Electronic Supplementary Information

for

Direct Construction of Biaryl-Bridged 8-11 Membered N-

Heterocycles via Gold(I)-Catalyzed Intramolecular [4 + 2]

Benzannulation of *N***-Tethered Diynyl Benzaldehydes**

Qing Bao, Jichao Chen, Zhen Liu and Weidong Rao*

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest

Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing,

210037, China

E-mail: <u>weidong@njfu.edu.cn</u>

Table of Contents

1. General information	S 1
2. Preparation and characterization of starting materials	S 1
3. General procedure for 'BuXPhosAu(MeCN)SbF ₆ -catalyzed intramolecular	S26
[4 + 2] benzannulation	
4. Gram-scale synthesis of 2a and 2c and further transformations	S47
5. ¹ H, ¹³ C and ¹⁹ F NMR Spectra	S52
6. X-ray crystal structure of 2a	S134
7. References	S136

1. General information

THF and toluene were dried using Na/benzophenone, DCE was dried using CaH₂. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and gradient solvent system (Petroleum ether: EtOAc as eluent). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded with either a Bruker AVQ-600 or 400 spectrometer instrument in CDCl₃. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), td (triplet of doublets), dt (doublet of triplet) or m (multiplet). The number of protons (*n*) for a given resonance is indicated by *n*H and coupling constants are reported as a *J* value in Hz. High resolution mass spectra (HRMS) were obtained on a Finnigan MAT95XP LC/HRMS TOF spectrometer using simultaneous electrospray (ESI). Melting points were determined using a digital melting point apparatus (MPA-100).

2. Preparation and characterization of starting materials

2.1. General Procedure A

Step 1: To a 50 mL round-bottom flask equipped with a stirring bar were added **S1** (2 mmol, 1 equiv), ^{S1} tetrabutylammonium hydrogen sulfate (0.2 mmol, 0.1 equiv), propargyl bromide (2.4 mmol, 1.2 equiv), 50% aqueous NaOH (2 mL) and DCM (6 mL), and the reaction mixture was allowed to stir at room temperature for 4 h until full consumption of **S1** (as indicated by TLC). The resulting mixture was quenched with water (3 mL) and extracted with DCM, the combined organic layers were washed with brine and dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S2**.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo(bromo)-benzaldehyde derivatives (1.1 equiv), **S2** (1.0 equiv, if solid, added at this time), Pd(PPh₃)₂Cl₂ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (${}^{i}Pr_{2}NH$, 4.0 equiv) under an argon atmosphere at 0 °C. **S2** (if liquid, dissolved in THF and added at last by a syringe). The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **1a** and **1c-1v**.

2.2. General Procedure B

The 2-bromo-benzaldehyde derivatives (S3) was prepared according to the literature procedure.^{S2} To an oven-dried round-bottom flask equipped with a stirring bar were added S3 (1.1 equiv), S2f (1.0 equiv), Pd(PPh₃)₂Cl₂ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (i Pr₂NH, 4.0 equiv) under an argon atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). The reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **1x-1y**.

2.3. General Procedure C

Step 1: The Ts-protected 2-(phenylethynyl)aniline (**S4**) was prepared according to the literature procedure.^{S3} To a solution of **S4** (1.0 equiv), triphenylphosphine (1.3 equiv) and alkynol (1.1 equiv) in anhydrous THF (0.4 M) at 0 $^{\circ}$ C was added diisopropyl azodicarboxylate (DIAD, 1.4 equiv) dropwise. The mixture was warmed to room temperature and stirred for 12 h until full consumption of the starting material (monitored by TLC). The mixture was concentrated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S5**.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo-benzaldehyde (1.1 equiv), **S5** (1.0 equiv), $Pd(PPh_3)_2Cl_2$ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (^{*i*}Pr₂NH, 4.0 equiv) under an argon atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **1w**, **1z and 1ak**.

2.4. General Procedure D

Step 1: S6 and S7 were prepared according to the literature procedure.^[S4-S7] To a solution of triphenylphosphine (1.3 equiv), S6 (1.0 equiv) and alkyneamine S7 (1.2 equiv) in anhydrous THF (0.4 M) at 0 $^{\circ}$ C was added diisopropyl azodicarboxylate (DIAD, 1.4 equiv) dropwise. The mixture was warmed to room temperature and stirred

for 12 h until full consumption of the starting material (monitored by TLC). The mixture was concentrated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S8**.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo-benzaldehyde derivatives (1.1 equiv), **S8** (1.0 equiv), $Pd(PPh_3)_2Cl_2$ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (^{*i*}Pr₂NH, 4.0 equiv) under an argon atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **1aa-1aj.**

2.5. General Procedure E

To a stirred solution of 1c (1 mmol, 1 equiv) in MeOH (4 mL) was added K₂CO₃ (1.3 mmol, 1.3 equiv) at room temperature. The reaction mixture was stirred for 12 h and then concentrated in vacuo. The crude residue was washed with water and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the desired terminal alkyne **1b**.

2.6. General Procedure F

Step 1: To a 25 mL oven-dried round-bottom flask equipped with a stirring bar were added **S6** (2 mmol, 1 equiv), and tetrabutylammonium iodide (0.2 mmol, 0.1 equiv) in dry DMF (0.2 M) was added NaH (60% w/w, 3 mmol, 1.5 equiv) under an argon atmosphere at 0 °C. When most of the evolution of H₂ gas had passed, propargyl bromide (3 mmol, 1.5 equiv) was added and the resulting reaction mixture was brought to room temperature and stirred for 2 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with water and brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford **S9**.

Step 2: To an oven-dried round-bottom flask equipped with a stirring bar were added 2-iodo-benzaldehyde (1.1 equiv), **S9** (1.0 equiv), $Pd(PPh_3)_2Cl_2$ (2 mol %) and CuI (2 mol %) in anhydrous THF (0.2 M) was added diisopropylamine (^{*i*}Pr₂NH, 4.0 equiv) under an argon atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc) to afford the desired diyne **1al**.

N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl)benzyl) benzenesulfonamide (1a)

The title compound was prepared according to general procedure **A** in 59% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1a** as a pale-yellow solid, mp 118–120 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.78 (s, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.73–7.68 (m, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.56–7.52 (m, 1H), 7.39 (td, *J* = 7.6, 1.1 Hz, 1H), 7.33–7.28 (m, 5H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.20–7.16 (m, 1H), 7.10 (t, *J* = 7.6 Hz, 2H), 7.06–7.03 (m, 1H), 4.78 (s, 2H), 4.31 (s, 2H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.5, 143.9, 136.5, 135.9, 135.7, 133.3, 133.2, 132.5, 131.4, 129.7, 129.1, 129.0, 128.6, 128.3, 128.1, 128.0, 127.8, 126.7, 125.6, 123.1, 122.6, 94.4, 89.2, 86.7, 81.6, 48.6, 37.1, 21.4; HRMS (ESI) calcd for C₃₂H₂₆NO₃S [M+H]⁺: 504.1628; found: 504.1635.

N-(2-ethynylbenzyl)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-

benzenesulfonamide (1b)

The title compound was prepared according to general procedure **A** and **E** in 47% yield over 3 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1b** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl3)** δ 9.91 (s, 1H), 7.87–7.80 (m, 3H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.52–7.46 (m, 2H), 7.44–7.38 (m, 2H), 7.31–7.27 (m, 1H), 7.25-7.24 (m, 3H), 4.71 (s, 2H), 4.27 (s, 2H), 3.20 (s, 1H), 2.25 (s, 3H); ¹³**C NMR (150 MHz, CDCl3)** δ 190.9, 144.0, 137.3, 135.8, 135.8, 133.5, 133.3, 133.0, 129.7, 129.5, 128.8, 128.6, 127.9, 127.7, 126.8, 125.9, 121.7, 89.2, 82.5, 81.6, 81.0, 48.4, 37.2, 21.3; **HRMS (ESI)** calcd for C₂₆H₂₂NO₃S [M+H]⁺: 428.1315; found: 428.1316.

N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-((trimethylsilyl)ethynyl) benzyl)benzenesulfonamide (1c)

The title compound was prepared according to general procedure **A** in 67% yield over 2 steps.. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 12:1) to afford **1c** as a yellow oil; ¹**H NMR (600 MHz, CDCl3)** δ 9.92–9.77 (m, 1H), 7.84–7.79 (m, 3H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.47–7.42 (m, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.33 (td, *J* = 7.7, 1.1 Hz, 1H), 7.24–7.20 (m, 3H), 7.15 (d, *J* = 7.4 Hz, 1H), 4.68 (s, 2H), 4.31 (s, 2H), 2.26 (s, 3H), 0.07 (s, 9H); ¹³C **NMR (150 MHz, CDCl3**) δ 190.5, 143.8, 136.9, 135.7, 135.7, 133.3, 133.2, 132.7, 129.6, 128.9, 128.7, 127.9, 127.6, 127.5, 126.7, 125.6, 122.5, 101.9, 100.1, 89.0, 81.3, 48.7, 37.3, 21.2, -0.4; **HRMS (ESI)** calcd for C₂₉H₃₀NO₃SSi [M+H]⁺: 500.1710; found: 500.1719. *N*-(2-(cyclopropylethynyl)benzyl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-

methylbenzenesulfonamide (1d)

The title compound was prepared according to general procedure **A** in 66% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1d** as a yellow solid, mp 94–96 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 7.85-7.82 (m, 3H), 7.53-7.50 (m, 2H), 7.41-7.38 (dd, 2H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.25–7.18 (m, 4H), 4.64 (s, 2H), 4.26 (s, 2H), 2.28 (s, 3H), 1.31–1.18 (m, 1H), 0.84–0.50 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 143.8, 136.1, 135.7, 135.6, 133.4, 133.3, 132.3, 129.5, 128.6, 128.5, 127.8, 127.6, 127.6, 126.6, 125.7, 123. 7, 98.8, 89.2, 81.4, 73.0, 48.5, 36.9, 21.2, 8.5, 0.1; HRMS (ESI) calcd for C₂₉H₂₆NO₃S [M+H]⁺:468.1628; found: 468.1631.

N-(2-(cyclohexylethynyl)benzyl)-N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-

methylbenzenesulfonamide (1e)

The title compound was prepared according to general procedure **A** in 59% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 12:1) to afford **1e** as a colorless solid, mp 112–114 °C; **¹H NMR** (400 MHz, CDCl₃) δ 9.84 (s, 1H), 7.85-7.83 (m, 3H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.5 Hz, 1H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.30–7.17 (m, 4H), 4.70 (s, 2H), 4.33 (s, 2H), 2.41–2.34 (m, 1H), 2.32 (s, 3H), 1.77–1.63 (m, 2H), 1.63–1.50 (m, 2H), 1.49–1.39 (m, 1H), 1.38–1.23 (m, 2H), 1.23–1.05 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.7, 143.9, 136.3, 136.0, 135.8, 133.4, 133.3, 132.3, 129.6, 128.7, 128.2, 128.0, 127.7, 127.6, 126.8, 125.9, 123.7, 100.0, 89.5, 81.3, 77.7, 48.6, 37.1, 32.4, 29.7, 25.6, 24.8, 21.4; HRMS (ESI) calcd for C₃₂H₃₂NO₃S [M+H]⁺: 510.2097; found: 510.2097.

N-(3-(2-formylphenyl)prop-2-yn-1-yl)-*N*-(2-(hept-1-yn-1-yl)benzyl)-4-methylbenzenesulfonamide (1f)

The title compound was prepared according to general procedure **A** in 53% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1f** as a pale-yellow oil; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 9.84 (d, *J* = 0.6 Hz, 1H), 7.88–7.80 (m, 3H), 7.55 (d, *J* = 7.5 Hz, 1H), 7.48 (td, *J* = 7.6, 1.4 Hz, 1H), 7.43–7.37 (m, 2H), 7.31 (td, *J* = 7.6, 1.2 Hz, 1H), 7.25-7.22 (m, 3H), 7.21 (d, *J* = 7.7 Hz, 1H), 4.67 (s, 2H), 4.28 (s, 2H), 2.28 (s, 3H), 2.19 (t, *J* = 7.3 Hz, 2H), 1.45–1.34 (m, 2H), 1.29–1.18 (m, 4H), 1.16-1.14 (m, 2H), 0.84 (t, *J* = 7.3

Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.6, 143.8, 136.3, 136.0, 135.8, 133.4, 133.3, 132.4, 129.6, 128.7, 128.5, 128.0, 127.7, 127.7, 126.8, 125.9, 123.8, 96.0, 89.5, 81.4, 77.8, 48.6, 37.0, 31.2, 28.6, 28.5, 22.4, 21.3, 19.4, 14.0; HRMS (ESI) calcd for C₃₂H₃₄NO₃S [M+H]⁺: 512.2254; found: 512.2255.

N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(5-tosylpent-1-yn-1yl)benzyl)benzenesulfonamide (1g)

The title compound was prepared according to general procedure **A** in 55% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 4:1) to afford **1g** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCI**₃) δ 9.82 (s, 1H), 7.85–7.78 (m, 3H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.52–7.46 (m, 2H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.36 (d, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.26–7.21 (m, 3H), 7.19 (d, *J* = 7.7 Hz, 1H), 4.59 (s, 2H), 4.20 (s, 2H), 3.22–3.12 (m, 2H), 2.42 (s, 3H), 2.39 (t, *J* = 6.9 Hz, 2H), 2.25 (s, 3H), 1.94–1.85 (m, 2H); ¹³C **NMR (150 MHz, CDCI**₃) δ 190.6, 144.6, 143.9, 136.2, 136.0, 135.7, 135.6, 133.6, 133.3, 132.7, 129.9, 129.7, 128.9, 128.8, 128.4, 128.0, 127.9, 127.7, 126.9, 125.7, 123.3, 93.3, 89.2, 81.6, 79.3, 55.2, 48.8, 36.9, 21.9, 21.6, 21.3, 18.3; HRMS (ESI) calcd for C₃₆H₃₃NNaO₅S₂ [M+Na]⁺: 646.1692; found: 646.1682.

Methyl 6-(2-(((*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methylphenyl) sulfonamido)methyl)phenyl)hex-5-ynoate (1h)

The title compound was prepared according to general procedure **A** in 63% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1h** as a pale-yellow oil; ¹**H NMR** (600 MHz, **CDCl**₃) δ 9.83 (s, 1H), 7.84–7.81 (m, 3H), 7.52 (d, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.5 Hz,

1H), 7.42–7.36 (m, 2H), 7.29 (t, J = 7.6 Hz, 1H), 7.25–7.20 (m, 3H), 7.19 (d, J = 7.7 Hz, 1H), 4.64 (s, 2H), 4.25 (s, 2H), 3.61 (s, 3H), 2.34 (t, J = 7.4 Hz, 2H), 2.30 (t, J = 7.0 Hz, 2H), 2.25 (s, 3H), 1.81–1.72 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 190. 6, 173.3, 143.8, 136.2, 135.8, 135.7, 133.5, 133.2, 132.5, 129.6, 128.7, 128.6, 128.2, 127.8, 127.7, 126.8, 125.7, 123.5, 94.5, 89.3, 81.4, 78.6, 51.4, 48.7, 37.0, 32.8, 23.7, 21.3, 18.8; HRMS (ESI) calcd for C₃₁H₃₀NO₅S [M+H]⁺: 528.1839; found: 528.1843. *N*-(2-(5-((*N*,4-dimethylphenyl)sulfonamido)pent-1-yn-1-yl)benzyl)-*N*-(3-(2-

formylphenyl)prop-2-yn-1-yl)-4-methylbenzenesulfonamide (1i)

The title compound was prepared according to general procedure **A** in 64% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 6:1) to afford **1i** as a pale-yellow solid, mp 92–94 °C; **¹H NMR** (**600 MHz, CDCl3**) δ 9.85 (s, 1H), 7.83–7.82 (m, 3H), 7.65–7.59 (m, 2H), 7.54–7.46 (m, 2H), 7.39 (t, *J* = 7.1 Hz, 2H), 7.33–7.26 (m, 3H), 7.25–7.15 (m, 4H), 4.65 (s, 2H), 4.23 (s, 2H), 2.99 (t, *J* = 6.9 Hz, 2H), 2.64 (s, 3H), 2.38 (s, 3H), 2.31 (t, *J* = 7.1 Hz, 2H), 2.24 (s, 3H), 1.78–1.64 (m, 2H); ¹³C NMR (**150 MHz, CDCl3**) δ 190.6, 143.8, 143.2, 136.2, 135.7, 135.6, 134.2, 133.6, 133.3, 132.5, 129.6, 129.5, 128.7, 128.6, 128.1, 127.7, 127.6, 127.2, 126.8, 125.6, 123.5, 94.5, 89.2, 81.4, 78.4, 49.1, 48.7, 36.9, 34.8, 26.7, 21.3, 21.2, 16.6; **HRMS (ESI)** calcd for C₃₇H₃₇N₂O₅S₂ [M+H]⁺: 653.2138; found: 653.2139.

