 | 1.23 |
| H-18a | 0.92 | 30.94 | 0.65 | 30.94 | 0.65 | 30.32 | 1.27 | 30.38 | 1.21 |
| H-18b |      | 30.43 | 1.15 | 30.43 | 1.15 | 30.79 | 0.80 | 30.86 | 0.72 |
| H-18c |      | 30.85 | 0.74 | 30.85 | 0.74 | 30.72 | 0.87 | 30.79 | 0.80 |
| H-19a | 0.94 | 30.57 | 1.01 | 30.57 | 1.01 | 30.39 | 1.20 | 30.44 | 1.15 |
| H-19b |      | 31.08 | 0.51 | 31.08 | 0.51 | 30.88 | 0.71 | 30.95 | 0.64 |
| H-19c |      | 30.27 | 1.32 | 30.27 | 1.32 | 30.51 | 1.08 | 30.58 | 1.01 |
| H-20a | 1.18 | 30.23 | 1.35 | 30.23 | 1.35 | 30.18 | 1.40 | 30.27 | 1.32 |
| H-20b |      | 30.95 | 0.64 | 30.95 | 0.64 | 30.30 | 1.29 | 30.32 | 1.27 |
| H-20c |      | 29.93 | 1.66 | 29.93 | 1.66 | 30.66 | 0.93 | 30.78 | 0.81 |
| OH    | 2.96 | 28.58 | 3.01 | 28.57 | 3.02 | 27.72 | 3.87 | 27.71 | 3.88 |
|       |      |       |      |       |      |       |      |       |      |

| Functional       | Solvent?                        | Basis    | Basis Set |                 | Type of Data |  |
|------------------|---------------------------------|----------|-----------|-----------------|--------------|--|
| mPW1PW91         | PCM                             | 6-31+0   | G(d, p)   | Unscaled Shifts |              |  |
|                  |                                 |          |           |                 |              |  |
|                  | Isomer 1 Isomer 2               | Isomer 3 | Isomer 4  | Isomer 5        | Isomer 6     |  |
| sDP4+ (H data)   | <b>1</b> 00.00% <b>1</b> 0.00%  | -        | -         | -               | -            |  |
| sDP4+ (C data)   | <b>1</b> 00.00% <b>1</b> 0.00%  | -        | -         | -               | -            |  |
| sDP4+ (all data) | <b>1</b> 00.00% <b>1</b> 0.00%  | _        | _         | _               | -            |  |
| uDP4+ (H data)   | <b>d</b> 100.00% <b>d</b> 0.00% | -        | -         | -               | -            |  |
| uDP4+ (C data)   | <b>1</b> 00.00% <b>1</b> 0.00%  | -        | -         | -               | _            |  |
| uDP4+ (all data) | <b>1</b> 00.00% <b>1</b> 0.00%  | -        | -         | _               | _            |  |
| DP4+ (H data)    | <b>1</b> 00.00% <b>1</b> 0.00%  | _        | -         | -               | -            |  |
| DP4+ (C data)    | <b>1</b> 00.00% <b>1</b> 0.00%  | -        | -         | _               | _            |  |
| DP4+ (all data)  | <b>1</b> 00.00% <b>1</b> 0.00%  | _        | -         | _               | _            |  |

**Figure. S4.** Detailed DP4+ probability of compound **1** (calculated at mPW1PW91/6-31G (d, p) level in gas with PCM model.

