Asymmetric synthesis of cyclopenta[b]indoles via organocatalytic formal (3+2) cyclization of β -keto ester with azonaphthalene

Yanji Song, Shi Tang, Qianping Chen, Qingfa Tan, Weidi Cao, Xiaoming Feng and

Xiaohua Liu*

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China. E-mail: liuxh@scu.edu.cn

Table of contents

1.	General Information
2.	General procedure for the synthesis of the chiral guanidines4
3.	Optimization of the reaction conditions5
4.	Typical procedure for the catalytic asymmetric reaction11
5.	General procedure for the preparation of the racemic products11
6.	Gram-scale synthesis of C16 and the transformations of the products12
7.	Unsuccessful substrates13
8.	X-ray crystal data14
9.	The NMR study of substrates with G316
10.	Spectral characterization data for products18
11.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of the products51
12.	Copies of CD spectra of the products89
13.	Reference102

1. General Information

Unless otherwise noted, all catalytic reactions were run under air conditions, column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored with thin layer chromatography (TLC) using 254 nm UV light and basic KMnO₄ aqueous. NMR characterization data were collected on bruker ASCENDTM operating at 400 MHz and 600 MHz for ¹H NMR, 101MHz and 151 MHz for ¹³C{1H} NMR (with complete proton decoupling), and 565 MHz for ¹⁹F{1H} NMR (with complete proton decoupling). ¹H NMR chemical shifts were reported in ppm from tetramethylsilane with the TMS resonance as the internal standard ($\delta = 0.00$). ¹³C NMR spectra chemical shifts are reported in ppm from thetetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0, (CD₃)₂CO, δ = 206.4, C₆D₆, δ = 128.0). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and assignment. High-resolution mass spectra (HRMS) were recorded on a Thermo Q-Exactive Focus (FTMS+c ESI). Enantiomeric excesses were determined by chiral SFC analysis using the corresponding commercial chiral column as stated in the experimental procedures at 25 °C with UV detector. Optical rotations were measured on Rudolph Research Analytic Automatic Polarimeter and reported as follows: $[\alpha]^{T}_{D}$ (c: g/100 mL, in CH₂Cl₂). Infrared spectra (IR) were recorded on Bruker Tensor II spectrometer with Plantium ATR accessory and the peaks are reported as absorption maxima (v, cm⁻¹). Circular dichroism (CD) spectra were recorded on Applied Photophysics Chirascan. Melting point ranges were determined on OptiMelt. X-ray crystallographic data were collected by a Bruker D8 Venture Photon II. All the solvents were purified by usual methods before use and reagents obtained from commercial sources were used without further purification. Substrates azonaphthalene¹, β -keto ester and β -keto amide² were synthesized according to the literature methods.

2. General procedure for the synthesis of the chiral guanidines

The chiral guanidines were prepared by the similar procedure in the literatures.^{3, 4}

3. Optimization of the reaction conditions

Table S1. Screening of the chiral guanidines.

A1	+ • • • • • • • • • • • • • • • • • • •	$\frac{0}{10000000000000000000000000000000000$	ine (10 mol%) M), 30 °C ^t BuO₂c	OH N-NHCO ₂ Me
Entry ^[a]	Guanidine	Yield (%) ^[b]	ee (%) ^[c]	dr ^[c]
1	G1	19	14	>19:1
2	G2	trace	0	>19:1
3	G3	31	32	93:7
4	G4	42	27	92:8
5	G5	13	9	>19:1
6	G 9	N.R.	-	-
7	G10	12	0	>19:1
8	G16	29	13	53:47

[a] Unless otherwise noted, the reactions were carried out with A1 (0.10 mmol), B1 (0.10 mmol) and the catalyst (10 mol%) in CH₂Cl₂ (0.1 M) at 30 °C for 12 h. [b] Yield of the isolated products. [c] Determined by chiral SFC. Table S2. Screening of solvents.

O ^O O'Bu	+ () N	0 N 0 − G3 (1) Solvent (0	0 mol%) 0.1 M), 30 °C	^t BuO ₂ C OH N-NHCO ₂ Me
	В1		(0 () [n]	U1
Entry ^[a]	Solvent	Yield $(\%)^{[0]}$	ee (%) ^[c]	dr ^[c]
1	CH_2Cl_2	31	32	93:7
2	THF	59	0	>19:1
3	Toluene	34	20	87:13
4	MeCN	90	24	>19:1
5	DMF	87	3	95:5
6	CH ₂ ClCH ₂ Cl	69	34	87:13
7	EtOAc	60	4	>19:1

8	CHCl ₃	35	24	88:12
---	-------------------	----	----	-------

[a] Unless otherwise noted, the reactions were carried out with A1 (0.10 mmol), B1 (0.10 mmol) and the G3 (10 mol%) in solvent (0.1 M) at 30 °C for 12 h. [b] Yield of the isolated products. [c] Determined by chiral SFC.
Table S3. Screening of temperature.