N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(4-(naphthalen-2-yloxy)but-1-yn-1-yl)benzyl)benzenesulfonamide (1j)

The title compound was prepared according to general procedure **A** in 57% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 12:1 to 10:1) to afford **1j** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl₃)** δ 9.87 (s, 1H), 7.83 (d, *J* = 8.0 Hz, 2H), 7.77–7.75 (m, 2H), 7.70 (dd, *J* = 8.2, 5.1 Hz, 2H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.36–7.26 (m, 4H), 7.17 (d, *J* = 7.8 Hz, 3H), 7.11–7.05 (m, 2H), 4.70 (s, 2H), 4.28 (s, 2H), 4.15 (t, *J* = 7.1 Hz, 2H), 2.84 (t, *J* = 7.1 Hz, 2H), 2.21 (s, 3H); ¹³C **NMR (150 MHz, CDCl₃)** δ 190.6, 156.3, 143.8, 136.4, 135.8, 135.7, 134.4, 133.4, 133.2, 132.7, 129.6, 129.3, 129.0, 128.9, 128.7, 128.4, 127.9, 127.7, 127.6, 126.9, 126.7, 126.3, 125.6, 123.6, 123.4, 118.7, 106.9, 91.6, 89.4, 81.5, 79.3, 65.9, 48.8, 37.0, 21.2, 20.5; **HRMS (ESI)** calcd for C₃₈H₃₂NO₄S [M+H]⁺: 598.2047; found: 598.2045. *N*-(3-(3-fluoro-2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (1k)

The title compound was prepared according to general procedure **A** in 46% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 12:1 to 10:1) to afford **1k** as a colorless solid, mp 119–120 °C; ¹H NMR (**600 MHz, CDCl**₃) δ 9.87 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.34–7.28 (m, 3H), 7.24 (d, *J* = 7.8 Hz, 2H), 7.22–7.16 (m, 2H), 7.13 (t, *J* = 7.5 Hz, 2H), 6.96 (t, *J* = 9.4 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 4.79 (s, 2H), 4.28 (s, 2H), 2.30 (s, 3H); ¹³C NMR (**150 MHz, CDCl**₃) δ 187.1, 162.0 (d, *J* = 263.0 Hz), 143.70, 136.40, 135.8, 134.2 (d, *J* = 10.5 Hz), 132.4, 131.3, 129.6, 129.1, 128.8, 128.2, 128.0, 127.9, 127.8, 126.0 (d, *J* = 3.4 Hz), 123.9 (d, *J* = 8.1 Hz), 123.1, 122.6, 116.8, 116.7, 94.2, 89.9, 86.7, 81.6 (d, *J* = 4.2 Hz), 48.5, 37.0, 21.3; ¹⁹F NMR (**565 MHz, CDCl**₃) δ -115.96 (dd, *J* = 10.4, 5.4 Hz); HRMS (ESI) calcd for C₃₂H₂₄FNNaO₃S [M+Na]⁺: 544.1353; found: 544.1355.

N-(3-(5-chloro-2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (11)

The title compound was prepared according to general procedure **A** in 44% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 10:1) to afford **11** as a colorless solid, mp 134–136 °C; ¹H NMR (**600 MHz, CDCl**₃) δ 9.74 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.34–7.31 (m, 3H), 7.25–7.22 (m, 3H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 2H), 6.90 (s, 1H), 4.77 (s, 2H), 4.30 (s, 2H), 2.38 (s, 3H); ¹³C NMR (**150 MHz, CDCl**₃) δ 189.3, 144.1, 139.6, 136.3, 135.9, 134.1, 132.9, 132.4, 131.3, 129.7, 129.2, 129.1, 129.0, 128.3, 128.1, 128.1, 128.1, 127.9, 126.9, 123.2, 122.5, 94.3, 90.5, 86.7, 80.4, 48.5, 36.9, 21.5; HRMS (ESI) calcd for C₃₂H₂₅ClNO₃S [M+H]⁺: 538.1238; found: 538.1218.

N-(3-(5-bromo-2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (1m)

The title compound was prepared according to general procedure **A** in 56% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1m** as a colorless solid, mp 141–143 °C; **¹H NMR** (600 MHz, CDCl₃) δ 9.73 (s, 1H), 7.87 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.43–7.37 (m, 2H), 7.34–7.30 (m, 3H), 7.22 (d, *J* = 7.1 Hz, 2H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.14–7.05 (m, 3H), 4.77 (s, 2H), 4.30 (s, 2H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.5, 144.1, 136.3, 135.8, 135.7, 134.4, 132.4, 132.0, 131.2, 129.7, 129.2, 129.0, 128.3, 128.2, 128.1, 128.1, 128.0,

127.9, 127.0, 123.2, 122.5, 94.3, 90.6, 86.7, 80.2, 48.5, 36.9, 21.6; **HRMS (ESI)** calcd for C₃₂H₂₄BrNNaO₃S [M+Na]⁺: 604.0552; found: 604.0557.

N-(3-(2-formyl-5-methylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (1n)

The title compound was prepared according to general procedure **A** in 41% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1n** as a colorless solid, mp 141–143 °C; **¹H NMR** (600 MHz, CDCl₃) δ 9.73 (s, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.68–7.58 (m, 2H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.34–7.27 (m, 3H), 7.25 (d, *J* = 8.3 Hz, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 3H), 6.85 (s, 1H), 4.78 (s, 2H), 4.31 (s, 2H), 2.30 (s, 3H), 2.22 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.2, 144.3, 143.8, 136.5, 135.9, 133.6, 133.5, 132.4, 131.4, 129.6, 129.6, 129.0, 128.9, 128.2, 128.0, 127.9, 127.8, 126.8, 125.6, 123.1, 122.6, 94.4, 88.6, 86.6, 81.8, 48.5, 37.1, 21.4; HRMS (ESI) calcd for C₃₃H₂₇NNaO₃S [M+Na]⁺: 540.1604; found: 540.1596.

N-(3-(4-bromo-2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (10)

The title compound was prepared according to general procedure **A** in 61% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1o** as a colorless solid, mp 141–143 °C; ¹**H NMR** (**600 MHz, CDCl**₃) δ 9.64 (s, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 2.1 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.53 (dd, *J* = 7.6, 0.9 Hz, 1H), 7.39 (td, *J* = 7.6, 1.2 Hz, 1H), 7.35 (dd, *J* = 8.2, 2.1 Hz, 1H), 7.31 (td, *J* = 7.6, 1.0 Hz, 1H), 7.29–7.26 (m, 2H), 7.24–7.17 (m, 3H), 7.14–7.07 (m, 2H), 6.85 (d, *J* = 8.2 Hz, 1H), 4.76 (s, 2H), 4.28 (s, 2H),

2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.1, 143.9, 136.8, 136.3, 136.0, 135.8, 134.5, 132.4, 131.2, 129.7, 129.6, 129.0, 129.0, 128.3, 128.1, 128.0, 127.8, 124.2, 123.1, 123.1, 122.5, 94.2, 90.4, 86.7, 80.8, 48.4, 36.9, 21.4; HRMS (ESI) calcd for C₃₂H₂₄BrNNaO₃S [M+Na]⁺: 604.0552; found: 604.0560.

N-(3-(2-formyl-4-methylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (1p)

The title compound was prepared according to general procedure **A** in 43% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1p** as a colorless solid, mp 120–122 °C; **¹H NMR** (400 MHz, CDCl₃) δ 9.74 (s, 1H), 7.86 (d, *J* = 8.2 Hz, 2H), 7.63 (d, *J* = 7.7 Hz, 1H), 7.54 (dd, *J* = 7.6, 1.0 Hz, 1H), 7.49 (s, 1H), 7.38 (td, *J* = 7.6, 1.2 Hz, 1H), 7.32 (dd, *J* = 7.5, 1.0 Hz, 1H), 7.26–7.24 (m, 4H), 7.23–7.16 (m, 1H), 7.16–7.05 (m, 3H), 6.94 (d, *J* = 7.9 Hz, 1H), 4.77 (s, 2H), 4.30 (s, 2H), 2.32 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.8, 143.9, 139.0, 136.5, 135.9, 135.6, 134.2, 133.2, 132.5, 131.4, 129.7, 129.0, 128.9, 128.2, 128.0, 127.9, 127.8, 127.0, 123.1, 122.9, 122.7, 94.4, 88.3, 86.7, 81.8, 48.6, 37.1, 21.4, 21.2; HRMS (ESI) calcd for C₃₃H₂₈NO₃S [M+H]⁺: 518.1784; found: 518.1786.

N-(5-chloro-2-(phenylethynyl)benzyl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide (1q)

The title compound was prepared according to general procedure **A** in 52% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 14:1 to 12:1) to afford **1q** as a pale-yellow solid, mp 125–127 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.77 (s, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.74–7.69 (m, 1H),

7.62 (d, J = 2.0 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.34–7.24 (m, 7H), 7.20 (t, J = 7.5 Hz, 1H), 7.10 (t, J = 7.7 Hz, 2H), 7.08–7.03 (m, 1H), 4.74 (s, 2H), 4.34 (s, 2H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.3, 144.1, 138.5, 135.6, 134.9, 133.5, 133.3, 133.2, 131.3, 129.7, 128.9, 128.6, 128.5, 128.3, 128.1, 127.7, 126.8, 125.3, 122.2, 121.4, 95.3, 88.8, 85.6, 81.8, 48.3, 37.4, 21.3; HRMS (ESI) calcd for C₃₂H₂₅ClNO₃S [M+H]⁺: 538.1238; found: 538.1240.

N-(5-bromo-2-(phenylethynyl)benzyl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide (1r)

The title compound was prepared according to general procedure **A** in 57% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 12:1) to afford **1r** as a colorless solid, mp 144–146 °C; **¹H NMR** (**600 MHz, CDCl**₃) δ 9.78 (s, 1H), 7.84 (d, *J* = 7.2 Hz, 2H), 7.76 (s, 1H), 7.73–7.67 (m, 1H), 7.45–7.40 (m, 1H), 7.37 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.34–7.29 (m, 2H), 7.29–7.26 (m, 2H), 7.24 (d, *J* = 7.0 Hz, 2H), 7.22–7.17 (m, 1H), 7.10 (t, *J* = 7.5 Hz, 2H), 7.07–7.02 (m, 1H), 4.73 (s, 2H), 4.33 (s, 2H), 2.29 (s, 3H); ¹³C NMR (**150 MHz, CDCl**₃) δ 190.3, 144.1, 138.6, 135.6, 135.6, 133.6, 133.3, 133.2, 131.8, 131.3, 131.2, 129.7, 128.6, 128.5, 128.1, 127.7, 126.7, 125.3, 123.0, 122.2, 121.8, 95.5, 88.8, 85.6, 81.8, 48.2, 37.3, 21.3; HRMS (ESI) calcd for C₃₂H₂₄BrNNaO₃S [M+ Na]⁺: 604.0552; found: 604.0554. *N*-(**3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-***N***-(5-methyl-2-(phenylethynyl) benzyl)benzenesulfonamide (1s)**

The title compound was prepared according to general procedure **A** in 43% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1s** as a colorless solid, mp 126–128 °C; ¹**H NMR**

(400 MHz, CDCl₃) δ 9.77 (s, 1H), 7.86 (d, J = 7.7 Hz, 2H), 7.73–7.65 (m, 1H), 7.47–7.39 (m, 2H), 7.33–7.27 (m, 2H), 7.26–7.19 (m, 4H), 7.19–7.00 (m, 5H), 4.74 (s, 2H), 4.31 (s, 2H), 2.39 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.5, 143.9, 139.3, 136.3, 135.9, 135.7, 133.3, 133.2, 132.3, 131.3, 129.6, 129.6, 128.9, 128.5, 128.1, 128.0, 127.8, 126.6, 125.7, 122.8, 120.1, 93.6, 89.2, 86.9, 81.6, 48.5, 37.1, 21.5, 21.4; HRMS (ESI) calcd for C₃₃H₂₈NO₃S [M+H]⁺: 518.1784; found: 518.1783.

N-(4-chloro-2-(phenylethynyl)benzyl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide (1t)

The title compound was prepared according to general procedure **A** in 58% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 12:1) to afford **1t** as a pale-yellow solid, mp 133–134 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.77 (s, 1H), 7.84 (d, *J* = 8.2 Hz, 2H), 7.72–7.68 (m, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.51 (d, *J* = 1.8 Hz, 1H), 7.34 (dd, *J* = 8.4, 1.5 Hz, 1H), 7.33–7.27 (m, 4H), 7.25–7.23 (m, 2H), 7.20 (t, *J* = 7.5 Hz, 1H), 7.10 (t, *J* = 7.7 Hz, 2H), 7.06–7.01 (m, 1H), 4.72 (s, 2H), 4.30 (s, 2H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.3, 144.0, 135.7, 135.6, 135.1, 133.7, 133.3, 133.2, 131.9, 131.4, 130.4, 129.7, 129.1, 128.6, 128.1, 127.7, 126.8, 125.4, 124.7, 122.1, 95.4, 88.9, 85.3, 81.8, 48.1, 37.2, 21.3; HRMS (ESI) calcd for C₃₂H₂₅ClNO₃S [M+H]⁺: 538.1238; found: 538.1238. *N*-(**4**-bromo-**2**-(phenylethynyl)benzyl)-*N*-(**3**-(**2**-formylphenyl)prop-**2**-yn-**1**-yl)-**4**-methylbenzenesulfonamide (**1**u)

The title compound was prepared according to general procedure **A** in 53% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1u** as a pale-yellow solid, mp 122–124 °C; ¹H

NMR (600 MHz, CDCI3) δ 9.76 (s, 1H), 7.84 (d, J = 8.2 Hz, 2H), 7.72–7.69 (m, 1H), 7.68 (d, J = 1.7 Hz, 1H), 7.53–7.47 (m, 2H), 7.34–7.27 (m, 4H), 7.24 (d, J = 8.0 Hz, 2H), 7.22–7.18 (m, 1H), 7.10 (t, J = 7.7 Hz, 2H), 7.06–7.02 (m, 1H), 4.71 (s, 2H), 4.30 (s, 2H), 2.28 (s, 3H); ¹³C **NMR (150 MHz, CDCI₃)** δ 190.4, 144.1, 135.7, 135.6, 135.6, 134.8, 133.3, 133.2, 132.0, 131.5, 130.6, 129.7, 128.7, 128.2, 127.7, 126.8, 125.4, 125.0, 122.1, 121.6, 95.6, 88.9, 85.2, 81.8, 48.2, 37.2, 21.4; **HRMS (ESI)** calcd for C₃₂H₂₄BrNNaO₃S [M+Na]⁺: 604.0552; found: 604.0562.

N-(2-fluoro-6-(phenylethynyl)benzyl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide (1v)

The title compound was prepared according to general procedure **A** in 50% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1v** as a pale-yellow solid, mp 131–133 °C; **¹H NMR (600 MHz, CDCl₃)** δ 9.82 (s, 1H), 7.85 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.47 (d, *J* = 7.5 Hz, 2H), 7.42–7.36 (m, 2H), 7.35–7.27 (m, 2H), 7.25–7.14 (m, 5H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.05 (t, *J* = 8.9 Hz, 1H), 4.81 (s, 2H), 4.28 (s, 2H), 2.22 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.8, 161.9 (d, *J* = 249.7 Hz), 143.8, 135.6 (d, *J* = 9.7 Hz), 133.2 (d, *J* = 7.8 Hz), 131.7, 129.9 (d, *J* = 9.5 Hz), 129.5, 128.8 (d, *J* = 3.1 Hz), 128.6, 128.5, 128.1, 127.9, 126.54, 126.5 (d, *J* = 4.8 Hz), 126.0, 123.3, 123.2, 122.3, 116.0, 115.8, 95.4, 89.5, 85.8, 81.2, 43.3, 37.1, 21.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -113.14 (dd, *J* = 8.8, 5.9 Hz); HRMS (ESI) calcd for C₃₂H₂₅FNO₃S [M+H]⁺: 522.1534; found: 522.1536.