| Functional       | Solvent?         |              | Basis Set    |          | Type of Data    |          |
|------------------|------------------|--------------|--------------|----------|-----------------|----------|
| mPW1PW91         | Gas 1            | Phase        | 6-31+G(d, p) |          | Unscaled Shifts |          |
|                  |                  |              |              |          |                 |          |
|                  | Isomer 1         | Isomer 2     | Isomer 3     | Isomer 4 | Isomer 5        | Isomer 6 |
| sDP4+ (H data)   | <b>1</b> 00. 00% | ⅆ 0.00%      | -            | -        | -               | -        |
| sDP4+ (C data)   | <b>1</b> 00. 00% | ⅆ 0.00%      | -            | -        | -               | -        |
| sDP4+ (all data) | <b>1</b> 00. 00% | ⅆ 0.00%      | -            | -        | -               | -        |
| uDP4+ (H data)   | <b>1</b> 00. 00% | 1 0. 00%     | -            | -        | -               | -        |
| uDP4+ (C data)   | <b>1</b> 00. 00% | ⅆ 0.00%      | -            | -        | -               | -        |
| uDP4+ (all data) | <b>1</b> 00. 00% | ⅆ 0.00%      | -            | -        | -               | -        |
| DP4+ (H data)    | <b>1</b> 00. 00% | 1 0. 00%     | -            | -        | -               | -        |
| DP4+ (C data)    | <b>1</b> 00. 00% | <b>0.00%</b> | -            | -        | -               | -        |
| DP4+ (all data)  | 100.00%          | 0.00%        | -            | -        | -               | _        |

**Figure. S5.** Detailed DP4+ probability of compound **1** (calculated at mPW1PW91/6-31G (d, p) level in chloroform with PCM model.



Figure S6. Possible conformers of 2 for ECD calculation.

**Table S9.** Important thermodynamic parameters and Boltzmann distributions of the optimized isomer **2** at B3LYP/6-31 + G (d, p) level in the gas phase.

|               |              |              |      | Number of   |
|---------------|--------------|--------------|------|-------------|
| Conformations | Energy (a.u) | ⊿G(kcal/mol) | %    | imaginary   |
|               |              |              |      | frequencies |
| 2A            | -1079.574196 | 0            | 72.6 | 0           |
| 2B            | -1079.573275 | 0.58         | 27.4 | 0           |

**Table S10.** Optimized Z-matrixes of compound **2** in the gas phase (Å) at B3LYP/6-31+ G (d, p) level

|   |          | 2A        |           | 28 |           |           |           |  |  |
|---|----------|-----------|-----------|----|-----------|-----------|-----------|--|--|
| С | 2.375072 | -2.144281 | 1.415352  | C  | -2.518732 | -2.244428 | 1.138663  |  |  |
| С | 3.457398 | -1.049382 | 1.382599  | С  | -3.521408 | -1.089087 | 1.309422  |  |  |
| С | 2.071052 | 0.244816  | -0.232781 | С  | -2.107397 | 0.330796  | -0.171744 |  |  |
| С | 0.934553 | -0.827411 | -0.207758 | С  | -1.046763 | -0.804652 | -0.344679 |  |  |
| С | 0.962594 | -1.586788 | 1.134051  | С  | -1.081197 | -1.745381 | 0.876584  |  |  |
| С | 3.52254  | -0.228337 | 0.063153  | С  | -3.57665  | -0.085371 | 0.121528  |  |  |
| С | 4.203231 | -1.045816 | -1.057634 | С  | -4.351001 | -0.68836  | -1.071269 |  |  |