O O'Bu A1	+	$N \ge N \xrightarrow{0}_{0} \frac{G3 (1)}{CH_2 CICH_2 C}$	0 mol%) I (0.1 M), <i>τ</i> °C ^t BuO ₂	OH N-NHCO ₂ Me
Entry ^[a]	<i>T</i> °C	Yield (%) ^[b]	ee (%) ^[c]	dr[c]
1	10	49	38	>19:1
2	0	51	57	>19:1
3	-10	56	65	>19:1
4	-20	46	72	>19:1
5	-30	39	74	>19:1

[a] Unless otherwise noted, the reactions were carried out with A1 (0.10 mmol), B1 (0.10 mmol) and the G3 (10 mol%) in CH_2ClCH_2Cl (0.1 M) at T °C for 12 h. [b] Yield of the isolated products. [c] Determined by chiral SFC. Table S4. Screening of the reaction time.

	u + () N B1	\sim	nol%) 0.1 M), -30 °C [*] BuO ₂ C	OH N-NHCO ₂ Me
Entry ^[a]	Time (h)	Yield (%) ^[b]	ee (%) ^[c]	dr ^[c]
1	24	49	77	>19:1
2	36	56	78	>19:1
3	48	66	78	>19:1

[a] Unless otherwise noted, the reactions were carried out with A1 (0.10 mmol), B1 (0.10 mmol) and the G3 (10 mol%) in CH₂ClCH₂Cl (0.1 M) at -30 °C for different times (h). [b] Yield of the isolated products. [c] Determined by chiral SFC.

Table S5. Screening of the substrate ratio.

O O'Bu A1	+	\sim M \sim M \sim M \sim $G3 (10)$ $CH_2CICH_2CI ($	mol%) 0.1 M), -30 °C ► ^t BuO ₂ t	OH N-NHCO ₂ Me
Entry ^[a]	A1:B1	Yield (%) ^[b]	ee (%) ^[c]	dr ^[c]
1	1:1.1	66	78	>19:1
2	1:1.2	71	78	>19:1
3	1:1.5	72	78	>19:1
4	1.5:1	75	78	>19:1
5	1.2:1	72	78	>19:1
6	1.1:1	68	78	>19:1

[a] Unless otherwise noted, the reactions were carried out with A1, B1 and G3 (10 mol%) in CH_2ClCH_2Cl (0.1 M) at -30 °C for 48 h. [b] Yield of the isolated products. [c] Determined by chiral SFC.

Table S6. Rescreening of the chiral guanidines.

Entry ^[a]	Guanidine	Yield (%) ^[b]	ee (%) ^[c]	dr ^[c]
1	G6	79	87	>19:1
2	G11	52	77	>19:1
3	G12	48	73	>19:1
4	G13	77	75	>19:1
5	G14	72	60	>19:1
6	G15	55	45	>19:1

[a] Unless otherwise noted, the reactions were carried out with A1 (0.15 mmol), B1 (0.10 mmol) and chiral guanidine (10 mol%) in CH₂ClCH₂Cl (0.5 mL) at -30 °C for 48 h. [b] Yield of the isolated products. [c] Determined by chiral SFC.

Table S7. Screening of the amount of solvent.

A1	+ () N B1	0 N 0 − G6 (10 CH₂CICH₂CI	mol%) (X mL), -30 °C	OH N-NHCO ₂ Me
Entry ^[a]	Х	Yield (%) ^[b]	ee (%) ^[c]	$dr^{[c]}$
1	0.5	99	92	>19:1
2	1.0	79	87	>19:1
3	1.5	73	85	>19:1

[a] Unless otherwise noted, the reactions were carried out with A1 (0.15 mmol), B1 (0.10 mmol) and G6 (10 mol%) in CH₂ClCH₂Cl (X mL) at -30 °C for 48 h. [b] Yield of the isolated products. [c] Determined by chiral SFC.
Table S8. Screening of the additives.