N-(4-(2-formylphenyl)but-3-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl)phenyl) benzenesulfonamide (1w)

The title compound was prepared according to general procedure **C** in 75% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1w** as a colorless solid, mp 118–120 °C; ¹H NMR (**600 MHz, CDCl₃**) δ 10.36 (s, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.54–7.49 (m, 1H), 7.47–7.39 (m, 3H), 7.36–7.26 (m, 8H), 7.06 (d, *J* = 6.9 Hz, 2H), 4.05 (t, *J* = 7.1 Hz, 2H), 2.83 (t, *J* = 7.0 Hz, 2H), 2.16 (s, 3H); ¹³C NMR (**150 MHz, CDCl₃**) δ 191.4, 143.2, 139.5, 136.7, 135.7, 133.4, 133.3, 133.2, 132.1, 131.2, 129.3, 128.7, 128.4, 128.2, 128.0, 127.3, 126.8, 126.6, 123.5, 122.3, 94.3, 94.0, 85.8, 77.9, 49.1, 21.1, 20.7; HRMS (ESI) calcd for C₃₂H₂₆NO₃S [M+H]⁺: 504.1628; found: 504.1627.

3-Formyl-4-(3-((4-methyl-*N*-(2-(oct-1-yn-1-yl)benzyl)phenyl)sulfonamido)prop-1yn-1-yl)phenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1*H*-indol-3-yl)acetate (1x)

The title compound was prepared according to general procedure **B** in 39% yield. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 8:1) to afford **1x** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 9.80 (s, 1H), 7.84 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 8.5 Hz, 2H), 7.57–7.53 (m, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 7.0 Hz, 1H), 7.34–7.29 (m, 1H), 7.27–7.21 (m, 5H), 7.05 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.73 (dd, J = 9.0, 2.5 Hz, 1H), 4.68 (s, 2H), 4.29 (s, 2H), 3.94 (s, 2H), 3.86 (s, 3H), 2.48 (s, 3H), 2.31 (s, 3H), 2.23 (t, J = 7.2 Hz, 2H), 1.47–1.41 (m, 2H), 1.33–1.23 (m, 4H), 1.22–1.15 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.6, 168.5, 168.2, 156.1, 150.7, 143.9, 139.4, 136.9, 136.3, 136.1, 135.9, 134.4, 133.6, 132.4, 131.1, 130.8, 130.2, 129.6, 129.1, 128.4, 128.0, 127.7, 127.6, 126.9, 123.8, 123.3, 119.5, 115.0, 111.7, 111.3, 101.1, 96.1, 89.7, 80.5, 77.8, 55.6, 48.6, 37.0, 31.1, 30.3, 28.5, 28.5, 22.4, 21.3, 20.5, 19.4, 13.9, 13.3; HRMS (ESI) calcd for C₅₁H₄₇ClN₂NaO₇S [M+Na]⁺: 889.2685; found: 889.2678.

3-formyl-4-(3-((4-methyl-*N*-(2-(oct-1-yn-1-yl)benzyl)phenyl)sulfonamido)prop-1yn-1-yl)phenyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (1y)

The title compound was prepared according to general procedure **B** in 35% yield. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1 to 7:1) to afford **1y** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 9.81 (s, 1H), 8.28 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 2.4 Hz, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.42–7.35 (m, 2H), 7.31–7.27 (m, 2H), 7.24 (d, J = 7.8 Hz, 2H), 7.22 (t, J = 7.5 Hz, 1H), 4.66 (s, 2H), 4.28 (s, 2H), 3.18–3.07 (m, 4H), 2.30 (s, 3H), 2.21 (t, J = 7.2 Hz, 2H), 1.62–1.49 (m, 4H), 1.47–1.37 (m, 2H), 1.32–1.12 (m, 6H), 0.87 (t, J = 7.4 Hz, 6H), 0.83 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 189.5, 163.1, 150.6, 145.3, 143.9, 137.1, 136.1, 135.9, 134.6, 132.4, 131.9, 130.8, 129.6, 128.4, 128.0, 127.7, 127.6, 127.2, 126.9, 123.7, 123.5, 119.7, 96.1, 89.9, 80.4, 77.8, 49.8, 48.6, 37.0, 31.1, 28.5, 28.5, 22.4, 21.8, 21.3, 19.4, 13.9, 11.0; HRMS (ESI) calcd for C₄₅H₅₁N₂O₇S₂ [M+H]⁺: 795.3132; found: 795.3135.

N-(2-(cyclohexylethynyl)phenyl)-*N*-(5-(2-formylphenyl)pent-4-yn-1-yl)-4methylbenzenesulfonamide (1z)

The title compound was prepared according to general procedure **C** in 64% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1 to 20:1) to afford **1z** as a pale-yellow oil; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 10.41 (s, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.38 (dd, *J* = 7.1, 1.9 Hz, 1H), 7.34 (t, *J* = 7.5 Hz,

1H), 7.24–7.16 (m, 5H), 3.82 (s, 2H), 2.59 (t, *J* = 7.0 Hz, 2H), 2.36 (s, 3H), 2.32–2.24 (m, 1H), 1.87–1.77 (m, 2H), 1.74–1.61 (m, 4H), 1.54–1.42 (m, 1H), 1.34–1.18 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 191.7, 142.9, 139.7, 136.7, 135.8, 133.7, 133.5, 133.2, 130.8, 129.2, 127.9, 127.8, 127.8, 127.7, 127.4, 126.6, 124.7, 99.7, 96.6, 76.8, 49.3, 32.1, 29.6, 27.7, 25.6, 24.8, 21.3, 16.9; HRMS (ESI) calcd for C₃₃H₃₄NO₃S [M+H]⁺: 524.2254; found: 524.2254.

N-(4-(2-formylphenyl)but-3-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl)benzyl) benzenesulfonamide (1aa)

The title compound was prepared according to general procedure **D** in 34% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 10:1) to afford **1aa** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl3)** δ 10.29 (s, 1H), 7.85–7.81 (m, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.55–7.50 (m, 2H), 7.47–7.42 (m, 3H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.35–7.32 (m, 1H), 7.32–7.28 (m, 5H), 7.28–7.26 (m, 1H), 4.71 (s, 2H), 3.46 (t, J = 7.6 Hz, 2H), 2.63 (t, *J* = 7.7 Hz, 2H), 2.41 (s, 3H); ¹³**C NMR (150 MHz, CDCl3)** δ 191.6, 143.5, 137.5, 136.6, 135.8, 133.5, 133.3, 132.3, 131.4, 129.8, 128.9, 128.8, 128.5, 128.3, 128.1, 127.7, 127.1, 126.9, 126.7, 122.6, 122.4, 94.4, 93.8, 86.7, 77.9, 50.3, 47.0, 21.4, 20.1; **HRMS (ESI)** calcd for C₃₃H₂₈NO₃S [M+H]⁺: 518.1784; found: 518.1785.

N-(4-(4-chloro-2-formylphenyl)but-3-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (1ab)

The title compound was prepared according to general procedure **D** in 38% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum $_{S20}$

ether/EtOAc = 25:1 to 14:1) to afford **1ab** as a pale-yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 10.21 (s, 1H), 7.88–7.70 (m, 3H), 7.55–7.48 (m, 2H), 7.42 (d, *J* = 7.1 Hz, 2H), 7.37 (d, *J* = 8.3 Hz, 1H), 7.34–7.26 (m, 8H), 4.71 (s, 2H), 3.46 (t, *J* = 7.1 Hz, 2H), 2.63 (t, *J* = 7.1 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 190.3, 143.6, 137.5, 136.9, 136.6, 134.6, 133.5, 132.4, 131.4, 129.8, 128.9, 128.6, 128.3, 127.8, 127.2, 126.7, 125.2, 122.6, 122.4, 95.0, 94.4, 86.7, 77.0, 50.4, 46.9, 21.5, 20.2; HRMS (ESI) calcd for C₃₃H₂₇ClNO₃S [M+H]⁺: 552.1395; found: 552.1398.

N-(4-(2-formyl-4-methylphenyl)but-3-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) benzyl)benzenesulfonamide (1ac)

The title compound was prepared according to general procedure **D** in 30% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1ac** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 10.27 (s, 1H), 7.79 (d, *J* = 8.2 Hz, 2H), 7.63 (s, 1H), 7.56–7.50 (m, 2H), 7.44 (dd, *J* = 7.9, 1.5 Hz, 2H), 7.36–7.27 (m, 7H), 7.27–7.22 (m, 2H), 4.72 (s, 2H), 3.47 (t, *J* = 7.4 Hz, 2H), 2.62 (t, *J* = 7.6 Hz, 2H), 2.41 (s, 3H), 2.35 (s, 3H); ¹³C **NMR (150 MHz, CDCl**₃) δ 191.9, 143.6, 138.5, 137.7, 136.7, 135.8, 134.6, 133.3, 132.5, 131.5, 129.9, 129.0, 128.9, 128.6, 128.4, 127.8, 127.3, 127.2, 124.3, 122.8, 122.5, 94.5, 93.0, 86.8, 78.1, 50.4, 47.2, 21.6, 21.3, 20.2; **HRMS (ESI)** calcd for C₃₄H₃₀NO₃S [M+H]⁺: 532.1941; found: 532.1927.

N-(2-(cyclohexylethynyl)phenethyl)-*N*-(3-(2-formylphenyl)prop-2-yn-1-yl)-4methylbenzenesulfonamide (1ad)

The title compound was prepared according to general procedure **D** in 65% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 16:1) to afford **1ad** as a pale-yellow oil; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 9.86 (s, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.44–7.35 (m, 2H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.23–7.18 (m, 2H), 7.18–7.11 (m, 3H), 4.37 (s, 2H), 3.65–3.47 (m, 2H), 3.24–3.08 (m, 2H), 2.67–2.46 (m, 1H), 2.24 (s, 3H), 1.91–1.75 (m, 2H), 1.72–1.60 (m, 2H), 1.55–1.40 (m, 3H), 1.31–1.20 (m, 3H); ¹³C NMR (**150** MHz, **CDCl**₃) δ 190.5, 143.6, 139.4, 135.8, 135.7, 133.4, 133.2, 132.4, 129.4, 129.3, 128.7, 127.8, 127.5, 126.8, 126.5, 125.6, 123.6, 98.6, 89.5, 81.0, 78.5, 47.0, 37.7, 33.8, 32.6, 29.7, 25.7, 24.8, 21.2; HRMS (ESI) calcd for C₃₃H₃₄NO₃S [M+H]⁺: 524.2254; found: 524.2255.

N-(3-(2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl)phenethyl) benzenesulfonamide (1ae)

The title compound was prepared according to general procedure **D** in 40% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1ae** as a colorless solid, mp 110–112 °C; **¹H NMR (600 MHz, CDCl3)** δ 9.81 (s, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.51–7.46 (m, 2H), 7.44–7.39 (m, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.35–7.28 (m, 2H), 7.27–7.21 (m, 4H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 4.42 (s, 2H), 3.63 (t, *J* = 7.3 Hz, 2H), 3.26 (t, *J* = 7.9 Hz, 2H), 2.23 (s, 3H); ¹³C NMR (**150 MHz, CDCl3**) δ 190.6, 143.7, 139.7, 135.8, 135.7, 133.4, 133.3, 132.5, 131.4, 129.6, 129.5, 128.7, 128.7, 128.3, 128.3, 127.5, 126.8, 126.7, 125.6, 122.9, 122.9, 93.3, 89.4, 87.4, 81.2, 47.3, 37.8, 34.0, 21.3; **HRMS (ESI)** calcd for C₃₃H₂₈NO₃S [M+H]⁺: 518.1784; found: 518.1786.

N-(3-(4-chloro-2-formylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) phenethyl)benzenesulfonamide (1af)

The title compound was prepared according to general procedure **D** in 41% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 16:1) to afford **1af** as a pale-yellow solid, mp 120–122 °C; ¹**H NMR (600 MHz, CDCl3**) δ 9.70 (s, 1H), 7.75–7.67 (m, 3H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.48–7.43 (m, 2H), 7.34 (dd, *J* = 8.3, 1.6 Hz, 1H), 7.33–7.28 (m, 2H), 7.26–7.20 (m, 4H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 8.3 Hz, 1H), 4.40 (s, 2H), 3.6 (t, *J* = 7.4 Hz, 2H), 3.24 (t, *J* = 7.9 Hz, 2H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl3) δ 189.2, 143.7, 139.6, 136.7, 135.8, 135.2, 134.5, 133.3, 132.5, 131.4, 129.6, 129.5, 128.8, 128.4, 128.3, 127.5, 126.8, 126.8, 123.7, 122.9, 122.8, 93.3, 90.4, 87.4, 80.2, 47.3, 37.8, 34.0, 21.3; HRMS (ESI) calcd for C₃₃H₂₇ClNO₃S [M+H]⁺: 552.1395; found: 552.1398.

N-(3-(2-formyl-4-methylphenyl)prop-2-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl) phenethyl)benzenesulfonamide (1ag)

The title compound was prepared according to general procedure **D** in 37% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 14:1) to afford **1ag** as a colorless solid, mp 99–101 °C; **¹H NMR** (**600 MHz, CDCl**₃) δ 9.78 (s, 1H), 7.72 (d, *J* = 8.1 Hz, 2H), 7.59 (s, 1H), 7.52 (d, *J* = 7.6 Hz, 1H), 7.50–7.47 (m, 2H), 7.34–7.20 (m, 7H), 7.15 (d, *J* = 8.0 Hz, 2H), 7.01 (d, *J* = 7.9 Hz, 1H), 4.40 (s, 2H), 3.61 (t, *J* = 7.4 Hz, 2H), 3.25 (t, *J* = 8.0 Hz, 2H), 2.36 (s, 3H), 2.25 (s, 3H); ¹³C NMR (**150 MHz, CDCl**₃) δ 190.8, 143.6, 139.7, 139.1, 135.8, 135.5, 134.3, 133.2, 132.5, 131.4, 129.6, 129.4, 128.7, 128.3, 128.2, 127.5, 127.1, 126.7,

122.9, 122.8, 122.7, 93.3, 88.5, 87.4, 81.3, 47.2, 37.8, 34.0, 21.2, 21.1; **HRMS (ESI)** calcd for C₃₄H₃₀NO₃S [M+H]⁺: 532.1941; found: 532.1941.

N-(5-(2-formylphenyl)pent-4-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl)benzyl) benzenesulfonamide (1ah)

The title compound was prepared according to general procedure **D** in 34% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1ah** as a pale-yellow oil; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 10.35 (s, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.49–7.44 (m, 2H), 7.44–7.36 (m, 4H), 7.36–7.28 (m, 6H), 7.27–7.25 (m, 1H), 4.64 (s, 2H), 3.29 (t, *J* = 7.4 Hz, 1H), 2.44 (s, 3H), 2.33 (t, *J* = 7.0 Hz, 2H), 1.78–1.68 (m, 2H); ¹³**C NMR** (**150 MHz**, **CDCl**₃) δ 191.8, 143.4, 137.8, 136.4, 135.9, 133.5, 133.4, 132.3, 131.4, 129.8, 129.1, 128.8, 128.5, 128.3, 127.9, 127.7, 127.4, 127.3, 126.8, 122.8, 122.5, 96.3, 94.2, 86.9, 50.4, 47.8, 27.4, 21.5, 16.9; **HRMS** (**ESI**) calcd for C₃₄H₃₀NO₃S [M+H]⁺: 532.1941; found: 532.1942.