| С | 4.397631  | 1.022062  | 0.309592  | С | -4.352776 | 1.170019  | 0.580463  |
|---|-----------|-----------|-----------|---|-----------|-----------|-----------|
| С | 1.003153  | -1.855055 | -1.366308 | С | -1.224024 | -1.654015 | -1.630446 |
| С | 1.77278   | 1.076777  | -1.495795 | С | -1.796028 | 1.30904   | -1.320999 |
| С | 0.232049  | 1.081529  | -1.588226 | С | -0.262308 | 1.233008  | -1.474998 |
| С | -0.311166 | 0.10616   | -0.488172 | С | 0.24978   | 0.078122  | -0.547379 |
| С | -0.847836 | 1.059897  | 0.625478  | С | 0.889687  | 0.825588  | 0.664611  |
| С | -2.26286  | 0.534232  | 0.938851  | С | 2.27834   | 0.173284  | 0.838509  |
| С | -2.668886 | -0.378155 | -0.138004 | С | 2.586894  | -0.586079 | -0.382533 |
| С | -1.587229 | -0.586106 | -0.921612 | С | 1.460776  | -0.619546 | -1.129043 |
| С | -4.063554 | -0.943921 | -0.245747 | С | 3.921086  | -1.215232 | -0.70456  |
| С | -4.40006  | -1.43755  | -1.65976  | С | 5.042794  | -0.159293 | -0.76787  |
| С | -4.276583 | -2.06081  | 0.800616  | С | 4.268506  | -2.345515 | 0.286237  |
| 0 | -2.864073 | 0.861765  | 1.953054  | 0 | 2.916021  | 0.298554  | 1.87527   |
| С | -0.927039 | 2.435188  | -0.086495 | С | 1.035872  | 2.281453  | 0.15274   |
| 0 | -1.410881 | 3.448206  | 0.370067  | 0 | 1.602043  | 3.186307  | 0.726794  |
| 0 | -0.330434 | 2.394077  | -1.286761 | 0 | 0.396456  | 2.451125  | -1.014128 |
| 0 | -0.10975  | 1.233246  | 1.815332  | 0 | 0.210301  | 0.870856  | 1.899779  |
| Н | 1.841181  | 0.894588  | 0.62061   | Η | -1.802826 | 0.839425  | 0.751542  |
| Н | 2.621183  | -2.940399 | 0.702494  | Η | -2.84607  | -2.911443 | 0.332277  |
| Н | 2.378028  | -2.618438 | 2.40421   | Η | -2.520568 | -2.855438 | 2.049427  |
| Η | 4.442259  | -1.494372 | 1.576423  | Η | -4.527452 | -1.492695 | 1.483866  |
| Н | 3.265248  | -0.350715 | 2.20935   | Η | -3.250772 | -0.529062 | 2.216028  |
| Н | 0.231007  | -2.404646 | 1.126032  | Н | -0.410761 | -2.599733 | 0.718945  |
| Н | 0.686078  | -0.910615 | 1.946236  | Η | -0.728021 | -1.213928 | 1.763075  |
| Η | 4.128878  | -0.543258 | -2.02798  | Η | -4.282943 | -0.052603 | -1.960512 |
| Η | 5.269405  | -1.15587  | -0.828133 | Η | -5.412222 | -0.770544 | -0.809379 |
| Η | 3.796187  | -2.052013 | -1.170707 | Η | -4.012767 | -1.687933 | -1.349045 |
| Η | 3.95479   | 1.675786  | 1.070052  | Η | -3.839517 | 1.678841  | 1.404741  |
| Н | 5.394333  | 0.727557  | 0.65858   | Η | -4.473473 | 1.888746  | -0.23795  |
| Н | 4.528085  | 1.608581  | -0.606968 | Η | -5.354834 | 0.892872  | 0.928231  |
| Н | 1.000064  | -1.391999 | -2.357536 | Η | -2.144552 | -2.23366  | -1.603357 |
| Н | 1.898721  | -2.4691   | -1.302617 | Η | -1.245267 | -1.055977 | -2.546365 |
| Н | 0.149041  | -2.53699  | -1.31473  | Η | -0.403948 | -2.372512 | -1.719655 |
| Н | 2.153393  | 2.099954  | -1.439402 | Η | -2.107373 | 2.336158  | -1.112958 |
| Н | 2.192362  | 0.622655  | -2.398125 | Η | -2.272926 | 1.008412  | -2.258339 |
| Н | -0.134258 | 0.84321   | -2.587886 | Η | 0.055348  | 1.118794  | -2.512532 |
| Н | -1.603867 | -1.1903   | -1.821655 | Η | 1.411773  | -1.097412 | -2.102312 |
| Η | -4.752513 | -0.126065 | 0.006424  | Η | 3.82318   | -1.662475 | -1.701634 |
| Η | -5.443694 | -1.764614 | -1.70179  | Η | 5.985606  | -0.633646 | -1.059617 |
| Н | -4.26124  | -0.647787 | -2.405431 | Η | 4.81333   | 0.61989   | -1.502052 |
| Η | -3.775063 | -2.291496 | -1.945108 | Η | 5.1921    | 0.319252  | 0.205367  |
| Η | -5.314941 | -2.407309 | 0.772012  | Η | 5.210577  | -2.820052 | -0.007966 |
| Η | -4.063244 | -1.708019 | 1.813613  | Η | 3.489369  | -3.114532 | 0.298412  |