	О 0'Ви + ССС N N N	$\bigcup_{n=1}^{n} \frac{G6 (10)}{CH_2 CICH_2 CI (10)}$	mol%) 0.5 mL), -30 °C [*] BuO ₂ C'	OH N-NHCO ₂ Me
A1	Ы			
Entry ^[a]	Additives	Yield (%) ^[b]	ee (%) ^[c]	dr ^[c]
1	3 Å MS (20 mg)	99	89	>19:1
2	4 Å MS (20 mg)	99	90	>19:1
3	5 Å MS (20 mg)	99	91	>19:1
4	Na ₂ SO ₄ (20 mol%)	99	89	>19:1
5	TMG (10 mol%)	98	9	>19:1
6	NaBAr ^F ₄ (10 mol%)	94	16	>19:1
7	NEt ₃ (10 mol%)	86	88	>19:1
8		99	92	>19:1
9 ^[d]		97	91	>19:1
10 ^[e]		77	89	>19:1
$11^{[f]}$		68	90	>19:1

[a] Unless otherwise noted, the reactions were carried out with A1 (0.15 mmol), B1 (0.10 mmol) and G6 (10 mol%) in CH₂ClCH₂Cl (0.5 mL) at -30 °C for 48 h. [b] Yield of the isolated products. [c] Determined by chiral SFC. [d] 5 mol% G6 were used. [e] 5 mol% G19 were used. [f] 5 mol% G20 were used.

O O NH ^r Bu A15	+ , N N N N N N N N N N N N N N N N N N	Chiral Guanidine (5 m CH ₂ CICH ₂ CI (0.5 mL), 3	ol%) i0 °C ► 'BuHNOC	OH N-NHCO ₂ Me
Entry ^[a]	Guanidine	Yield (%) ^[b]	ee (%) ^[c]	dr[c]
1	G1	83	-2	54:46
2	G2	98	4	61:39
3	G3	95	10	55:45
4	G4	86	19	73:27
5	G5	trace	-	-
6	G6	99	18	83:17
7	G7	95	22	71:29
8	G8	87	16	71:29
9	G17	90	21	74:26
10	G18	trace	-	-

Table S9. Screening of the chiral guanidines for A15.

[a] Unless otherwise noted, the reactions were carried out with A15 (0.15 mmol), B1 (0.10 mmol) and chiral guanidine (5 mol%) in CH_2ClCH_2Cl (0.5 mL) at 30 °C for 24 h. [b] Yield of the isolated products. [c] Determined by chiral SFC.

Table S10. Screening of solvents.

O NH'Bu	+	$N \ge N = 0$ Solvent (0.5	mol%) is mL), 30 °C	OH N-NHCO ₂ Me
A15		B1		C15
Entry ^[a]	Solvent	Yield (%) ^[b]	ee (%) ^[c]	$dr^{[c]}$
1	THF	89	8	74:26
2	Toluene	92	34	81:19
3	MeCN	63	0	58:42
4	iPrOH	78	5	89:11

5	EtOAc	66	30	69:31
6	DMF	98	0	93:7
7	Mesitylene	71	34	75:25

[a] Unless otherwise noted, the reactions were carried out with A15 (0.15 mmol), B1 (0.10 mmol) and G7 (5 mol%) in solvent (0.5 mL) at 30 °C for 24 h. [b] Yield of the isolated products. [c] Determined by chiral SFC.

4. Typical procedure for the catalytic asymmetric reaction.

1. Typical procedure for the catalytic asymmetric reaction with β -keto ester.

An oven-dried test tube was charged with A (0.15 mmol), B (0.10 mmol), chiral guanidine (5 mol%) and CH₂ClCH₂Cl (0.5 mL), the reaction mixture was stirred at -30 °C and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 5:1 to 1:1) to afford the desired products. (G6 were used for C1-C14, G3 were used for C16-C19, C21-C31)

2. Typical procedure for the catalytic asymmetric reaction with β -keto amide.

An oven-dried test tube was charged with A (0.15 mmol), B1 (0.10 mmol), G7 (5 mol%) and toluene (0.5 mL), the reaction mixture was stirred at 30 °C and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 5:1 to 1:1) to afford the desired products C15, C20.

5. General procedure for the preparation of the racemic products.

An oven-dried test tube was charged with A (0.10 mmol), B (0.10 mmol), Cs_2CO_3 (10 mol%) and CH_2Cl_2 (1.0 mL), the reaction mixture was stirred at 30 °C about 2 h and detected by TLC. After the reaction was completed, the residue was subjected to column chromatography (silica gel, eluent: petroleum ether/ethyl acetate = 5:1 to 1:1) to afford the racemic products C.