N-(4-(2-formylphenyl)but-3-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl)phenethyl) benzenesulfonamide (1ai)

The title compound was prepared according to general procedure **D** in 33% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1ai** as a pale-yellow oil; ¹**H NMR (600 MHz, CDCl**₃) δ 10.34 (s, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.56–7.50 (m, 3H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.44–7.36 (m, 2H), 7.29–7.20 (m, 8H), 3.55–3.48 (m, 2H), 3.46 (t, *J* = 7.4 Hz, 2H), 3.25–3.14 (m, 2H), 2.74 (t, *J* = 7.4 Hz, 2H), 2.37 (s, 3H); ¹³C **NMR (150 MHz, CDCl**₃) δ 191.6, 143.4, 139.9, 136.6, 135.9, 133.6, 133.4, 132.6, 131.4, 129.7, 129.7, 128.8, 128.4, 128.4, 128.2, 127.1, 127.0, 126.9, 126.8, 122.8, 122.7, 93.8, 93.2, 87.5, 78.1, 49.5, 47.5, 34.8, 21.4, 20.6; HRMS (ESI) calcd for C₃₄H₃₀NO₃S [M+H]⁺: 532.1941; found: 532.1940.

N-(5-(2-formylphenyl)pent-4-yn-1-yl)-4-methyl-*N*-(2-(phenylethynyl)phenethyl) benzenesulfonamide (1aj)

The title compound was prepared according to general procedure \mathbf{D} in 32% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 12:1) to afford **1aj** as a pale-yellow oil; ¹H NMR (600 MHz, **CDCl**₃) δ 10.45 (s, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.2 Hz, 2H), 7.54–7.45 (m, 5H), 7.38 (t, J = 7.4 Hz, 1H), 7.34–7.30 (m, 3H), 7.29–7.19 (m, 5H), 3.50–3.40 (m, 2H), 3.30 (t, J = 7.2 Hz, 2H), 3.23–3.13 (m, 2H), 2.37 (s, 3H), 2.35 (t, J = 7.0 Hz, 2H), 1.88–1.79 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 191.8, 143.2, 140.1, 136.4, 135.9, 133.6, 133.3, 132.4, 131.4, 129.7, 129.6, 128.7, 128.4, 128.4, 127.9, 127.3, 127.1, 126.9, 126.6, 122.9, 122.6, 96.4, 92.9, 87.6, 76.94, 49.25, 48.00, 34.80, 27.57, 21.37, 16.75; **HRMS (ESI)** calcd for C₃₅H₃₁NNaO₃S [M+Na]⁺: 568.1917; found: 568.1920.

N-(2-(cyclohexylethynyl)phenyl)-N-(7-(2-formylphenyl)hept-6-yn-1-yl)-4methylbenzenesulfonamide (1ak)

The title compound was prepared according to general procedure C in 36% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1 to 10:1) to afford **1ak** as a pale-yellow oil; ¹H NMR (600 MHz, **CDCl**₃) δ 10.49 (s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.52–7.47 (m, 2H), 7.39–7.35 (m, 2H), 7.24–7.18 (m, 5H), 3.69 (s, 2H), 2.43 (t, J = 7.1 Hz, 2H), 2.39 (s, 3H), 2.32–2.25 (m, 1H), 1.72–1.66 (m, 4H), 1.62–1.57 (m, 2H), 1.53–1.48 (m,

4H), 1.34–1.22 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 192.0, 142.8, 139.6, 137.3, 135.9, 133.7, 133.6, 133.3, 131.4, 129.2, 127.9, 127.8, 127.8, 127.7, 127.7, 126.8, 124.6, 99.6, 97.7, 77.3, 76.4, 49.9, 32.2, 29.7, 28.3, 28.1, 25.9, 25.7, 24.9, 21.4, 19.4; HRMS (ESI) calcd for C₃₅H₃₈NO₃S [M+H]⁺: 552.2567; found: 552.2567.

2-(3-((2-(phenylethynyl)benzyl)oxy)prop-1-yn-1-yl)benzaldehyde (1al)

The title compound was prepared according to general procedure **F** in 54% yield over 2 steps. It was purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1 to 16:1) to afford **1al** as a pale-yellow oil; ¹**H NMR** (**600 MHz**, **CDCl**₃) δ 10.52 (s, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.56 (t, *J* = 7.8 Hz, 2H), 7.54–7.46 (m, 4H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.40–7.36 (m, 1H), 7.34–7.25 (m, 4H), 4.97 (s, 2H), 4.57 (s, 2H); ¹³**C NMR** (**150 MHz**, **CDCl**₃) δ 191.3, 138.9, 136.0, 133.6, 133.5, 132.1, 131.4, 128.7, 128.5, 128.3, 128.3, 128.1, 127.7, 127.1, 126.0, 123.0, 122.2, 93.9, 92.4, 86.9, 82.1, 70.1, 58.3; **HRMS (ESI)** calcd for C₂₆H₂₁O₂ [M+H]⁺: 351.1380; found: 351.1388.

3. General procedure for 'BuXPhosAu(MeCN)SbF6-catalyzed intramolecular [4 + 2] benzannulation

To a solution of **1** (0.1 mmol) and 4 Å MS (50 mg) in anhydrous DCE (2 mL) was added ^{*t*}BuXPhosAu(MeCN)SbF₆ (5 mol %) under an argon atmosphere. The reaction mixture was stirred at 80 °C for 6-24 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with CH_2Cl_2 and the solvent was removed under reduced pressure. The residue was purified by flash

column chromatography on silica gel (eluent: petroleum ether: EtOAc) to give the product **2**.

9-phenyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2a)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2a** in 97% yield (48.8 mg); colorless solid, mp 174–176 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.93 (s, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.23–7.14 (m, 5H), 7.08–7.01 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 7.6 Hz, 1H), 4.88 (d, *J* = 12.2 Hz, 1H), 4.72 (d, *J* = 19.6 Hz, 1H), 4.43 (d, *J* = 12.2 Hz, 1H), 3.56 (d, *J* = 19.5 Hz, 1H), 2.27 (s, 3H); ¹³C **NMR (150 MHz, CDCl₃)** δ 207.2, 143.3, 140.0, 139.2, 138.1, 137.9, 135.6, 133.6, 133.2, 133.0, 131.3, 131.0, 130.5, 129.4, 129.4, 128.8, 128.5, 128.3, 128.2, 127.9, 127.5, 126.9, 126.9, 126.7, 125.0, 56.7, 52.1, 21.5; **HRMS (ESI)** calcd for C₃₂H₂₅NNaO₃S [M+Na]⁺: 526.1447; found: 526.1448.

3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2b)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2b** in 94% yield (40.2 mg); colorless solid, mp 223–225 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.92 (d, *J* = 8.3 Hz, 1H), 7.86 (d, *J* = 7.4 Hz, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.58–7.50 (m, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.39–7.33 (m, 3H), 7.28–7.20 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 2H), 4.67–4.58 (m, 2H), 4.35 (d, *J* = 12.2 Hz, 1H), 3.53 (d, *J* = 19.5 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.6, 143.3, 141.0, 136.7, 135.7, 135.1, 132.9, 131.8, 131.1, 130.7, 130.4, 129.5, 129.4, 129.2, 128.7, 128.1, 127.7, 126.7, 126.5, 126.0,

125.5, 56.4, 51.5, 21.5; **HRMS (ESI)** calcd for C₂₆H₂₂NO₃S [M+H]⁺: 428.1315; found: 428.1316.

3-tosyl-9-(trimethylsilyl)-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2c)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **2c** in 92% yield (46.0 mg); colorless solid, mp 158–160 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.07 (s, 1H), 7.90–7.83 (m, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.58–7.49 (m, 2H), 7.39–7.33 (m, 2H), 7.25–7.21 (m, 1H), 7.17 (d, *J* = 8.2 Hz, 2H), 7.12–7.07 (m, 1H), 6.87 (d, *J* = 8.0 Hz, 2H), 4.66 (d, *J* = 19.6 Hz, 1H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.32 (d, *J* = 12.1 Hz, 1H), 3.45 (d, *J* = 19.6 Hz, 1H), 2.29 (s, 3H), -0.02 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 207.8, 143.1, 141.0, 139.2, 137.7, 136.3, 135.6, 135.4, 133.1, 132.1, 131.2, 130.5, 129.2, 129.0, 128.9, 128.7, 128.3, 128.0, 126.6, 126.4, 124.6, 56.5, 51.6, 21.4, 0.1; HRMS (ESI) calcd for C₂₉H₃₀NO₃SSi [M+H]⁺: 500.1710; found: 500.1719.

9-cyclopropyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2d)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2d** in 99% yield (46.3 mg); colorless solid, mp 179–181 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.75 (d, *J* = 8.2 Hz, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.52–7.46 (m, 1H), 7.46–7.34 (m, 4H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 8.2 Hz, 2H), 7.21 (dd, *J* = 7.4, 1.3 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 2H), 4.64 (d, *J* = 19.6 Hz, 1H), 4.58 (d, *J* = 11.9 Hz, 1H), 4.34 (d, *J* = 11.9 Hz, 1H), 3.46 (d, *J* = 19.6 Hz, 1H), 2.28 (s, 3H), 1.59–1.52 (m, 1H), 0.86–0.79 (m, 1H), 0.77–0.70 (m, 1H), 0.70–0.64 (m, 1H), 0.63–0.57 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 143.1, 139.1, 137.9, 136.7, 135.9, 135.5, 133.3, 132.5, 131.1, 130.7,

129.3, 128.9, 128.6, 127.6, 127.4, 126.6, 126.5, 126.4, 125.1, 124.7, 56.3, 51.4, 21.4, 13.8, 9.4, 7.7; **HRMS (ESI)** calcd for C₂₉H₂₆NO₃S [M+H]⁺: 468.1628; found: 468.1634. 9-cyclohexyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2e)

Column chromatography (petroleum ether/EtOAc = 20:1 to 12:1) to afford **2e** in 99% yield (50.5 mg); colorless solid, mp 188–190 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 1H), 7.76 (s, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.43(t, J = 7.6 Hz, 1H), 7.40–7.33 (m, 2H), 7.29 (d, J = 3.1 Hz, 1H), 7.15 (d, J = 7.7 Hz, 2H), 7.10–7.02 (m, 1H), 6.82 (d, J = 7.7 Hz, 2H), 4.66 (d, J = 19.7 Hz, 1H), 4.51 (d, J = 11.8 Hz, 1H), 4.36 (d, J = 11.8 Hz, 1H), 3.46 (d, J = 19.6 Hz, 1H), 2.31 (d, J = 11.4 Hz, 1H), 2.27 (s, 3H), 1.82 (dd, J = 27.4, 12.9 Hz, 2H), 1.73–1.62 (m, 2H), 1.62–1.39 (m, 2H), 1.35–1.21 (m, 2H), 1.19–0.96 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 207.3, 143.0, 142.3, 139.1, 136.9, 135.4, 134.5, 133.4, 132.0, 131.2, 131.0, 129.2, 129.0, 128.7, 127.8, 127.3, 126.7, 126.5, 126.3, 124.6, 56.4, 51.5, 40.0, 35.2, 34.2, 26.8, 26.6, 25.9, 21.4; **HRMS (ESI)** calcd for C₂₉H₂₇BrNO₃S [M+H]⁺: 510.2097; found: 510.2103.

9-hexyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2f)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2f** in 86% yield (44.0 mg); pale-yellow oil; ¹H NMR (600 MHz, CDCl3) δ 7.78 (d, J = 8.2 Hz, 1H), 7.72 (s, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 7.41–7.35 (m, 2H), 7.31–7.27 (m, 1H), 7.21 (d, J = 8.1 Hz, 2H), 7.14–7.09 (m, 1H), 6.86 (d, J = 8.0 Hz, 2H), 4.65 (d, J = 19.7 Hz, 1H), 4.51 (d, J = 11.8 Hz, 1H), 4.34 (d, J = 11.9 Hz, 1H), 3.44 (d, J = 19.7 Hz, 1H), 2.56-2.47 (m, 1H), 2.46-2.38 (m, 1H), 22.28 (s, 3H), 1.45–1.24 (m, 3H), 1.22–1.12 (m, 5H), 0.83 (t, J = 7.1 Hz, 3H); ¹³C NMR (**150** MHz, CDCl₃) δ 207.3, 143.1, 139.0, 137.2, 137.2, 137.0, 135.5, 134.8, 133.3, 132.1, 131.3, 130.9, 129.7, 129.3, 129.1, 128.7, 127.6, 127.6, 126.8, 126.6, 126.5, 124.8, 56.4, 51.4, 33.2, 31.4, 30.4, 28.9, 22.4, 21.5, 14.0; HRMS (ESI) calcd for C₃₂H₃₄NO₃S [M+H]⁺: 512.2254; found: 512.2256.

3-tosyl-9-(3-tosylpropyl)-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2g)

Column chromatography (petroleum ether/EtOAc = 10:1 to 3:1) to afford **2g** in 99% yield (61.8 mg); pale-yellow solid, mp 148–150 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.76 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.65 (s, 1H), 7.55–7.45 (m, 2H), 7.36–7.32 (m, 2H), 7.30 (t, *J* = 8.0 Hz, 4H), 7.23–7.17 (m, 1H), 7.05–6.99 (m, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 4.62 (d, *J* = 19.6 Hz, 1H), 4.53 (d, *J* = 12.4 Hz, 1H), 4.13 (d, *J* = 12.4 Hz, 1H), 3.39 (d, *J* = 19.6 Hz, 1H), 3.03–2.92 (m, 1H), 2.92–2.83 (m, 1H), 2.78–2.68 (m, 1H), 2.59–2.49 (m, 1H), 2.43 (s, 3H), 2.30 (s, 3H), 1.82–1.68 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 207.2, 144.6, 143.2, 138.1, 137.4, 136.0, 135.5, 134.3, 134.0, 133.0, 131.9, 131.2, 130.9, 130.2, 129.8, 129.4, 129.1, 128.9, 127.9, 127.6, 127.1, 126.7, 126.5, 124.8, 56.5, 55.2, 51.4, 31.7, 22.7, 21.5, 21.4; HRMS (ESI) calcd for C₃₆H₃₄NO₅S₂ [M+H]⁺: 624.1873; found: 624.1884.

Methyl 4-(1-oxo-3-tosyl-1,2,3,4-tetrahydrobenzo[*c*]naphtho[2,1-*e*]azocin-9yl)butanoate (2h)

Column chromatography (petroleum ether/EtOAc = 20:1 to 7:1) to afford **2h** in 92% yield (48.5 mg); pale-yellow solid, mp 134–136 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.79 (d, *J* = 8.1 Hz, 1H), 7.73 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.55–7.50 (m, 1H), 7.49–7.44 (m, 1H), 7.40–7.34 (m, 2H), 7.30–7.26 (m, 1H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.12–7.06 (m, 1H), 6.86 (d, *J* = 8.0 Hz, 2H), 4.66 (d, *J* = 19.7 Hz, 1H), 4.52 (d, *J* = 12.0

Hz, 1H), 4.32 (d, J = 12.0 Hz, 1H), 3.61 (s, 3H), 3.43 (d, J = 19.6 Hz, 1H), 2.61–2.53 (m, 1H), 2.52–2.43 (m, 1H), 2.27 (s, 3H), 2.19–2.12 (m, 2H), 1.74–1.65 (m, 2H); ¹³C **NMR (150 MHz, CDCl₃)** δ 207.2, 173.4, 143.1, 138.6, 137.4, 135.4, 135.4, 134.6, 133.2, 132.0, 131.2, 131.0, 130.0, 129.2, 129.1, 128.8, 127.7, 127.6, 127.0, 126.6, 126.5, 124.8, 56.3, 51.5, 51.3, 33.2, 32.3, 25.3, 21.4; **HRMS (ESI)** calcd for C₃₁H₃₀NO₅S [M+H]⁺: 528.1839; found: 528.1839.