| Н | -3.62451  | -2.915546 | 0.588523 | Η | 4.384966 | -1.957457 | 1.302595 |
|---|-----------|-----------|----------|---|----------|-----------|----------|
| Η | -0.756851 | 1.446577  | 2.511566 | Η | 0.898774 | 0.917848  | 2.588004 |

**Table S11.** Key transitions, oscillator strengths, and rotatory strengths in the ECD spectra of conformers **2A** at the B3LYP/6-31 + G (d, p) level in MeOH with PCM.

| comor |               | 0 00001110 01  | · • • • • • • • • • |        |        |          |          |
|-------|---------------|----------------|---------------------|--------|--------|----------|----------|
| Num   | Exited states | CI Coefficient | ∆E (eV)             | λ (nm) | f      | R(vel)   | R(len)   |
| 1     | 90 -> 91      | 0.68854        | 3.7506              | 330.57 | 0.0031 | 1.1290   | 0.8739   |
| 2     | 85 -> 91      | -0.11957       | 4.5610              | 271.84 | 0.0596 | -63.2649 | -65.2745 |
|       | 87 -> 91      | -0.33194       |                     |        |        |          |          |
|       | 88 -> 91      | 0.18138        |                     |        |        |          |          |
|       | 89 -> 91      | 0.54876        |                     |        |        |          |          |
| 3     | 87 -> 91      | -0.37692       | 4.7198              | 262.69 | 0.0723 | -25.4010 | -26.3873 |
|       | 88 -> 91      | 0.41571        |                     |        |        |          |          |
|       | 89 -> 91      | -0.39282       |                     |        |        |          |          |
| 4     | 87 -> 91      | 0.44646        | 4.9223              | 251.88 | 0.0159 | 15.9468  | 16.7064  |
|       | 88 -> 91      | 0.52501        |                     |        |        |          |          |
|       | 89 -> 91      | 0.10716        |                     |        |        |          |          |
| 5     | 84 -> 91      | -0.13039       | 5.2027              | 238.31 | 0.0037 | -0.8148  | -1.0630  |
|       | 85 -> 91      | -0.14670       |                     |        |        |          |          |
|       | 86 -> 91      | 0.62950        |                     |        |        |          |          |
|       | 90 -> 92      | -0.17213       |                     |        |        |          |          |
| 6     | 83 -> 91      | -0.14746       | 5.3194              | 233.08 | 0.0053 | 12.6055  | 14.4323  |
|       | 85 -> 91      | 0.39348        |                     |        |        |          |          |
|       | 85 -> 92      | -0.12980       |                     |        |        |          |          |
|       | 86 -> 91      | 0.26500        |                     |        |        |          |          |
|       | 87 -> 91      | -0.16009       |                     |        |        |          |          |
|       | 87 -> 92      | -0.21283       |                     |        |        |          |          |
|       | 88 -> 92      | 0.10387        |                     |        |        |          |          |
|       | 90 -> 92      | 0.32561        |                     |        |        |          |          |
| 7     | 85 -> 91      | -0.45442       | 5.4441              | 227.74 | 0.0102 | 11.0716  | 10.2373  |
|       | 90 -> 92      | 0.51116        |                     |        |        |          |          |
| 8     | 84 -> 91      | 0.66078        | 5.4756              | 226.43 | 0.0133 | 25.9151  | 26.8282  |
|       | 86 -> 91      | 0.12162        |                     |        |        |          |          |
| 9     | 83 -> 91      | -0.28613       | 5.6326              | 220.12 | 0.0129 | -17.7370 | -18.6423 |
|       | 85 -> 91      | -0.18426       |                     |        |        |          |          |
|       | 85 -> 92      | -0.12761       |                     |        |        |          |          |
|       | 87 -> 92      | -0.25494       |                     |        |        |          |          |
|       | 88 -> 92      | 0.17851        |                     |        |        |          |          |
|       | 89 -> 92      | 0.42162        |                     |        |        |          |          |
|       | 90 -> 92      | -0.20252       |                     |        |        |          |          |
| 10    | 83 -> 91      | 0.49923        | 5.7578              | 215.33 | 0.0285 | -22.4658 | -23.3540 |
|       | 89 -> 92      | 0.44486        |                     |        |        |          |          |
| 11    | 79 -> 91      | 0.10299        | 5.9170              | 209.54 | 0.0724 | 60.7137  | 61.7753  |