6. Gram-scale synthesis of C16 and the transformations of the products.

An over dried test tube was charged with A16 (6.0 mmol), B1 (4.0 mmol), G3 (0.2 mmol, 5 mol%), and CH₂ClCH₂Cl (20.0 mL). Then, the reaction mixture was stirred at -20 °C and detected by TLC. After the reaction was completed, remove the solvent by the vacuum evaporator, and the residue was subjected to the silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 3:1) to afford the product C16 (1.88 g, 99% yield, 92% ee, >19:1 dr).

An oven-dried test tube was charged with C16 (0.1 mmol, 47.6 mg, 92% ee, >19:1 dr) and THF (2.0 mL) followed by adding TMSIm (140 μ L, 1.0 mmol, 10.0 equiv.), and TBAF (2.6 mg, 0.01 mmol, 0.1 equiv.). After stirred for 2 h at 60 °C and detected by TLC. After the reaction was completed, the reaction was quenched with saturated aqueous NaHCO₃ (5 mL) and extracted with ethyl acetate (3×5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo and the crude residue was purified by flash-column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 4:1) to afford the desired product D1 (47.1 mg, 86% yield, 92% ee, >19:1 dr).

Compound C1 (44.6 mg, 0.1 mmol, 90% ee, >19:1 dr) was treated with LiAlH₄ (38.0 mg, 1.0 mmol, 10 eq) in THF (1.0 mL) at 70 °C for 12 h. After finished, the reaction was quenched with H₂O (5 mL). The solution was extracted with CH₂Cl₂ (3×5 mL). The combined extracts were washed with brine (8.0 mL), dried (Na₂SO₄), filtered and concentrated in vacuo. The crude product was purified by flash-column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 2:1) gave **D2** (12.6 mg, 38% yield, 88% ee, >19:1 dr).

7. Unsuccessful substrates.

46% yield, 25% ee

0 ,o NHPh 39% yield, 36% ee

N.R.

N.R.

only first step

//

N.R.

trace

complex

8. X-ray crystal data

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of compound C21 in CH_2Cl_2 and petroleum ether at rt. CCDC 2212549 contains the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

The colourless crystal in rod-shape, with approximate dimensions of $0.074 \times 0.113 \times 0.468$ mm³, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 143(2) K equipped with micro-focus Cu radiation source ($K_{\alpha} = 1.54178$ Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{a, b, c, d}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested.^e

Crystallographic Data for C21.

Formula	$C_{29}H_{34}N_2O_5(C21)$
Formula mass (amu)	490.58
Space group	P 21 21 21
<i>a</i> (Å)	10.5032(4)
<i>b</i> (Å)	12.2302(5)
<i>c</i> (Å)	19.6985(7)
α (deg)	90

β (deg)	90
γ (deg)	90
$V(Å^3)$	2530.40(17)
Z	4
λ (Å)	1.54178
<i>T</i> (K)	143 K
$ ho_{ m calcd} ({ m g \ cm^{-3}})$	1.288
μ (mm ⁻¹)	0.711
Transmission factors	0.604-1.000
$\theta_{\max}(\deg)$	68.342
No. of unique data, including $F_0^2 < 0$	4512
No. of unique data, with $F_o^2 > 2\sigma(F_o^2)$	4278
No. of variables	334
$R(F)$ for $F_o^2 > 2\sigma(F_o^2)^a$	0.0381
$R_{\rm w}(F_{\rm o}^{2})^{b}$	0.0968
Goodness of fit	1.045

 $^{a} R(F) = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$

 $^{b} R_{w}(F_{o}^{2}) = \left[\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum wF_{o}^{4}\right]^{1/2}; w^{-1} = [\sigma^{2}(F_{o}^{2}) + (Ap)^{2} + Bp], \text{ where } p = [\max(F_{o}^{2}, 0) + (Ap)^{2} + Bp], \text{ where } p = [$

 $2F_{\rm c}^{2}$] / 3.

References:

^a G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.

- ^bG. M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- ^cG. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

^dO. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.

^e A. L. Spek, J. Appl. Cryst., 2003, 36, 7–13.

9. The NMR study of substrates with G3.

We performed NMR spectra analysis to probe the interaction between chiral guanidine and two substrates separately. In **Fig. S1**, the chemical shift of diphenylmethyl aliphatic H of **G3** shift from 6.225 ppm to 6.231 ppm when mixing with azonaphthalene (**B1**). In **Fig. S2**, the results showed that the α -H (δ =3.15 ppm) of β -ketoester was disappeared when mixing with the catalyst **G3**. These results manifested that the chiral guanidine might playing two roles in this reaction, which promoting enolization of β -ketoester by guanidine group and bonding with the azonaphthalene by hydrogen bond of amide group.