N,4-dimethyl-*N*-(3-(1-oxo-3-tosyl-1,2,3,4-tetrahydrobenzo[*c*]naphtho[2,1-*e*] azocin-9-yl)propyl)benzenesulfonamide (2i)

Column chromatography (petroleum ether/EtOAc = 13:1 to 6:1) to afford **2i** in 99% yield (64.6 mg); colorless solid, mp 186–188 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.83 (d, *J* = 8.2 Hz, 1H), 7.80 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 8.2 Hz, 2H), 7.57–7.52 (m, 1H), 7.50–7.45 (m, 1H), 7.45–7.37 (m, 2H), 7.33–7.25 (m, 5H), 7.17–7.11 (m, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 4.63 (d, *J* = 19.6 Hz, 1H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.32 (d, *J* = 12.0 Hz, 1H), 3.43 (d, *J* = 19.6 Hz, 1H), 3.01–2.92 (m, 1H), 2.87–2.80 (m, 1H), 2.69–2.61 (m, 1H), 2.57–2.53 (m, 1H), 2.52 (s, 3H), 2.43 (s, 3H), 2.31 (s, 3H), 1.68–1.54 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 143.3, 143.2, 138.7, 137.4, 135.6, 135.5, 134.5, 134.3, 133.3, 132.1, 131.2, 131.0, 130.1, 129.6, 129.4, 129.3, 128.9, 127.8, 127.6, 127.3, 127.0, 126.6, 126.6, 124.8, 56.4, 51.5, 49.6, 34.3, 304, 28.4, 21.5; HRMS (ESI) calcd for C₃₇H₃₇N₂O₅S₂ [M+H]⁺: 653.2138; found: 653.2147. 9-(2-(naphthalen-2-yloxy)ethyl)-3-tosyl-3,4-dihydrobenzo[*c*]naphtho[2,1-*e*] azocin-1(*2H*)-one (2j)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2j** in 94% yield (56.2 mg); pale-yellow solid, mp 94–96 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.91 (s, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.73 (d, *J* = 9.0 Hz, 1H), 7.70 (t, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.52–7.47 (m, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.44–7.37 (m, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.32–7.28 (m, 1H), 7.18 (d, *J* = 7.9 Hz, 3H), 7.03 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.98 (d, *J* = 2.1 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 2H), 4.70 (d, *J* = 19.7 Hz, 1H), 4.65 (d, *J* = 11.9 Hz, 1H), 4.34 (d, *J* = 11.9 Hz, 1H), 4.12 (t, *J* = 6.9 Hz, 2H), 3.48 (d, *J* = 19.6 Hz, 1H), 3.17–2.99 (m, 2H), 2.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.1, 156.3, 143.0, 138.7, 137.4, 135.4, 134.9, 134.4, 133.2, 132.6, 132.1, 131.5, 131.1, 130.6, 129.5, 129.3, 129.2, 129.0, 129.0, 127.9, 127.7, 127.6, 127.2, 126.7, 126.6, 126.5, 126.4, 124.8, 123.7, 118.6, 106.5, 67.8, 56.4, 51.4, 32.6, 21.4; HRMS (ESI) calcd for C₃₈H₃₁NNaO4S [M+Na]⁺: 620.1866; found: 620.1869. **11-fluoro-9-phenyl-3-tosyl-3,4-dihydrobenzo[***c***]naphtho[2,1-***e***]azocin-1(2***H***)-one (2k)**

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2k** in 61% yield (31.8 mg); colorless solid, mp 228–230 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.19 (s, 1H), 7.51–7.43 (m, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.25–7.15 (m, 6H), 7.10–7.02 (m, 3H), 6.96 (d, *J* = 8.1 Hz, 2H), 6.67 (d, *J* = 7.6 Hz, 1H), 4.91 (d, *J* = 12.3 Hz, 1H), 4.74 (d, *J* = 19.6 Hz, 1H), 4.43 (d, *J* = 12.3 Hz, 1H), 3.57 (d, *J* = 19.6 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.8, 158.7 (d, *J* = 253.0 Hz), 143.4, 139.7, 138.8, 138.6 (d, *J* = 1.6 Hz), 137.6 (d, *J* = 2.7 Hz), 135.6, 134.6, 132.9, 131.2, 130.5, 129.7 (d, *J* = 3.9 Hz), 129.4, 129.3, 128. 9, 128.5, 128.0, 127.3 (d, *J* = 8.3 Hz), 127.2, 126.5, 123.5 (d, *J* = 5.2 Hz), 121.0 (d, *J* = 4.2 Hz), 110.4 (d, *J* = 19.7 Hz), 56.7, 52.2, 21.3; ¹⁹F NMR (565 MHz, CDCl₃) δ -122.15 (dd, *J* = 10.3, 5.1 Hz); HRMS (ESI) calcd for C₃₂H₂₅FNO₃S [M+H]⁺: 522.1534; found: 522.1536.

13-chloro-9-phenyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2l)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2l** in 83% yield (44.7 mg); colorless solid, mp 238–240 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.80 (d, *J* = 8.7 Hz, 1H), 7.53 (s, 1H), 7.48 (d, *J* = 8.7 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.25–7.17 (m, 5H), 7.09–7.01 (m, 3H), 6.96 (d, *J* = 7.9 Hz, 2H), 6.66 (d, *J* = 7.6 Hz, 1H), 4.94 (d, *J* = 12.1 Hz, 1H), 4.64 (d, *J* = 19.8 Hz, 1H), 4.52 (d, *J* = 12.2 Hz, 1H), 3.57 (d, *J* = 19.8 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.4, 143.4, 139.6, 138.9, 138.5, 137.0, 135.9, 134.9, 133.4, 132.9, 131.3, 131.2, 131.0, 130.5, 129.6, 129.4, 129.3, 129.0, 128.9, 128.6, 128.0, 127.8, 127.2, 126.6, 124.1, 56.6, 52.2, 21.5; HRMS (ESI) calcd for C₃₂H₂₄ClNNaO₃S [M+Na]⁺: 560.1058; found: 560.1061. 13-bromo-9-phenyl-3-tosyl-3,4-dihydrobenzo[*c*]naphtho[2,1-*e*]azocin-1(2*H*)-one (2m)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **2m** in 74% yield (43.1 mg); colorless solid, mp 236–238 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.91 (s, 1H), 7.76–7.68 (m, 2H), 7.60 (dd, J = 8.7, 1.6 Hz, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.25–7.16 (m, 5H), 7.10–7.01 (m, 3H), 6.95 (d, J = 8.0 Hz, 2H), 6.65 (d, J = 7.6 Hz, 1H), 4.95 (d, J = 12.1 Hz, 1H), 4.65 (d, J = 19.8 Hz, 1H), 4.53 (d, J = 12.2 Hz, 1H), 3.58 (d, J = 19.8 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.4, 143.4, 139.6, 138.8, 138.6, 136.9, 135.9, 134.9, 132.8, 131.5, 131.2, 131.0, 130.5, 130.3, 129.6, 129.4, 129.3, 129.2, 128.9, 128.6, 128.0, 127.3, 127.2, 126.5, 121.8, 56.6, 52.2, 21.5; HRMS (ESI) calcd for C₃₂H₂₄BrNNaO₃S [M+Na]⁺: 604.0552; found: 604.0555.

13-methyl-9-phenyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2n)

Column chromatography (petroleum ether/EtOAc = 25:1 to 14:1) to afford **2n** in 86% yield (44.5 mg); colorless solid, mp 234–236 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.88 (s, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.42–7.36 (m, 2H), 7.32 (d, *J* = 8.2 Hz, 2H), 7.22–7.14 (m, 5H), 7.06–6.99 (m, 3H), 6.89 (d, *J* = 8.1 Hz, 2H), 6.67 (d, *J* = 7.5 Hz, 1H), 4.86 (d, *J* = 12.1 Hz, 1H), 4.73 (d, *J* = 19.6 Hz, 1H), 4.48 (d, *J* = 12.2 Hz, 1H), 3.58 (d, *J* = 19.6 Hz, 1H), 2.51 (s, 3H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.4, 143.2, 140.1, 139.4, 137.3, 137.2, 137.1, 135.6, 133.6, 133.0, 131.5, 131.3, 130.7, 130.5, 129.3, 129.2, 128.8, 128.7, 128.2, 128.0, 127.9, 126.8, 126.7, 123.8, 56.7, 52.1, 22.1, 21.4; HRMS (ESI) calcd for C₃₃H₂₇NNaO₃S [M+Na]⁺: 540.1604; found: 540.1606.

12-bromo-9-phenyl-3-tosyl-3,4-dihydrobenzo[*c*]naphtho[2,1-*e*]azocin-1(2*H*)-one (20)

Column chromatography (petroleum ether/EtOAc = 25:1 to 14:1) to afford **20** in 81% yield (47.2 mg); pale-yellow solid, mp 220–222 °C; **¹H NMR (600 MHz, CDCl**₃) δ 8.03 (s, 1H), 7.84 (s, 1H), 7.60–7.51 (m, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.23–7.15 (m, 5H), 7.10–7.01 (m, 3H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.67 (d, *J* = 7.7 Hz, 1H), 4.95 (d, *J* = 12.2 Hz, 1H), 4.66 (d, *J* = 19.7 Hz, 1H), 4.44 (d, *J* = 12.2 Hz, 1H), 3.56 (d, *J* = 19.6 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl3) δ 206.7, 143.5, 139.5, 139.3, 138.8, 137.9, 135.8, 134.2, 134.1, 132.9, 131.2, 130.7, 130.4, 130.1, 129.9, 129.4, 129.2, 128.8,
128.5, 128.0, 127.2, 126.9, 126.8, 126.5, 121.1, 56.6, 52.2, 21.5; **HRMS (ESI)** calcd for C₃₂H₂₄BrNNaO₃S [M+Na]⁺: 604.0552; found: 604.0553.

12-methyl-9-phenyl-3-tosyl-3,4-dihydrobenzo[*c*]naphtho[2,1-*e*]azocin-1(2*H*)-one (2p)

Column chromatography (petroleum ether/EtOAc = 25:1 to 15:1) to afford **2p** in 99% yield (51.2 mg); pale-yellow solid, mp 232–234 °C; **¹H NMR (400 MHz, CDCl₃)** δ 7.84 (s, 1H), 7.65 (s, 1H), 7.59 (d, *J* = 8.6 Hz, 1H), 7.36 (d, *J* = 8.1 Hz, 3H), 7.22–7.08 (m, 5H), 7.08–6.99 (m, 3H), 6.94 (d, *J* = 8.1 Hz, 2H), 6.68 (d, *J* = 7.5 Hz, 1H), 4.89 (d, *J* = 12.1 Hz, 1H), 4.70 (d, *J* = 19.5 Hz, 1H), 4.43 (d, *J* = 12.1 Hz, 1H), 3.55 (d, *J* = 19.5 Hz, 1H), 2.57 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 207.3, 143.2, 140.2, 139.3, 138.0, 137.7, 136.7, 135.6, 133.4, 133.1, 132.6, 131.3, 130.4, 129.8, 129.4, 129.3, 128.7, 128.2, 127.8, 127.1, 126.8, 126.8, 126.6, 124.8, 56.6, 52.1, 21.7, 21.4; HRMS (ESI) calcd for C₃₃H₂₇NNaO₃S [M+Na]⁺: 540.1604; found: 540.1606.

6-chloro-9-phenyl-3-tosyl-3,4-dihydrobenzo[*c*]naphtho[2,1-*e*]azocin-1(2*H*)-one (2q)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **2q** in 72% yield (38.7 mg); colorless solid, mp 232–234 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.93 (s, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.61–7.56 (m, 1H), 7.56–7.51 (m, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.25–7.20 (m, 3H), 7.19 (d, *J* = 2.1 Hz, 1H), 7.06–7.00 (m, 3H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.62 (d, *J* = 8.2 Hz, 1H), 4.87 (d, *J* = 12.5 Hz, 1H), 4.72 (d, *J* = 19.5 Hz, 1H), 4.33 (d, *J* = 12.5 Hz, 1H), 3.57 (d, *J* = 19.4 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 143.6, 139.8, 138.0, 137.9, 137.7,

135.4, 134.4, 134.0, 133.3, 133.1, 132.3, 131.2, 130.3, 129.6, 129.3, 129.0, 128.5, 128.2, 128.1, 127.7, 127.2, 127.1, 126.7, 125.0, 56.8, 51.8, 21.5; **HRMS (ESI)** calcd for C₃₂H₂₄ClNNaO₃S [M+Na]⁺: 560.1058; found: 560.1064.

6-bromo-9-phenyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2r)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **2r** in 64% yield (37.3 mg); pale-yellow solid, mp 218–220 °C; **¹H NMR (600 MHz, CDCl₃)** δ 7.93 (s, 1H), 7.89 (d, *J* = 8.1 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 7.58 (t, *J* = 7.1 Hz, 1H), 7.54 (t, *J* = 7.1 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 1.9 Hz, 1H), 7.25–7.19 (m, 3H), 7.16 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.03 (dd, *J* = 6.5, 2.9 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 2H), 6.55 (d, *J* = 8.2 Hz, 1H), 4.87 (d, *J* = 12.5 Hz, 1H), 4.72 (d, *J* = 19.5 Hz, 1H), 4.32 (d, *J* = 12.5 Hz, 1H), 3.57 (d, *J* = 19.4 Hz, 1H), 2.29 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 143.6, 139.7, 138.2, 137.8, 137.8, 135.3, 134.6 133.3, 133.2, 132.3, 131.9, 131.1, 129.5, 129.3, 128.4, 128.2, 128.1, 127.7, 127.1, 127.1, 126.7, 125.0, 122.1, 56.8, 51.7, 21.5; HRMS (ESI) calcd for C₃₂H₂₄BrNNaO₃S [M+Na]⁺: 604.0552; found: 604.0555.

6-methyl-9-phenyl-3-tosyl-3,4-dihydrobenzo[*c*]naphtho[2,1-*e*]azocin-1(2*H*)-one (2s)

Column chromatography (petroleum ether/EtOAc = 30:1 to 14:1) to afford **2s** in 98% yield (50.7 mg); colorless solid, mp 184–185 °C; **¹H NMR (400 MHz, CDCl₃)** δ 7.90 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 7.61–7.44 (m, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 7.24–7.14 (m, 3H), 7.09–7.02 (m, 2H), 6.98 (s, 1H), 6.92 (d, *J* = 7.8

Hz, 2H), 6.84 (d, J = 7.8 Hz, 1H), 6.55 (d, J = 7.8 Hz, 1H), 4.84 (d, J = 12.1 Hz, 1H), 4.70 (d, J = 19.5 Hz, 1H), 4.37 (d, J = 12.1 Hz, 1H), 3.58 (d, J = 19.5 Hz, 1H), 2.27 (s, 3H), 2.25 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 207.4, 143.2, 140.1, 138.2, 138.1, 138.0, 136.1, 135.6, 133.6, 133.1, 132.8, 131.1, 130.9, 130.9, 129.6, 129.4, 129.3, 128.5, 128.1, 127.9, 127.4, 126.8, 126.7, 126.6, 124.9, 56.6, 52.1, 21.4, 20.9; HRMS (ESI) calcd for C₃₃H₂₈NO₃S [M+H]⁺: 518.1784; found: 518.1787.

7-chloro-9-phenyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one (2t)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **2t** in 65% yield (35.0 mg); colorless solid, mp 217–219 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (s, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.62–7.56 (m, 1H), 7.56– 7.51 (m, 1H), 7.34 (d, J = 8.2 Hz, 2H), 7.25–7.20 (m, 3H), 7.17–7.10 (m, 2H), 7.04 (dd, *J* = 6.5, 2.9 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 1.9 Hz, 1H), 4.84 (d, *J* = 12.4 Hz, 1H), 4.73 (d, J = 19.5 Hz, 1H), 4.40 (d, J = 12.5 Hz, 1H), 3.57 (d, J = 19.5 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.8, 143.5, 140.9, 139.6, 137.8, 137.8, 135.4, 134.6, 133.3, 132.9, 132.1, 131.7, 131.1, 129.8, 129.5, 129.2, 128.4, 128.4, 128.2, 128.1, 127.7, 127.3, 127.2, 126.6, 125.0, 56.7, 51.5, 21.4; HRMS (ESI) calcd for C₃₂H₂₅ClNO₃S [M+H]⁺: 538.1238; found: 538.1242.