|    | 83 -> 91 | -0.34285 |         |        |        |          |               |
|----|----------|----------|---------|--------|--------|----------|---------------|
|    | 85 -> 92 | 0.13880  |         |        |        |          |               |
|    | 87 -> 92 | 0.34972  |         |        |        |          |               |
|    | 88 -> 92 | -0.24362 |         |        |        |          |               |
|    | 89 -> 92 | 0.30840  |         |        |        |          |               |
|    | 90 -> 92 | 0.16689  |         |        |        |          |               |
| 12 | 80 -> 91 | 0.27808  | 5.9706  | 207.66 | 0.0152 | 17.1066  | 16.8753       |
|    | 81 -> 91 | 0.20178  |         |        |        |          |               |
|    | 82 -> 91 | 0.58168  |         |        |        |          |               |
|    | 85 -> 91 | 0.11254  |         |        |        |          |               |
| 13 | 80 -> 91 | 0.51087  | 6.0096  | 206.31 | 0.0010 | -1.6082  | -1.6473       |
|    | 81 -> 91 | 0.30454  |         |        |        |          |               |
|    | 82 -> 91 | -0.34134 |         |        |        |          |               |
| 14 | 77 -> 91 | 0.19315  | 6.0673  | 204.35 | 0.0096 | 5.1855   | 4.8184        |
|    | 78 -> 91 | 0.39314  |         |        |        |          |               |
|    | 79 -> 91 | 0.28073  |         |        |        |          |               |
|    | 80 -> 91 | -0.24486 |         |        |        |          |               |
|    | 81 -> 91 | 0.25931  |         |        |        |          |               |
|    | 83 -> 91 | -0.12264 |         |        |        |          |               |
|    | 85 -> 91 | -0.12978 |         |        |        |          |               |
|    | 87 -> 92 | -0.12040 |         |        |        |          |               |
|    | 88 -> 92 | 0.12590  |         |        |        |          |               |
| 15 | 75 -> 91 | 0.10509  | 6.2008  | 199.95 | 0.0051 | -10.8210 | -11.7822      |
|    | 79 -> 91 | 0.28285  |         |        |        |          |               |
|    | 80 -> 91 | 0.11973  |         |        |        |          |               |
|    | 81 -> 91 | -0.21689 |         |        |        |          |               |
|    | 87 -> 92 | 0.22497  |         |        |        |          |               |
|    | 88 -> 92 | 0.51627  |         |        |        |          |               |
| 16 | 75 -> 91 | 0.12229  | 6.2296  | 199.02 | 0.0077 | 6.5419   | 6.7815        |
|    | 77 -> 91 | 0.12152  |         |        |        |          |               |
|    | 79 -> 91 | 0.40779  |         |        |        |          |               |
|    | 80 -> 91 | 0.13400  |         |        |        |          |               |
|    | 81 -> 91 | -0.30331 |         |        |        |          |               |
|    | 87 -> 92 | -0.27090 |         |        |        |          |               |
|    | 88 -> 92 | -0.30913 |         |        |        |          |               |
| 17 | 75 -> 91 | -0.19227 | 6.3102  | 196.48 | 0.0012 | -2.5279  | -2.0594       |
|    | 77 -> 91 | 0.17826  |         |        |        |          |               |
|    | 78 -> 91 | 0.43347  |         |        |        |          |               |
|    | /9 -> 91 | -0.21880 |         |        |        |          |               |
|    | 80 -> 91 | 0.21324  |         |        |        |          |               |
| 10 | 81 -> 91 | -0.36194 | - · · · | 102.01 | 0.0010 | C 1000   | <b>5</b> 0440 |
| 18 | 77 -> 91 | 0.58772  | 6.4455  | 192.36 | 0.0010 | 6.1099   | 5.9449        |
|    | 78 -> 91 | -0.26145 |         |        |        |          |               |