10. Spectral characterization data for products

Tert-butyl

(7aR,12aR)-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[e]indeno[1,2-b]indole-12a(7H)-carboxylate (C1):

White solid, 97% yield, 91% ee, >19:1 dr, m.p. 118-123 °C, $[\alpha]^{20}_{D} = -$ 448.4 (c = 1.65, in CH₂Cl₂). ∎OH SFC Daicel Chiralpak OD-3, $CO_2/MeOH = 90/10$, 1.5 mL/min, $\lambda = 240$ ^tBuO₂C* N-NHCO₂Me nm, $t_1 = 4.00 \text{ min}$, $t_2 = 5.52 \text{ min}$. ¹**H** NMR (400 MHz, Benzene- d_6) δ 7.57 (d, J = 7.2 Hz, 1H), 7.33 (m,

2H), 7.17 (d, J = 8.3 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.86 (s, 1H), 6.77 (s, 2H), 6.66 - 6.59 (m, 1H), 6.41 - 6.24 (m, 1H), 5.71 (s, 1H), 4.70 (s, 1H), 4.35 (d, J = 15.9 Hz, 12.20 Hz)1H), 3.08 (s, 3H), 2.90 (d, *J* = 16.4 Hz, 1H), 0.92 (s, 9H).

¹³C NMR (101 MHz, Benzene-*d*₆)δ 170.3, 158.8, 145.4, 142.3, 140.2, 130.4, 129.9, 129.7, 129.6, 127.3, 127.0, 125.5, 124.6, 122.9, 122.3, 120.5, 110.5, 108.9, 81.9, 65.5, 52.9, 41.4, 30.1, 27.8. **HRMS** (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{26}H_{26}N_2O_5Na^+]$: 469.1734 found 469.1736.

IR (neat) 3302, 2977, 1714, 1627, 1518, 1249, 1149, 928, 842, 811, 733, 702 cm⁻¹.

	Retention Time	Area	% Area
1	4.001	157915	4.41
2	5.521	3421493	95.59

Tert-butyl (7a*R*,12a*R*)-11-bromo-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[e]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C2):

7.5 Hz, 1H), 5.53 (s, 1H), 4.77 (s, 1H), 4.54 (d, *J* = 15.7 Hz, 1H), 3.04 (m, 4H), 0.90 (s, 9H). ¹³C NMR (101 MHz, Benzene-*d*₆) δ 169.8, 158.9, 145.2, 142.8, 142.4, 132.7, 130.5, 130.4, 130.1, 129.5, 129.0, 127.6, 123.3, 123.1, 122.3, 120.7, 120.1, 110.2, 109.1, 82.0, 65.1, 52.9, 43.2, 30.2, 27.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{26}H_{25}^{79}BrN_2O_5Na^+]$: 547.0839 found 547.0839. HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{26}H_{25}^{81}Br N_2O_5Na^+]$: 549.0819 found 549.0819. IR (neat) 3299, 2976, 1722, 1628, 1578, 1519, 1368, 1255, 1175, 1061, 783, 738 cm⁻¹. Racemate: 15:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Aree	% Aroo
Ti	Time	Area	% Alea
1	3.198	162472	6.87
2	3.554	2201297	93.13

Tert-butyl (7a*R*,12a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-11-methyl-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C3):

(d, *J* = 6.7 Hz, 1H), 6.36 (d, *J* = 8.0 Hz, 1H), 5.64 (s, 1H), 4.66 (s, 1H), 4.34 (d, *J* = 16.9 Hz, 1H), 3.08 (s, 3H), 2.88 (d, *J* = 16.9 Hz, 1H), 1.56 (s, 3H), 0.93 (s, 9H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 170.4, 145.5, 141.0, 140.0, 134.9, 130.5, 130.4, 129.9, 129.6, 127.5, 127.4, 122.9, 122.3, 122.0, 120.7, 110.4, 109.0, 81.8, 65.3, 52.8, 40.4, 30.2, 27.8, 18.4.
HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₇H₂₈N₂O₅Na⁺]: 483.1890 found 483.1891.

IR (neat) 3303, 2976, 1720, 1627, 1519, 1368, 1254, 1150, 1056, 848, 739 cm⁻¹.