7-bromo-9-phenyl-3-tosyl-3,4-dihydrobenzo[c]naphtho[2,1-e]azocin-1(2H)-one $(2\mathbf{u})$

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford 2u in 47%yield (27.4 mg); colorless solid, mp 225–227 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 S37

(s, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.3 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.29 (dd, J = 8.2, 1.9 Hz, 1H), 7.24–7.18 (m, 3H), 7.05 (d, J = 8.3 Hz, 1H), 7.04–6.99 (m, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 1.9 Hz, 1H), 4.82 (d, J = 12.4 Hz, 1H), 4.72 (d, J = 19.5 Hz, 1H), 4.38 (d, J = 12.5 Hz, 1H), 3.56 (d, J = 19.5 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.7, 143.5, 141.1, 139.6, 137.9, 137.7, 135.8, 135.4, 133.3, 132.1, 131.8, 131.4, 131.1, 130.3, 129.5, 129.2, 128.4, 128.2, 128.1, 127.7, 127.3, 127.2, 126.7, 125.0, 122.7, 56.7, 51.6, 21.5; HRMS (ESI) calcd for C₃₂H₂₄BrNNaO₃S [M+Na]⁺: 604.0552; found: 604.0552. **5-fluoro-9-phenyl-3-tosyl-3,4-dihydrobenzo**[*c*]naphtho[2,1-*e*]azocin-1(2*H*)-one (2v)

Column chromatography (petroleum ether/EtOAc = 12:1 to 10:1) to afford **2v** in 30% yield (15.6 mg); colorless solid, mp 219–221 °C; **¹H NMR (600 MHz, CDCl**₃) δ 7.95 (s, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 1H), 7.62–7.52 (m, 2H), 7.44 (d, *J* = 8.1 Hz, 2H), 7.24–7.16 (m, 3H), 7.10–6.97 (m, 5H), 6.93 (t, *J* = 8.8 Hz, 1H), 6.50 (d, *J* = 7.5 Hz, 1H), 4.92 (d, *J* = 12.5 Hz, 1H), 4.72 (d, *J* = 19.6 Hz, 1H), 4.56 (dd, *J* = 12.5, 2.4 Hz, 1H), 3.52 (d, *J* = 19.6 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.8, 160.7 (d, *J* = 249.1 Hz), 143.5, 141.6, 139.8, 138.3, 137.8, 135.5, 133.2, 132.3, 131.7 (d, *J* = 8.7 Hz), 131.1, 130.0 (d, *J* = 9.1 Hz), 129.5, 129.3, 128.6, 128.5 (d, *J* = 3.3 Hz), 128.2, 128.0, 127.7, 127.1 (d, *J* = 10.7 Hz), 126.7, 125.1, 119.1 (d, *J* = 13.7 Hz), 115.0 (d, *J* = 22.5 Hz), 56.9, 43.0 (d, *J* = 6.2 Hz), 21.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -116.82 – -116.93 (m); HRMS (ESI) calcd for C₃₂H₂₄FNNaO₃S [M+Na]⁺: 544.1353; found: 544.1358.

9-phenyl-4-tosyl-3,4-dihydrobenzo[b]naphtho[2,1-d]azocin-1(2H)-one (2w)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2w** in 85% yield (40.8 mg); colorless solid, mp 205–207 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.03 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.62–7.56 (m, 1H), 7.54–7.42 (m, 4H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.31–7.26 (m, 3H), 7.25–7.21 (m, 1H), 7.16 (d, *J* = 7.9 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 6.94–6.82 (m, 3H), 4.39 (ddd, *J* = 13.9, 6.3, 2.8 Hz, 1H), 3.56–3.43 (m, 1H), 3.19 (td, *J* = 11.5, 6.5 Hz, 1H), 2.59 (dt, *J* = 11.1, 3.2 Hz, 1H), 2.22 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 211.1, 143.4, 141.5, 140.5, 139.9, 139.2, 139.0, 136.7, 133.2, 132.8, 130.8, 130.4, 130.1, 129.7, 129.4, 129.3, 128.5, 128.0, 127.8, 127.3, 127.0, 126.9, 123.6, 50.5, 43.8, 21.3; HRMS (ESI) calcd for C₃₂H₂₆NO₃S [M+H]⁺: 504.1628; found: 504.1628.

9-hexyl-1-oxo-3-tosyl-1,2,3,4-tetrahydrobenzo[*c*]naphtho[2,1-*e*]azocin-12-yl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (2x)

Column chromatography (petroleum ether/EtOAc = 20:1 to 8:1) to afford **2x** in 92% yield (79.8 mg); yellow solid, mp 78–80 °C; ¹H NMR (**600 MHz, CDCl**₃) δ 7.73–7.68 (m, 2H), 7.67–7.61 (m, 2H), 7.53 (d, *J* = 2.3 Hz, 1H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.41–7.34 (m, 2H), 7.30–7.27 (m, 1H), 7.22 (d, *J* = 8.2 Hz, 2H), 7.17 (dd, *J* = 9.2, 2.3 Hz, 1H), 7.13 (d, *J* = 2.4 Hz, 1H), 7.11–7.06 (m, 1H), 6.92 (t, *J* = 8.8 Hz, 3H), 6.73 (dd, *J* = 9.0, 2.5 Hz, 1H), 4.62 (d, *J* = 19.7 Hz, 1H), 4.52 (d, *J* = 11.8 Hz, 1H), 4.33 (d, *J* = 11.8 Hz, 1H), 3.99 (s, 2H), 3.87 (s, 3H), 3.42 (d, *J* = 19.7 Hz, 1H), 2.51 (s, 3H), 2.50–2.45 (m, 1H), 2.43–2.37 (m, 1H), 2.22 (s, 3H), 1.38–1.28 (m, 2H), 1.24–1.11 (m, 6H), 0.83 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 169.1, 168.3, 156.1,

148.9, 143.2, 139.3, 138.7, 138.1, 137.2, 136.2, 135.4, 134.8, 133.8, 133.7, 132.1, 131.3, 131.2, 130.9, 130.8, 130.5, 129.4, 129.3, 129.1, 129.1, 128.8, 126.5, 126.5, 125.6, 121.6, 118.0, 115.0, 111.9, 111.8, 101.2, 56.3, 55.7, 51.3, 33.1, 31.3, 30.6, 30.2, 28.8, 22.3, 21.2, 14.0, 13.4; **HRMS (ESI)** calcd for C₅₁H₄₇ClN₂NaO₇S [M+Na]⁺: 889.2685; found: 889.2678.

9-hexyl-1-oxo-3-tosyl-1,2,3,4-tetrahydrobenzo[*c*]naphtho[2,1-*e*]azocin-12-yl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (2y)

Column chromatography (petroleum ether/EtOAc = 18:1 to 7:1) to afford **2y** in 96% yield (76.3 mg); pale-yellow solid, mp 84–86 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, *J* = 8.4 Hz, 2H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.73 (d, *J* = 9.1 Hz, 1H), 7.71–7.66 (m, 2H), 7.42–7.35 (m, 2H), 7.33 (dd, *J* = 9.1, 2.3 Hz, 1H), 7.30–7.27 (m, 1H), 7.27–7.23 (m, 2H), 7.12–7.08 (m, 1H), 6.97 (d, *J* = 8.0 Hz, 2H), 4.65 (d, *J* = 19.7 Hz, 1H), 4.54 (d, *J* = 11.9 Hz, 1H), 4.34 (d, *J* = 11.9 Hz, 1H), 3.44 (d, *J* = 19.7 Hz, 1H), 3.20–3.10 (m, 4H), 2.55–2.47 (m, 1H), 2.46–2.37 (m, 1H), 2.31 (s, 3H), 1.62–1.53 (m, 4H), 1.41–1.28 (m, 2H), 1.23–1.09 (m, 6H), 0.90 (t, *J* = 7.4 Hz, 6H), 0.83 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 206.9, 163.7, 148.8, 145.0, 143.3, 138.6, 138.3, 137.3, 135.4, 135.0, 133.8, 132.7, 132.1, 131.3, 130.9, 130.8, 129.4, 129.3, 129.1, 128.9, 127.2, 126.8, 126.5, 125.8, 121.6, 118.2, 56.3, 51.3, 50.0, 33.1, 31.3, 30.2, 28.8, 22.3, 21.9, 21.3, 14.0, 11.1; HRMS (ESI) calcd for C₄₅H₅₁N₂O₇S₂ [M+H]⁺: 795.3132; found: 795.3135.

10-cyclohexyl-5-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[*b*]naphtho[2,1-*d*]azonin-1-one (2z)

Column chromatography (petroleum ether/EtOAc = 30:1 to 15:1) to afford **2z** in 74% yield (38.8 mg); colorless solid, mp 238–240 °C; ¹H NMR (**600 MHz, CDCl**₃) δ 7.99 (s, 1H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.57–7.49 (m, 2H), 7.46–7.41 (m, 3H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 6.91 (d, *J* = 7.8 Hz, 2H), 6.81 (d, *J* = 7.8 Hz, 2H), 3.47–3.30 (m, 2H), 2.73 (t, *J* = 11.3 Hz, 1H), 2.68–2.56 (m, 2H), 2.27 (s, 3H), 2.15 (d, *J* = 12.0 Hz, 1H), 2.09 (d, *J* = 12.9 Hz, 1H), 2.00–1.89 (m, 1H), 1.85–1.69 (m, 5H), 1.50–1.42 (m, 1H), 1.35–1.25 (m, 3H); ¹³C NMR (**150 MHz, CDCl**₃) δ 213.1, 146.1, 143.6, 141.7, 141.3, 135.7, 134.3, 132.8, 132.8, 132.3, 129.0, 128.7, 128.3, 128.1, 127.6, 127.1, 126.5, 126.0, 125.9, 123.9, 49.9, 42.3, 40.8, 37.9, 33.5, 27.0, 26.9, 26.4, 25.9, 21.4; HRMS (ESI) calcd for C₃₃H₃₄NO₃S [M+H]⁺: 524.2254; found: 524.2255. **10-phenyl-4-tosyl-2,3,4,5-tetrahydro-1***H***-benzo[***c***]naphtho[2,1-***e***]azonin-1-one (2aa)**

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2aa** in 71% yield (36.8 mg); colorless solid, mp 186–188 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 1H), 7.90 (s, 1H), 7.61–7.55 (m, 3H), 7.53 (dd, *J* = 6.6, 3.9 Hz, 2H), 7.36 (d, *J* = 7.7 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.19–7.17 (m, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.07 (dd, *J* = 6.3, 2.9 Hz, 2H), 7.02 (d, *J* = 7.6 Hz, 1H), 4.49 (d, *J* = 13.7 Hz, 1H), 3.90 (d, *J* = 13.6 Hz, 1H), 3.45 (dd, *J* = 14.3, 6.9 Hz, 1H), 3.35 (dd, *J* = 14.9, 9.3 Hz, 1H), 3.20 (ddd, *J* = 15.2, 9.3, 2.1 Hz, 1H), 2.66 (dd, *J* = 15.2, 7.6 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 209.3, 143.5, 140.1, 140.0, 139.2, 138.4, 136.0, 133.4, 133.2, 132.7, 132.2, 130.3, 129.8, 129.7, 129.4, 128.6, 128.5, 127.7, 127.7, 127.5, 127.4, 127.0, 126.9, 126.9, 124.0, 50.8, 46.4, 44.7, 21.5; HRMS (ESI) calcd for C₃₃H₂₇NNaO₃S [M+Na]⁺: 540.1604; found: 540.1603.

13-chloro-10-phenyl-4-tosyl-2,3,4,5-tetrahydro-1H-benzo[c]naphtho[2,1-

e]azonin-1-one (2ab)

Column chromatography (petroleum ether/EtOAc = 25:1 to 14:1) to afford **2ab** in 81% yield (44.7 mg); colorless solid, mp 215–217 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.81 (s, 1H), 7.56 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 0.9 Hz, 2H), 7.29 (d, *J* = 7.4 Hz, 1H), 7.25–7.15 (m, 7H), 7.10–7.07 (m, 2H), 7.05 (d, *J* = 7.0 Hz, 1H), 4.32 (d, *J* = 13.5 Hz, 1H), 3.96 (d, *J* = 13.5 Hz, 1H), 3.48–3.37 (m, 1H), 3.29–3.15 (m, 2H), 2.60 (dd, *J* = 13.3, 7.1 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 208.6, 143.6, 140.3, 140.2, 139.6, 138.0, 135.6, 133.5, 133.4, 133.1, 132.7, 132.4, 130.3, 129.7, 129.4, 128.9, 128.7, 128.2, 127.8, 127.8, 127.3, 127.1, 127.0, 125.8, 125.6, 51.2, 46.4, 44.4, 21.5; HRMS (ESI) calcd for C₃₃H₂₆ClNNaO₃S [M+Na]⁺: 574.1214; found: 574.1220. 13-methyl-10-phenyl-4-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[*c*]naphtho[2,1-*e*]azonin-1-one (2ac)

Column chromatography (petroleum ether/EtOAc = 25:1 to 14:1) to afford **2ac** in 73% yield (38.8 mg); colorless solid, mp 229–231 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.81 (s, 1H), 7.71 (s, 1H), 7.58 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.40–7.34 (m, 2H), 7.25–7.12 (m, 7H), 7.09–7.04 (m, 2H), 7.02 (d, *J* = 7.3 Hz, 1H), 4.49 (d, *J* = 13.6 Hz, 1H), 3.90 (d, *J* = 13.6 Hz, 1H), 3.48–3.32 (m, 2H), 3.19 (ddd, *J* = 15.3, 9.1, 2.5 Hz, 1H), 2.64 (ddd, *J* = 15.4, 7.6, 1.5 Hz, 1H), 2.55 (s, 3H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 209.4, 143.4, 140.2, 139.9, 139.1, 138.5, 136.7, 136.0, 133.5, 133.0, 132.2, 130.3, 129.7, 129.6, 129.4, 129.2, 128.4, 127.7, 127.7, 127.5, 127.0, 126.8, 125.8, 123.8, 50.8, 46.4, 44.8, 21.7, 21.4; HRMS (ESI) calcd for C₃₄H₂₉NNaO₃S [M+Na]⁺: 554.1760; found: 554.1764.

10-cyclohexyl-3-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[*d*]naphtho[2,1-*f*]azonin-1-one (2ad)

Column chromatography (petroleum ether/EtOAc = 30:1 to 16:1) to afford **2ad** in 99% yield (51.8 mg); colorless solid, mp 216–218 °C; **¹H NMR (600 MHz, CDCl3**) δ 8.06 – 8.00 (m, 1H), 7.90 (s, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.40 – 7.32 (m, 3H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 2H), 7.05 (d, *J* = 7.5 Hz, 1H), 4.15 (d, *J* = 18.9 Hz, 1H), 4.00 – 3.87 (m, 1H), 2.90 – 2.79 (m, 2H), 2.76 – 2.67 (m, 2H), 2.19 (t, *J* = 11.8 Hz, 1H), 1.80 (d, *J* = 11.5 Hz, 2H), 1.73 – 1.61 (m, 4H), 1.40 – 1.33 (m, 1H), 1.30 – 1.21 (m, 1H), 1.19 – 1.06 (m, 1H), 1.03 – 0.93 (m, 1H); ¹³C NMR (150 MHz, CDCl3) δ 205.8, 143.6, 142.5, 138.6, 138.3, 137.3, 135.2, 134.7, 133.5, 131.4, 129.5, 129.0, 128.5, 128.4, 127.3, 127.2, 126.9, 126.8, 126.4, 126.2, 126.1, 59.9, 53.5, 40.3, 35.3, 34.8, 33.6, 26.8, 26.7, 25.9, 21.3; HRMS (ESI) calcd for C₃₃H₃₄NO₃S [M+H]⁺: 524.2254; found: 524.2255.

10-phenyl-3-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[*d*]naphtho[2,1-*f*]azonin-1-one (2ae)

Column chromatography (petroleum ether/EtOAc = 25:1 to 14:1) to afford **2ae** in 81% yield (41.9 mg); colorless solid, mp 181–183 °C; **¹H NMR (600 MHz, CDCl₃)** δ 8.10 (d, *J* = 8.4 Hz, 1H), 7.95 (s, 1H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.66–7.53 (m, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 7.23–7.10 (m, 9H), 7.08 (d, *J* = 6.7 Hz, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 4.13 (d, *J* = 18.9 Hz, 1H), 3.92 (dt, *J* = 13.4, 3.3 Hz, 1H), 2.91–2.84 (m, 1H), 2.82 (d, *J* = 19.0 Hz, 1H), 2.63 (t, *J* = 12.6 Hz, 1H), 2.54 (dd, *J* = 13.5, 3.8 Hz, 1H), 2.38 (s, 3H); **¹³C NMR (150 MHz, CDCl₃)** δ 205.4, 143.7, 140.3, 138.5, 138.4, 138.1, 137.8, 134.8,

134.8, 133.2, 132.4, 130.5, 129.7, 129.4, 129.3, 129.0, 128.3, 127.8, 127.5, 127.3, 127.0, 126.9, 126.7, 126.6, 126.5, 60.2, 53.6, 35.1, 21.4; **HRMS (ESI)** calcd for C₃₃H₂₈NO₃S [M+H]⁺: 518.1784; found: 518.1789.