|    | 86 -> 92 | -0.17537 |        |        |        |         |         |
|----|----------|----------|--------|--------|--------|---------|---------|
| 19 | 77 -> 91 | 0.15097  | 6.5009 | 190.72 | 0.0161 | -1.0888 | -1.5062 |
|    | 85 -> 92 | -0.12204 |        |        |        |         |         |
|    | 86 -> 92 | 0.65384  |        |        |        |         |         |
| 20 | 77 -> 91 | -0.10291 | 6.5444 | 189.45 | 0.0112 | 5.9038  | 5.4923  |
|    | 85 -> 92 | -0.14662 |        |        |        |         |         |
|    | 87 -> 92 | 0.10856  |        |        |        |         |         |
|    | 90 -> 93 | 0.54211  |        |        |        |         |         |
|    | 90 -> 94 | -0.30354 |        |        |        |         |         |
|    | 90 -> 95 | 0.12527  |        |        |        |         |         |



Figure S7. <sup>1</sup>H NMR spectrum of wulfenioidin A (1) in chloroform (600 MHz)



Figure S8. <sup>13</sup>C and DEPT NMR spectra of wulfenioidin A (1) in chloroform (150 MHz)



Figure S9. HSQC spectrum of wulfenioidin A (1) in chloroform (600 MHz)



Figure S10. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of wulfenioidin A (1) in chloroform (600 MHz)



Figure S11. HMBC spectrum of wulfenioidin A (1) in chloroform (600 MHz)



Figure S12. ROESY spectrum of wulfenioidin A (1) in chloroform (600 MHz)



Figure S13. HRESIMS spectrum of wulfenioidin A (1)



Figure S14. IR spectrum of wulfenioidin A (1)



Figure S15. UV spectrum of wulfenioidin A (1)



Figure S16. CD spectrum of wulfenioidin A (1)

### Rudolph Research Analytical

This sample was measured on an Autopol VI, Serial #91058 Manufactured by Rudolph Research Analytical, Hackettstown, NJ, USA.

Measurement Date : Thursday, 21-JUL-2022

Set Temperature : OFF

Time Delay : Disabled

Delay between Measurement : Disabled

| <u>n</u><br>5 | <u>Average</u><br>46.20 | <u>Std.Dev.</u><br>0.45 | <u>% RSE</u><br>0.97 | <u>Maxim</u><br>47.00 | <u>um</u> <u>Mini</u><br>46.00 | <u>mum</u>     |        |              |              |       |
|---------------|-------------------------|-------------------------|----------------------|-----------------------|--------------------------------|----------------|--------|--------------|--------------|-------|
| <u>S.No</u>   | Sample ID               | Time                    | 2                    | <u>Result</u>         | <u>Scale</u>                   | <u>OR °Arc</u> | WLG.nm | <u>Lg.mm</u> | Conc.g/100ml | Temp. |
| 1             | jjs-87                  | 03:37:                  | 26 PM                | 46.00                 | SR                             | 0.046          | 589    | 100.00       | 0.100        | 25.6  |
| 2             | jjs-87                  | 03:37:                  | 33 PM                | 46.00                 | SR                             | 0.046          | 589    | 100.00       | 0.100        | 25.6  |
| 3             | jjs-87                  | 03:37:                  | 39 PM                | 47.00                 | SR                             | 0.047          | 589    | 100.00       | 0.100        | 25.6  |
| 4             | jjs-87                  | 03:37:                  | 45 PM                | 46.00                 | SR                             | 0.046          | 589    | 100.00       | 0.100        | 25.6  |
| 5             | jjs-87                  | 03:37:                  | :51 PM               | 46.00                 | SR                             | 0.046          | 589    | 100.00       | 0.100        | 25.6  |