Racemate: 3.2:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	0/ 1000	
	Time		% Area	
1	11.805	8638724	94.14	
2	14.583	537299	5.86	

Tert-butyl (7a*R*,12a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-10-phenyl-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C4):

5.01 (s, 1H), 4.72 (d, *J* = 16.4 Hz, 1H), 3.42 (s, 3H), 3.27 (d, *J* = 16.5 Hz, 1H), 1.25 (s, 9H). ¹³**C NMR** (101 MHz, Benzene-*d*₆) δ 170.3, 158.8, 145.4, 143.3, 143.0, 141.5, 139.2, 130.5, 130.4, 130.0, 129.6, 129.0, 127.6, 127.4, 126.4, 124.9, 124.4, 123.0, 122.3, 120.6, 110.4, 81.9, 65.8, 52.8, 41.3, 30.2, 27.8.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{32}H_{30}N_2O_5Na^+]$: 545.2047 found 545.2049. **IR** (neat) 3313, 2977, 1718, 1600, 1368, 1251, 1150, 842, 765, 736 cm⁻¹.

	Retention	Area	% Area
	Time		
1	6.848	1768701	9.52
2	12.173	16814574	90.48

Tert-butyl (7a*R*, 12a*R*)-10-chloro-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C5):

White solid, 90% yield, 89% ee, >19:1 dr, m.p. 118-121 °C, $[\alpha]^{20}_D = -400.1$ (c = 0.86, in CH₂Cl₂). **SFC** Daicel Chiralpak IB-3, CO₂/MeOH = 85/15, 1.5 mL/min, λ = 240 nm, t₁ = 3.04 min, t₂ = 4.53 min. ¹**H** NMR (400 MHz, Benzene-*d*₆) δ 7.79 (d, *J* = 6.5 Hz, 1H), 7.63 (d, *J*

H NVIK (400 MHz, Benzene- a_6) o 7.79 (d, J = 0.5 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.36 (m, 2H), 7.16 (s, 1H), 7.05 (d, J = 6.9 Hz, 1H), 6.87 (s, 1H), 6.65 (d, J = 7.5 Hz, 1H), 5.97 (s, 1H),

5.00 (s, 1H), 4.45 (d, J = 14.8 Hz, 1H), 3.38 (s, 3H), 2.97 (d, J = 16.6 Hz, 1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, Benzene- d_6) δ 170.0, 158.8, 145.3, 144.3, 138.8, 135.6, 130.4, 130.3, 130.1, 129.6, 127.4, 125.7, 125.6, 123.1, 122.2, 120.2, 110.3, 108.1, 82.0, 65.7, 52.5, 40.9, 30.2, 27.7. HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₆H₂₅³⁵ClN₂O₅Na⁺]: 503.1344 found 503.1344. HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₆H₂₅³⁷ClN₂O₅Na⁺]: 505.1315 found 505.1315. IR (neat) 3298, 2977, 1720, 1628, 1600, 1519, 1475, 1368, 1252, 1150, 812, 701 cm⁻¹. Racemate: 12.5:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Area
	Time		
1	3.040	176534	5.32
2	4.527	3139221	94.68

Tert-butyl (7a*R*,12a*R*)-7a-hydroxy-10-methoxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C6):

6.69 (d, *J* = 8.2 Hz, 1H), 6.48 (s, 1H), 6.04 (s, 1H), 4.90 (s, 1H), 4.64 (d, *J* = 15.4 Hz, 1H), 3.42 (s, 3H), 3.25 (s, 4H), 1.23 (s, 9H).

¹³**C NMR** (101 MHz, Benzene- d_6) δ 170.4, 161.6, 158.7, 145.5, 144.1, 130.4, 130.4, 130.0, 129.6, 127.3, 125.6, 122.9, 122.3, 120.6, 114.4, 110.6, 109.5, 108.5, 81.8, 65.8, 54.9, 52.7, 41.2, 30.1, 27.8. **HRMS** (ESI) m/z: [M + Na]⁺ Calculated for [C₂₇H₂₈N₂O₆Na⁺]: 499.1840 found 499.1840.

IR (neat) 3291, 2975, 1720, 1608, 1497, 1251, 1149, 834, 737, 702 cm⁻¹.

16203427

91.93

2

7.391

Tert-butyl (7a*R*,12a*R*)-7a-hydroxy-9,10-dimethoxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C7):

6H), 3.17 (m, 4H), 1.25 (s, 9H).

¹³**C NMR** (151 MHz, Benzene-*d*₆) δ 170.3, 158.7, 151.4, 149.2, 145.4, 133.9, 131.3, 130.2, 129.7, 129.4, 128.3, 127.1, 122.6, 122.0, 120.6, 110.4, 108.9, 107.7, 81.5, 65.8, 55.3, 55.1, 52.4, 40.9, 29.9, 27.5.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{28}H_{30}N_2O_7Na^+]$: 529.1945 found 529.1946. **IR** (neat) 3293, 2960, 1721, 1627, 1504, 1366, 1247, 1149, 1118, 811, 735 cm⁻¹.