13-chloro-10-phenyl-3-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[*d*]naphtho[2,1*f*]azonin-1-one (2af)

Column chromatography (petroleum ether/EtOAc = 30:1 to 15:1) to afford **2af** in 85% yield (46.9 mg); colorless solid, mp 203–204 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 9.1 Hz, 1H), 7.89 (d, *J* = 2.0 Hz, 1H), 7.85 (s, 1H), 7.54 (dd, *J* = 9.1, 2.1 Hz, 1H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.25–7.09 (m, 9H), 7.09–7.05 (m, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 4.06 (d, *J* = 19.0 Hz, 1H), 3.93 (dt, *J* = 13.4, 3.3 Hz, 1H), 2.93–2.84 (m, 1H), 2.80 (d, *J* = 19.0 Hz, 1H), 2.62 (t, *J* = 12.6 Hz, 1H), 2.55 (dd, *J* = 13.4, 3.6 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 204.9, 143.9, 139.9, 139.3, 138.4, 138.0, 137.8, 135.1, 134.7, 133.9, 132.7, 132.3, 129.7, 129.5, 129.3, 129.2, 128.5, 128.4, 127.8, 127.7, 127.6, 127.2, 126.9, 126.6, 126.4, 60.2, 53.6, 35.2, 21.4; HRMS (ESI) calcd for C₃₃H₂₆ClNNaO₃S [M+Na]⁺: 574.1214; found: 574.1216.

13-methyl-10-phenyl-3-tosyl-2,3,4,5-tetrahydro-1*H*-benzo[*d*]naphtho[2,1-

f]azonin-1-one (2ag)

Column chromatography (petroleum ether/EtOAc = 25:1 to 14:1) to afford **2ag** in 82% yield (43.6 mg); colorless solid, mp 223–225 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.7 Hz, 1H), 7.86 (s, 1H), 7.69 (s, 1H), 7.45 (d, *J* = 8.7 Hz, 1H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.24–7.17 (m, 3H), 7.17–7.04 (m, 7H), 6.95 (d, *J* = 7.6 Hz, 1H), 4.11 (d, *J* = 18.9 Hz, 1H), 3.96–3.87 (m, 1H), 2.93–2.84 (m, 1H), 2.81 (d, *J* = 18.9 Hz, 1H), 2.63 (t,

J = 12.7 Hz, 1H), 2.55 (s, 3H), 2.54–2.50 (m, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.6, 143.7, 140.5, 138.6, 138.5, 138.0, 137.5, 136.6, 134.9, 133.8, 133.5, 132.5, 129.9, 129.7, 129.4, 129.4, 128.9, 128.3, 127.6, 127.5, 127.3, 126.7, 126.6, 126.5, 126.3, 60.2, 53.6, 35.2, 21.7, 21.4; HRMS (ESI) calcd for C₃₄H₃₀NO₃S [M+H]⁺: 532.1941; found: 532.1945.

11-phenyl-5-tosyl-3,4,5,6-tetrahydrobenzo[*c*]naphtho[2,1-*e*]azecin-1(2*H*)-one (2ah)

Column chromatography (petroleum ether/EtOAc = 25:1 to 10:1) to afford **2ah** in 43% yield (22.9 mg); colorless solid, mp 253–255 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.94–7.88 (m, 2H), 7.75 (d, *J* = 8.7 Hz, 1H), 7.60–7.52 (m, 4H), 7.38–7.31 (m, 2H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.20–7.15 (m, 4H), 7.14–7.10 (m, 2H), 4.09 (d, *J* = 13.9 Hz, 1H), 3.58 (d, *J* = 13.9 Hz, 1H), 2.80–2.64 (m, 2H), 2.39 (s, 3H), 2.38–2.30 (m, 1H), 2.28–2.18 (m, 1H), 1.67–1.58 (m, 1H), 1.55–1.46 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 209.4, 143.3, 140.4, 140.0, 138.9, 138.4, 136.0, 134.6, 133.6, 133.1, 132.9, 130.4, 130.1, 129.7, 129.7, 129.1, 128.5, 128.2, 127.8, 127.8, 127.5, 127.1, 127.0, 126.9, 124.8, 52.8, 48.2, 40.8, 24.3, 21.5; HRMS (ESI) calcd for C₃₄H₂₉NNaO₃S [M+Na]⁺: 554.1760; found: 554.1766.

11-phenyl-4-tosyl-3,4,5,6-tetrahydrobenzo[d]naphtho[2,1-f]azecin-1(2H)-one (2ai)

Column chromatography (petroleum ether/EtOAc = 25:1 to 8:1) to afford **2ai** in 24% yield (12.8 mg); colorless solid, mp 208–210 °C; **¹H NMR (600 MHz, CDCl3)** δ 7.97 (s, 1H), 7.95 (d, *J* = 4.2 Hz, 1H), 7.87–7.81 (m, 1H), 7.60–7.54 (m, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 7.3 Hz, 1H), 7.29–7.13 (m, 10H), 6.88 (d, *J* = 7.5 Hz, 1H),

3.33–3.26 (m, 1H), 3.05–2.97 (m, 1H), 2.78–2.62 (m, 4H), 2.35 (s, 3H), 2.32–2.24 (m, 1H), 2.10–1.98 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 207.4, 143.2, 140.5, 139.1, 138.5, 138.4, 138.1, 135.7, 134.5, 133.3, 133.0, 130.6, 129.9, 129.5, 129.4, 129.0, 128.9, 128.5, 127.6, 127.3, 126.7, 126.6, 126.4, 124.9, 51.2, 44.7, 44.5, 34.2, 21.4; HRMS (ESI) calcd for C₃₄H₃₀NO₃S [M+H]⁺: 532.1941; found: 532.1945.

12-phenyl-5-tosyl-2,3,4,5,6,7-hexahydro-1*H*-benzo[*d*]naphtho[2,1-*f*][1] azacycloundecin-1-one (2aj)

Column chromatography (petroleum ether/EtOAc = 20:1 to 10:1) to afford **2aj** in 10% yield (5.5 mg); colorless solid, mp 258–260 °C; ¹H NMR (**600** MHz, CDCl₃) δ 7.91 (d, J = 7.4 Hz, 1H), 7.89 (s, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.58–7.51 (m, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.37–7.31 (m, 2H), 7.30–7.26 (m, 1H), 7.25–7.12 (m, 6H), 7.08 (d, J = 6.7 Hz, 2H), 3.87–3.76 (m, 1H), 2.90–2.79 (m, 1H), 2.62 (dt, J = 13.7, 4.3 Hz, 1H), 2.56–2.46 (m, 1H), 2.38 (s, 3H), 2.34 (t, J = 8.0 Hz, 1H), 2.31–2.25 (m, 2H), 2.20 (dt, J = 15.5, 4.3 Hz, 1H), 1.74–1.65 (m, 1H), 1.62–1.56 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 209.8, 143.5, 140.3, 139.7, 138.9, 138.1, 135.7, 134.3, 134.2, 133.1, 132.3, 129.8, 129.6, 129.5, 128.9, 128.6, 128.4, 127.6, 127.5, 127.5, 126.8, 126.3, 125.0, 48.7, 47.6, 40.1, 31.1, 23.4, 21.4; HRMS (ESI) calcd for C₃₅H₃₂NO₃S [M+H]⁺: 546.2097; found: 546.2104.

12-cyclohexyl-7-tosyl-2,3,4,5,6,7-hexahydro-1*H*-benzo[*b*]naphtho[2,1-*d*][1] azacycloundecin-1-one (2ak)

Column chromatography (petroleum ether/EtOAc = 25:1 to 12:1) to afford **2ak** in 37% yield (20.4 mg); pale-yellow solid, mp 180–182 °C; ¹H NMR (600 MHz, CDCl₃) δ_{S46}

7.94 (s, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.2 Hz, 2H), 7.65 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 7.3 Hz, 1H), 7.47–7.42 (m, 1H), 7.41–7.36 (m, 1H), 7.33 (dd, J = 16.6, 8.1 Hz, 5H), 3.41 (dt, J = 16.2, 8.3 Hz, 1H), 3.10–3.00 (m, 1H), 2.84 (dd, J = 15.8, 7.2 Hz, 1H), 2.72–2.61 (m, 1H), 2.44 (s, 3H), 2.29 (d, J = 11.7 Hz, 1H), 2.20 (dt, J = 16.2, 5.2 Hz, 1H), 1.83 (dd, J = 16.9, 7.2 Hz, 2H), 1.76–1.67 (m, 1H), 1.64 (d, J = 13.0 Hz, 1H), 1.57–1.50 (m, 3H), 1.49–1.44 (m, 1H), 1.31–1.09 (m, 3H), 1.07–0.87 (m, 4H); ¹³C **NMR (150 MHz, CDCI**₃) δ 209.4, 145.4, 143.4, 138.9, 138.1, 137.8, 136.0, 134.9, 134.3, 133.4, 129.8, 128.5, 128.4, 128.4, 127.6, 126.5, 126.5, 126.3, 126.2, 124.8, 45.7, 41.9, 39.6, 37.3, 31.5, 26.9, 26.3, 25.9, 23.1, 22.7, 21.5, 21.1; **HRMS (ESI)** calcd for C₃₅H₃₇NNaO₃S [M+Na]⁺: 574.2386; found: 574.2396.

4. Gram-scale synthesis of 2a and 2c and further transformations

4.1. Gram-scale synthesis of 2a

To a solution of **1a** (1.007 g, 2 mmol) and 4 Å MS (1.000 g) in anhydrous DCE (40 mL) was added ^{*t*}BuXPhosAu(MeCN)SbF₆ (3 mol %) under an argon atmosphere. The reaction mixture was stirred at 80 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with CH₂Cl₂ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 25:1 to 10:1) to give the product **2a** (856 mg, 85%).

4.2. Gram-scale synthesis of 2c

To a solution of **1c** (0.999 g, 2.0 mmol) and 4 Å MS (1.000 g) in anhydrous DCE (40 mL) was added 'BuXPhosAu(MeCN)SbF₆ (3 mol %) under an argon atmosphere. The reaction mixture was stirred at 80 °C for 12 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered through celite, washed with CH₂Cl₂ and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 25:1 to 12:1) to give the product **2c** (819 mg, 82%).

4.3. Synthetic transformation of 2a

To a solution of **2a** (100.7 mg, 0.2 mmol) in 2 mL anhydrous DCE at -30 °C was added DIBAL-H (1.0 M in hexane, 0.5 mL) dropwise and the reaction mixture was stirred - 30 °C for 4 h. The reaction was quenched with MeOH (2 mL) at -30 °C and warmed to room temperature and stirred until the mixture became clear. The mixture was extract with EtOAc, washed with brine and dried over MgSO₄, then filtrated and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 20:1 to 13:1) to afford the product **3** in 90% yield (91.0 mg) as a colorless solid, mp 218–220 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.77–8.69 (m, 1H), 7.93–7.86 (m, 1H), 7.84 (s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.57–7.49 (m, 2H), 7.33–7.28 (m, 1H), 7.26 (t, *J* = 4.1 Hz, 2H), 7.20–7.13 (m, 3H), 6.97 (td, *J* = 7.6, 0.8 Hz, 1H), 6.95–6.88 (m, 2H), 6.79 (d, *J* = 7.4 Hz, 2H)

1H), 5.13 (d, J = 8.6 Hz, 1H), 4.90 (d, J = 14.1 Hz, 1H), 4.34 (d, J = 11.5 Hz, 1H), 3.49 (dd, J = 11.5, 9.1 Hz, 1H), 3.26 (d, J = 14.1 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (150 MHz, CDCI₃) δ 143.4, 141.4, 139.1, 137.7, 137.6, 136.6, 135.8, 134.8, 134.0, 130.9, 130.3, 130.2, 129.8, 129.5, 128.9, 128.8, 128.4, 127.7, 127.1, 127.1, 126.4, 126.4, 126.3, 126.1, 72.1, 53.9, 48.8, 21.4; HRMS (ESI) calcd for C₃₂H₂₈NO₃S [M+H]⁺: 506.1784; found: 506.1785.

To a solution of 2a (100.7 mg, 0.2 mmol) in DCE (4 mL) was added Et₃SiH (3.18 mL, 20 mmol) and BF₃ Et₂O (2.47 mL, 20 mmol). The reaction mixture was stirred at 50 °C for 120 h until completion (monitored by TLC). The reaction mixture was cooled down to room temperature and quenched with H₂O and extracted with CH₂Cl₂. The combined organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether: EtOAc = 50:1 to 25:1) to give the product 4 in 98% yield (96.0 mg) as a colorless solid, mp 168–170 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.25 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 7.4 Hz, 1H), 7.77 - 7.68 (m, J = 7.4 Hz, 1Hz), 7.77 - 7.68 (m, J = 7.4 Hz, 1Hz), 7.77 - 7.68 (m, J = 7.4 Hz, 1Hz), 7.77 - 7.68 (m, J = 7.4 Hz), 7.77 - 7.68 (m, J = 7.4 Hz), 7.77 - 7.3H), 7.66 - 7.61 (m, 1H), 7.58 - 7.45 (m, 6H), 7.30 (d, J = 8.1 Hz, 2H), 7.27 - 7.24 (m, 1H), 7.11 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.8 Hz, 1H), 4.83 (dd, J = 10.1, 4.1 Hz, 1H), 4.09 (dd, J = 14.2, 4.2 Hz, 1H), 2.77 (s, 3H), 2.73 (dd, J = 14.1, 10.1 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 146.8, 143.5, 141.2, 140.9, 140.8, 136.6, 136.4, 134.1, 132.6, 129.7, 129.6, 129.2, 128.9, 127.7, 127.6, 127.1, 126.6, 126.3, 125.8, 125.5, 124.2, 123.0, 55.8, 47.2, 37.9, 21.5; HRMS (ESI) calcd for C₃₂H₂₈NO₂S [M+H]⁺:490.1841; found: 490.1851.

4.4. Synthetic transformation of 2c

To a solution of **2c** (249.9 mg, 0.5 mmol), NBS (115.7 mg, 0.65 mmol) or NIS (146.2 mg, 0.65 mmol) in anhydrous DCE (10 mL) was added InBr₃ (35.5 mg, 0.1 mmol) under an argon atmosphere. The mixture was stirred at 60 °C for 12 h until full consumption of the starting material. The mixture was concentrated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 25:1 to 10:1) to give **5** (210.2 mg) and **6** (273.9 mg) in 83% and 99% yields, respectively. Compound **5**: pale-yellow solid, mp 163–165 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.21 (s, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 1H), 7.60 – 7.51 (m, 2H), 7.45 – 7.38 (m, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 1.6 Hz, 1H), 7.18 (dd, *J* = 7.3, 1.6 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 4.66 (d, *J* = 12.1 Hz, 1H), 4.61 (d, *J* = 19.7 Hz, 1H), 4.24 (d, *J* = 12.1 Hz, 1H), 3.45 (d, *J* = 19.6 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.7, 143.4, 138.9, 138.5, 135.6, 134.5, 134.1, 133.3, 132.9, 130.9, 130.6, 129.5, 129.3, 129.1, 128.1, 127.9, 127.5, 127.2, 126.6, 125.3, 119.7, 56.3, 51.4, 21.5; HRMS (ESI) calcd for C₂₆H₂₁BrNO₃S [M+H]⁺: 506.0420; found: 506.0422.