Figure S17. OR report of wulfenioidin A (1)



Figure S18. <sup>1</sup>H NMR spectrum of wulfenioidin B (2) in chloroform (400 MHz)



Figure S19. <sup>13</sup>C and DEPT NMR spectra of wulfenioidin B (2) in chloroform (100 MHz)



Figure S20. HSQC spectrum of wulfenioidin B (2) in chloroform (600 MHz)



Figure S21. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of wulfenioidin B (2) in chloroform (600 MHz)



Figure S22. HMBC spectrum of wulfenioidin B (2) in chloroform (600 MHz)

![](_page_32_Figure_0.jpeg)

Figure S23. ROESY spectrum of wulfenioidin B (2) in chloroform (600 MHz)

![](_page_33_Figure_0.jpeg)

Figure S24. HRESIMS spectrum of wulfenioidin B (2)

![](_page_34_Figure_0.jpeg)

Figure S25. IR spectrum of wulfenioidin B (2)

![](_page_35_Figure_0.jpeg)

Figure S26. UV spectrum of wulfenioidin B (2)

![](_page_36_Figure_0.jpeg)

Figure S27. CD spectrum of wulfenioidin B (2)

### **Rudolph Research Analytical**

This sample was measured on an Autopol VI, Serial #91058 Manufactured by Rudolph Research Analytical, Hackettstown, NJ, USA.

Measurement Date : Thursday, 21-JUL-2022

Set Temperature : OFF

Time Delay : Disabled

Delay between Measurement : Disabled

| <u>n</u><br>5 | <u>Average</u><br>-54.00 | <u>Std.Dev.</u><br>0.00 | <u>% RSD</u><br>0.00 | <u>Maxim</u><br>-54.00 | <u>um</u> <u>Mini</u><br>-54.00 | mum            |        |              |              |              |
|---------------|--------------------------|-------------------------|----------------------|------------------------|---------------------------------|----------------|--------|--------------|--------------|--------------|
| <u>S.No</u>   | Sample ID                | <u>Time</u>             |                      | <u>Result</u>          | <u>Scale</u>                    | <u>OR °Arc</u> | WLG.nm | <u>Lg.mm</u> | Conc.g/100ml | <u>Temp.</u> |
| 1             | jjs-82                   | 03:30:                  | 07 PM                | -54.00                 | SR                              | -0.081         | 589    | 100.00       | 0.150        | 25.4         |
| 2             | jjs-82                   | 03:30:                  | 13 PM                | -54.00                 | SR                              | -0.081         | 589    | 100.00       | 0.150        | 25.4         |
| 3             | jjs-82                   | 03:30:                  | 19 PM                | -54.00                 | SR                              | -0.081         | 589    | 100.00       | 0.150        | 25.4         |
| 4             | jjs-82                   | 03:30:                  | 25 PM                | -54.00                 | SR                              | -0.081         | 589    | 100.00       | 0.150        | 25.4         |
| 5             | jjs-82                   | 03:30:                  | 30 PM                | -54.00                 | SR                              | -0.081         | 589    | 100.00       | 0.150        | 25.4         |

Figure S28. OR report of wulfenioidin B (2)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