	Retention	Aroa	% Area
	Time	Alea	
1	4.623	267086	10.63
2	22.640	2245161	89.37

Tert-butyl (7a*R*,12a*R*)-9-fluoro-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C8):

1H), 5.85 (s, 1H), 5.12 (s, 1H), 4.53 (d, J = 14.7 Hz, 1H), 3.33 (s,

3H), 3.02 (d, J = 16.3 Hz, 1H), 1.22 (s, 9H).

¹³C NMR (151 MHz, Benzene- *d*₆) δ 170.2, 163.5, 161.9, 159.0, 145.3, 142.5, 137.5, 130.5, 130.4, 130.0, 129.6, 127.4, 126.7, 126.7, 123.0, 122.3, 120.4, 116.9, 116.8, 111.4, 111.3 110.3, 108.2, 82.0, 66.3, 52.8, 40.7, 27.8.

¹⁹**F NMR** (565 MHz, Benzene- d_6) δ -116.01.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{26}H_{25}FN_2O_5Na^+]$: 487.1460 found 487.1460. **IR** (neat) 3302, 2977, 1724, 1628, 1520, 1491, 1369, 1290, 1151, 965, 868, 843, 778, 744 cm⁻¹. Racemate: 6:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Area
	Time		
1	2.218	227114	3.88
2	2.643	5628411	96.12

Tert-butyl (7a*R*,12a*R*)-9-chloro-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C9):

(s, 3H), 2.67 (d, *J* = 16.6 Hz, 1H), 0.91 (s, 9H).

¹³C NMR (151 MHz, Benzene- d_6) δ 170.1, 159.0, 145.3, 142.6, 140.7, 132.9, 130.4, 130.4, 130.1, 129.8, 129.7, 127.4, 126.8, 124.7, 123.1, 122.3, 120.3, 110.3, 108.3, 82.1, 66.0, 52.9, 40.9, 27.8. HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₆H₂₅³⁵ClN₂O₅Na⁺]: 503.1344 found 503.1343. HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₆H₂₅³⁷ClN₂O₅Na⁺]: 505.1315 found 505.1317. IR (neat) 3307, 2977, 1722, 1628, 1519, 1368, 1255, 1152, 844, 690 cm⁻¹.

Racemate: 16:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Area
	Time		
1	2.689	77543	7.00
2	3.189	1030138	93.00

Tert-butyl (7a*R*,12a*R*)-9-bromo-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C10):

White solid, 93% yield, 92% ee, >19:1 dr, m.p. 129-133 °C, $[\alpha]^{20}_{D} = -389.6$ (c = 0.98, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, CO₂/MeOH = 85/15, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 2.98$ min, $t_2 = 3.52$ min.

¹**H NMR** (400 MHz, Benzene- d_6) δ 7.89 (s, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.18 (m, 2H), 6.59 (m, 2H), 5.80 (s, 1H), 5.09 (s, 1H), 4.49

(d, J = 16.3 Hz, 1H), 3.32 (s, 3H), 2.94 (d, J = 16.8 Hz, 1H), 1.21 (s, 9H).

¹³C NMR (101 MHz, Benzene- d_6) δ 170.1, 159.0, 145.2, 142.9, 141.2, 132.6, 130.4, 130.4, 130.0, 129.6, 127.4, 127.1, 123.0, 122.2, 120.8, 120.2, 110.2, 108.3, 82.0, 65.9, 52.9, 40.9, 30.2, 27.7. HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₆H₂₅⁷⁹BrN₂O₅Na⁺]: 547.0839 found 547.0840. HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₆H₂₅⁸¹BrN₂O₅Na⁺]: 549.0819 found 549.0819. IR (neat) 3309, 2977, 1718, 1519, 1368, 1256, 1151, 843, 810, 777, 738, 702 cm⁻¹.