Compound **6**: pale-yellow solid, mp 189–191 °C; ¹H NMR (**600** MHz, CDCl₃) δ 8.48 (s, 1H), 7.78 – 7.73 (m, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.45 – 7.39 (m, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.25 (d, *J* = 2.3 Hz, 1H), 7.15 – 7.08 (m, 1H), 6.97 (d, *J* = 8.1 Hz, 2H), 4.63 (d, *J* = 3.9 Hz, 1H), 4.61 (d, *J* = 11.5 Hz, 1H), 4.25 (d, *J* = 12.2 Hz, 1H), 3.46 (d, *J* = 19.6 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 205.8, 143.3, 142.0, 140.3, 137.6, 137.2, 135.6, 134.4, 132.9, 130.7, 130.5, 129.4, 129.4, 129.2, 128.5, 128.1, 127.3, 127.0, 126.5, 125.1, 95.4, 56.1, 51.4, 21.5; HRMS (ESI) calcd for C₂₆H₂₀INNaO₃S [M+Na]⁺: 576.0101; found: 576.0111.

To an oven-dried round-bottom flask equipped with a stirring bar were added 6 (110.7) mg, 0.2 mmol), Pd(PPh₃)₂Cl₂ (28.0 mg, 0.004 mmol) and CuI (15.0 mg, 0.008 mmol) in anhydrous THF (2 mL) was added phenylacetylene (0.033 mL, 0.3 mmol) and diisopropylamine ($P_{12}NH$, 4.0 equiv) under an argon atmosphere at room temperature. The reaction mixture was stirred at room temperature for 12 h until full consumption of the starting material (monitored by TLC). Upon completion, the reaction mixture was quenched with saturated NH₄Cl solution and extracted with EtOAc, the combined organic layers were washed with brine, dried over MgSO₄. After filtration and concentration, the residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 25:1 to 10:1) to afford 7 (97.1 mg) in 92% yield as pale-yellow solid, mp 84–86 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.60 – 7.50 (m, 2H), 7.48 – 7.40 (m, 2H), 7.37 (d, *J* = 8.1 Hz, 3H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.27 – 7.22 (m, 3H), 7.15 – 7.03 (m, 2H), 6.97 (d, J = 8.0 Hz, 2H), 4.68 (d, J = 12.1 Hz, 1H), 4.65 (d, J = 19.7 Hz, 1H), 4.32 (d, J = 12.1 Hz, 1H), 3.53 (d, J = 19.6 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) § 206.2, 143.2, 139.0, 137.2, 135.8, 135.7, 133.8, 133.0, 132.7, 131.3, 131.1, 130.5, 129.4, 129.0, 128.7, 128.6, 128.4, 128.2, 128.2, 128.0, 127.1, 126.6, 125.3, 122.7, 119.6, 94.1, 87.8, 56.4, 51.4, 21.5; **HRMS (ESI)** calcd for C₃₄H₂₆NO₃S [M+H]⁺: 528.1628; found: 528.1637.

5. ¹H, ¹³C and ¹⁹F NMR Spectra

Figure S2 ¹³C NMR (150 MHz, CDCl₃) of 1a

Figure S3 ¹H NMR (600 MHz, CDCl₃) of 1b

0670

Figure S6¹³C NMR (150 MHz, CDCl₃) of 1c

Figure S5 ¹H NMR (600 MHz, CDCl₃) of 1c

Figure S7 ¹H NMR (400 MHz, CDCl₃) of 1d

Figure S8 ¹³C NMR (150 MHz, CDCl₃) of 1d

Figure S9 ¹H NMR (400 MHz, CDCl₃) of 1e

Figure S11 ¹H NMR (600 MHz, CDCl₃) of 1f

Figure S13 ¹H NMR (600 MHz, CDCl₃) of 1g

---9.8285 7.8279 7.8151 7.51332 7.51332 7.51332 7.4748 7.4648 7.4648 7.4648 7.4648 7.4648 7.4055 7.2053 7.2054 7.2053 7.7053 7.70547 7.7054 7.7054 7.7054 7.7054 7.70547 7 -4.6410 -4.2505 -4.2505 -3.6148 -3.6148 -2.3346 -2.2346 -2.2446 -2.2446 -2.2446 -2.2446 -2.2446 -2.2446 -2.246 -2.2446 -2.2446 -2.2446 -2.2466 -2.2446 -2.24666 -2.24666 -2.24666 -2.24666 -2.2466666666 -2.246666666666666666 MeO 0 °O h 0.91-2.00-1.98-2.89 2.09 1.98 2.99-10.0 7.5 4.5 10.5 8.5 8.0 7.0 6.0 5.5 5.0 f1 (ppm) 3.5 2.5 9.5 9.0 6.5 4.0 3.0 2.0 1.5 1.0 0.5 0.0 Figure S16¹³C NMR (150 MHz, CDCl₃)of 1h

Figure S15 ¹H NMR (600 MHz, CDCl₃) of 1h

Figure S18 ¹³C NMR (150 MHz, CDCl₃) of 1i

Figure S22 ¹³C NMR (150 MHz, CDCl₃) of 1k

Figure S21 ¹H NMR (600 MHz, CDCl₃) of 1k

Figure S23 ¹⁹F NMR (565 MHz, CDCl₃) of 1k

Figure S24 ¹H NMR (600 MHz, CDCl₃) of 11

Figure S25 ¹³C NMR (150 MHz, CDCl₃) of 11

Figure S27 ¹³C NMR (150 MHz, CDCl₃) of 1m

Figure S31 ¹³C NMR (150 MHz, CDCl₃) of 10

Figure S33 ¹³C NMR (100 MHz, CDCl₃) of 1p

Figure S35 ¹³C NMR (150 MHz, CDCl₃) of 1q

Figure S45 ¹³C NMR (150 MHz, CDCl₃) of 1v

Figure S46 ¹⁹F NMR (565 MHz, CDCl₃) of 1v

Figure S47 ¹H NMR (600 MHz, CDCl₃) of 1w

 110 100 f1 (ppm)

Figure S49 ¹H NMR (600 MHz, CDCl₃) of 1x

210

200

190 180

170

150 140 130

160

110 100 f1 (ppm) 90

30 20 10

0

50 40

120

Figure S51 ¹H NMR (600 MHz, CDCl₃) of 1y

Figure S53 ¹H NMR (600 MHz, CDCl₃) of 1z

Figure S55 ¹H NMR (600 MHz, CDCl₃) of 1aa

1.2010 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100 1.0100

Figure S56 ¹³C NMR (150 MHz, CDCl₃) of 1aa

Figure S57 ¹H NMR (600 MHz, CDCl₃) of 1ab

Figure S62 ¹³C NMR (150 MHz, CDCl₃) of 1ad

Figure S63 ¹H NMR (600 MHz, CDCl₃) of 1ae

210 200

190

110 100 f1 (ppm) 90

70

50 40 30

20 10

150 140 130 120

170 160

Figure S65 ¹H NMR (600 MHz, CDCl₃) of 1af

110 100 f1 (ppm) 90

20 10

120

140 130

170 160 150

180

210 200 190

Figure S67 ¹H NMR (600 MHz, CDCl₃) of 1ag

Figure S68 ¹³C NMR (150 MHz, CDCl₃) of 1ag

Figure S73 ¹H NMR (600 MHz, CDCl₃) of 1aj

Figure S77 ¹H NMR (600 MHz, CDCl₃) of 1al

Figure S78 ¹³C NMR (150 MHz, CDCl₃) of 1al

Figure S79 ¹H NMR (600 MHz, CDCl₃) of 2a

S92

Figure S83 ¹H NMR (600 MHz, CDCl₃) of 2c

Figure S85 ¹H NMR (600 MHz, CDCl₃) of 2d

Figure S87 ¹H NMR (400 MHz, CDCl₃) of 2e

Figure S89 ¹H NMR (600 MHz, CDCl₃) of 2f

Figure S92 ¹³C NMR (150 MHz, CDCl₃) of 2g

Figure S93 ¹H NMR (600 MHz, CDCl₃) of 2h

Figure S95 ¹H NMR (600 MHz, CDCl₃) of 2i

Figure S97 ¹H NMR (600 MHz, CDCl₃) of 2j

R119.1 R119.1

Figure S99 ¹H NMR (600 MHz, CDCl₃) of 2k

Figure S101 ¹⁹F NMR (565 MHz, CDCl₃) of 2k

Figure S103 ¹³C NMR (150 MHz, CDCl₃) of 2l

Figure S104 ¹H NMR (600 MHz, CDCl₃) of 2m

Figure S105 ¹³C NMR (150 MHz, CDCl₃) of 2m

1.05

5,0 4.5 f1 (ppm)

0.1

8.0

8.5

9.0

9.5

2.11

7.5

3.05

7.0

6.5

6.0

5.5

3.06

2.5

3.07

2.0

1.5

1.0

0.5

0.0

1.04

3.5

3.0

4.0

Figure S109 ¹³C NMR (150 MHz, CDCl₃) of 20

Figure S113 ¹³C NMR (150 MHz, CDCl₃) of 2q

Figure S114 ¹H NMR (600 MHz, CDCl₃) of 2r

Figure S115 ¹³C NMR (150 MHz, CDCl₃) of 2r

Figure S116 ¹H NMR (400 MHz, CDCl₃) of 2s

Figure S121 ¹³C NMR (150 MHz, CDCl₃) of 2u

Figure S123 ¹³C NMR (150 MHz, CDCl₃) of 2v

Figure S124 ¹⁹F NMR (565 MHz, CDCl₃) of 2v

Figure S125 ¹H NMR (600 MHz, CDCl₃) of 2w

Figure S127 ¹H NMR (600 MHz, CDCl₃) of 2x

Figure S129 ¹H NMR (600 MHz, CDCl₃) of 2y

Figure S131 ¹H NMR (600 MHz, CDCl₃) of 2z

Norman State St

Figure S133 ¹H NMR (600 MHz, CDCl₃) of 2aa

Figure S135 ¹H NMR (600 MHz, CDCl₃) of 2ab

Figure S137 ¹H NMR (600 MHz, CDCl₃) of 2ac

Figure S139 ¹H NMR (600 MHz, CDCl₃) of 2ad

0.00.01 0.0

Figure S140 ¹³C NMR (150 MHz, CDCl₃) of 2ad

Figure S141 ¹H NMR (600 MHz, CDCl₃) of 2ae

Figure S143 ¹H NMR (600 MHz, CDCl₃) of 2af

Figure S145 ¹H NMR (600 MHz, CDCl₃) of 2ag

Figure S147 ¹H NMR (600 MHz, CDCl₃) of 2ah

Figure S149 ¹H NMR (600 MHz, CDCl₃) of 2ai

Figure S150 ¹³C NMR (150 MHz, CDCl₃) of 2ai

Figure S151 ¹H NMR (600 MHz, CDCl₃) of 2aj

Figure S153 ¹H NMR (600 MHz, CDCl₃) of 2ak

C. 7. 3014 <pC. 7. 3014</p> C. 7. 3014 <pC. 7. 3014</p> <pC. 7. 3014</p> <pC. 7. 3014</p> C. 7. 3014 <pC. 7. 3014</p> C. 7. 3014 <pC. 7. 3014</p> <pC. 7. 3014</p> <pC. 7. 3014</p> <pC. 7. 3014</p> C. 7. 3014 <pC. 7. 3014</p> C. 7. 3014 <pC. 7. 3014</p> <p

S129

¹¹⁰ ¹⁰⁰ ⁹⁰ **f**1 (**ppm**)

80 70

60 50

40 30

20 10

200

190 180 170 160

150 140

130 120

Figure S157 ¹H NMR (600 MHz, CDCl₃) of 4

Figure S159 ¹H NMR (600 MHz, CDCl₃) of 5

Figure S161 ¹H NMR (600 MHz, CDCl₃) of 6

Figure S163 ¹H NMR (600 MHz, CDCl₃) of 7

6. X-ray crystal structure of 2a

Crystal preparation: Compound **2a** (30 mg) were dissolved in hexane/EA = 9:1 (10 mL) in 25 mL round bottom flask and the resultant solution were allowed to slowly evaporate at room temperature to get pure crystals suitable for X-ray diffraction analysis. The intensity data were collected at 100 K or 150 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an AtlasS2 CCD using Cu K α radiation. More information on crystal structures can also be obtained from the Cambridge Crystallographic Data Centre (CCDC) with deposition numbers 2232496 (**2a**).

Figure S165. ORTEP Drawing of **2a** with Thermal Ellipsoids at 30% Probability Levels (CCDC 2232496).

Table S1 Crystal data and structure refinement for 2a.

Identification code	2a
Empirical formula	$C_{32}H_{25}NO_3S$
Formula weight	503.59
Temperature/K	179.99(10)

S134

Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	8.7554(8)
b/Å	13.6091(19)
c/Å	20.639(3)
$\alpha/^{\circ}$	90
β/°	91.860(9)
γ/°	90
Volume/Å ³	2458.0(5)
Z	4
$\rho_{calc}g/cm^3$	1.361
μ/mm^{-1}	0.168
F(000)	1056.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.11
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.956 to 49.994
Index ranges	$-10 \le h \le 9, -16 \le k \le 15, -20 \le l \le 24$
Reflections collected	15092
Independent reflections	4340 [$R_{int} = 0.0910, R_{sigma} = 0.0754$]
Data/restraints/parameters	4340/30/335
Goodness-of-fit on F ²	1.085
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1131, wR_2 = 0.2842$
Final R indexes [all data]	$R_1 = 0.1305, wR_2 = 0.2937$
Largest diff. peak/hole / e Å ⁻³	0.92/-0.54

7. References

[S1] (a) S. Pramanik, M. Jash, D. Mondal and C. Chinmay, Palladium-Catalyzed Synthesis of 6*H*-Dibenzo[*c*,*h*]chromenes and 5,6-Dihydrobenzo[*c*]phenanthridines: Application to the Synthesis of Dibenzo[*c*,*h*]chromene-6-ones, Benzo[c]phenanthridines, and *Arnottin I, Adv. Synth. Catal.*, 2019, **361**, 5223–5238; (b) K. Hiroya, R. Jouka, M. Kameda and A. Yasuhara, Cyclization reactions of 2-alkynylbenzyl alcohol and 2-alkynylbenzylamine derivatives promoted by tetrabutylammonium fluoride, *Tetrahedron*, 2001, **57**, 9697–9710.

[S2] J. Chen, R. Hu, Q. Bao, D. Shang, L. Yu, P. W. H. Chan and W. Rao, Ligandcontrolled chemoselectivity in gold-catalyzed cascade cyclization of 1,4-diene-tethered 2-alkynylbenzaldehydes, *Org. Chem. Front.*, 2022, **9**, 6520–6529.

[S3] (a) K. Hiroya, S. Itoh and T. Sakamoto, Development of an efficient procedure for indole ring synthesis from 2-ethynylaniline derivatives catalyzed by Cu(II) salts and its application to natural product synthesis, *J. Org. Chem.*, **2004**, *69*, 1126–1136; (b) Y. Zhao, Y. Hu, H. Wang, X. Li and B. Wan, Transition-metal controlled diastereodivergent radical cyclization/azidation cascade of 1,7-enynes, *J. Org. Chem.*, 2016, **81**, 4412–4420.

[S4] Y. F. Qiu, Y. J. Niu, X. Wei, B. Q. Cao, X. C. Wang and Z. J. Quan, AgSCF₃/Na₂S₂O₈-promoted trifluoromethylthiolation/cyclization of *o*-propargyl arylazides/*o*-alkynyl benzylazides: Synthesis of SCF₃-substituted quinolines and isoquinolines, *J. Org. Chem.*, 2019, **84**, 4165–4178.

[S5] E. R. Fruchey, B. M. Monks, A. M. Patterson and S. P. Cook, Palladium-catalyzed alkyne insertion/reduction route to trisubstituted olefins, *Org. Lett.*, 2013, **15**, 4362–4365.

[S6] D. Campolo, T. Arif, C. Borie, D. Mouysset, N. Vanthuyne, J. V. Naubron and M. Nechab, Double Transfer of Chirality in Organocopper–Mediated bis(Alkylating)
Cycloisomerization of Enediynes, *Angew. Chem. Int. Ed.*, 2014, **53**, 3227–3231.

[S7] X. Wang, Z. Yao, S. Dong, F. Wei, H. Wang and Z. Xu, Synthesis of fused bicyclic aminals through sequential gold/Lewis acid catalysis, *Org. Lett.*, 2013, **15**, 2234–2237.