Figure S30.  $^{13}$ C and DEPT NMR spectra of wulfenioidin C (3) in chloroform (150 MHz)

![](_page_40_Figure_0.jpeg)

Figure S31. HSQC spectrum of wulfenioidin C (3) in chloroform (600 MHz)

![](_page_41_Figure_0.jpeg)

Figure S32. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of wulfenioidin C (3) in chloroform (600 MHz)

![](_page_42_Figure_0.jpeg)

Figure S33. HMBC spectrum of wulfenioidin C (3) in chloroform (600 MHz)

![](_page_43_Figure_0.jpeg)

Figure S34. ROESY spectrum of wulfenioidin C (3) in chloroform (600 MHz)

| [ |    | m/z 🗠    | lon         | Formula         | Abundance |             |          |            |            |             |               |
|---|----|----------|-------------|-----------------|-----------|-------------|----------|------------|------------|-------------|---------------|
|   |    | 289.2167 | (M+H)+      | C19 H29 O2      | 460258.7  |             |          |            |            |             |               |
|   |    | Best     | Formula (M) | lon Formula 🛛 🗠 | Score     | Cross Score | Calc m/z | Diff (ppm) | Mass Match | Abund Match | Spacing Match |
|   | ė- |          | C19 H28 O2  | C19 H29 O2      | 98.98     |             | 289.2162 | -1.63      | 98.34      | 99.32       | 99.86         |

![](_page_44_Figure_1.jpeg)

Figure S35. HRESIMS spectrum of wulfenioidin C (3)

![](_page_45_Figure_0.jpeg)

Figure S36. IR spectrum of wulfenioidin C (3)

![](_page_46_Figure_0.jpeg)

Figure S37. UV spectrum of wulfenioidin C (3)

![](_page_47_Figure_0.jpeg)

Figure S38. CD spectrum of wulfenioidin C (3)

### **Rudolph Research Analytical**

This sample was measured on an Autopol VI, Serial #91058 Manufactured by Rudolph Research Analytical, Hackettstown, NJ, USA.

Measurement Date : Thursday, 24-FEB-2022

Set Temperature : 20.0

Time Delay : Disabled

Delay between Measurement : Disabled

| <u>n</u><br>5 | Average<br>-87.20 | <u>Std.Dev.</u><br>0.84 | <u>% RSD</u><br>-0.96 | <u>Maxim</u><br>-86.00 | <u>um</u> <u>Mini</u><br>-88.00 | <b>mum</b>     |               |              |              |       |
|---------------|-------------------|-------------------------|-----------------------|------------------------|---------------------------------|----------------|---------------|--------------|--------------|-------|
| <u>S.No</u>   | Sample ID         | <u>Time</u>             |                       | <u>Result</u>          | <u>Scale</u>                    | <u>OR °Arc</u> | <u>WLG.nm</u> | <u>Lg.mm</u> | Conc.g/100ml | Temp. |
| 1             | JJS-26            | 02:31:                  | 57 PM                 | -87.00                 | SR                              | -0.087         | 589           | 100.00       | 0.100        | 20.0  |
| 2             | JJS-26            | 02:32:                  | 03 PM                 | -88.00                 | SR                              | -0.088         | 589           | 100.00       | 0.100        | 20.0  |
| 3             | JJS-26            | 02:32:                  | 09 PM                 | -88.00                 | SR                              | -0.088         | 589           | 100.00       | 0.100        | 20.0  |
| 4             | JJS-26            | 02:32:                  | 16 PM                 | -87.00                 | SR                              | -0.087         | 589           | 100.00       | 0.100        | 20.0  |
| 5             | JJS-26            | 02:32:                  | 22 PM                 | -86.00                 | SR                              | -0.086         | 589           | 100.00       | 0.100        | 20.0  |

Figure S39. OR report of wulfenioidin C (3)

![](_page_49_Figure_0.jpeg)

Figure S40. The full raw data of western blots (E, F, and G) of compound 3