	Retention	Area	% Area	Height	
	Time	7400	<i>/////////////////////////////////////</i>	rieight	
1	2.686	80623	1.37	12236	
2	2.967	2870329	48.61	347518	
3	3.490	2876168	48.71	327446	
4	3.913	77366	1.31	9419	

	Retention	Area	% Area
	Time		
1	2.975	169316	3.97
2	3.519	4092862	96.03

Tert-butyl (7a*R*,12a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-9-methyl-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7H)-carboxylate (C11):

5.81 (s, 1H), 4.69 (s, 1H), 4.34 (d, *J* = 16.0 Hz, 1H), 3.08 (s, 3H), 2.90 (d, *J* = 16.3 Hz, 1H), 1.86 (s, 3H), 0.93 (s, 9H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 170.5, 158.9, 145.5, 140.5, 139.4, 136.4, 130.7, 130.4, 129.9, 129.6, 127.3, 125.3, 125.1, 122.9, 122.4, 120.6, 110.4, 108.8, 81.8, 65.9, 60.0, 52.8, 41.0, 27.8, 21.2. HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₇H₂₈N₂O₅Na⁺]: 483.1890 found 483.1894.

minor isomer ¹**H NMR** (400 MHz, Benzene-*d*₆) δ 7.27 (s, 1H), 7.18 – 7.09 (m, 4H), 7.03 (d, *J* = 7.9 Hz, 1H), 6.89 (s, 1H), 6.81 (t, *J* = 7.1 Hz, 1H), 6.73 (m, 1H), 6.41 (d, *J* = 7.8 Hz, 1H), 6.34 (d, *J* = 7.8 Hz, 1H), 3.73 (d, *J* = 16.8 Hz, 1H), 3.28 (d, *J* = 16.9 Hz, 1H), 2.92 (s, 3H), 1.40 (s, 3H), 0.73 (s, 9H).

IR (neat) 3312, 2976, 1724, 1628, 1595, 1519, 1368, 1254, 1150, 1062, 952, 844, 778, 743 cm⁻¹. Racemate: 3.8:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

7624368

94.58

2

2.795

Tert-butyl (7a*S*,12a*R*)-8-bromo-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C12):

White solid, 83% yield, 6% ee, >19:1 dr, m.p. 138-141 °C, $[\alpha]^{21}_{D}$ =-42.9 (c = 0.47, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 2.98$ min, $t_2 = 3.61$ min, $t_3 = 4.26$ min, $t_4 = 6.05$ min. ¹H NMR (400 MHz, Benzene- d_6) δ 7.45 (d, J = 7.7 Hz, 1H), 7.36

(d, J = 8.2 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 6.7 Hz, 1H), 6.90 (m, 1H), 6.42 (m, 2H), 6.35 (t, J

= 7.5 Hz, 1H), 5.94 (s, 1H), 5.14 (s, 1H), 4.25 (d, *J* = 17.4 Hz, 1H), 3.05 (s, 3H), 2.56 (d, *J* = 16.8 Hz, 1H), 0.93 (s, 9H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 170.0, 159.3, 146.1, 132.6, 130.6, 130.4, 129.9, 129.6, 127.2, 124.5, 123.0, 122.5, 120.4, 119.4, 110.7, 82.0, 66.6, 52.9, 41.4, 30.2, 27.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{26}H_{25}^{79}BrN_2O_5Na^+]$: 547.0839 found 547.0839. **HRMS** (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{26}H_{25}^{81}BrN_2O_5Na^+]$: 549.0819 found 549.0819. **IR** (neat) 3339, 2976, 1721, 1629, 1454, 1368, 1258, 1154, 1061, 871, 843, 770, 745 cm⁻¹.

	Retention	Area	% Area
	Time		
1	2.977	910697	32.09
2	3.631	513989	18.11
3	4.252	900103	31.72
4	6.101	513283	18.09

	Retention	Area	% Area
	lime		
1	2.977	50677	1.45
2	3.614	1604467	45.98
3	4.256	24737	0.71
4	6.053	1809644	51.86

Isopropyl (7aR,12aR)-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[e]indeno[1,2-b]indole-12a(7H)-carboxylate (C13):

White solid, 68% yield, 73% ee, >19:1 dr, m.p. 100-102 °C, $[\alpha]^{25}_{D} = -521.6$ (c = 0.82, in CH₂Cl₂).

SFC Daicel Chiralpak IC-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 3.89$ min, $t_2 = 6.59$ min.

¹**H NMR** (400 MHz, Benzene- d_6) δ 7.81 (d, J = 6.7 Hz, 1H), 7.64 (m, 2H), 7.44 (d, J = 7.4 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.16 (s, 1H), 7.07

(m, 2H), 6.95 (s, 1H), 6.64 (s, 1H), 6.16 (s, 1H), 5.08 (s, 2H), 4.68 (d, J = 15.6 Hz, 1H), 3.38 (s, 3H), 3.20 (d, J = 16.5 Hz, 1H), 0.92 (d, J = 6.0 Hz, 3H), 0.75 (d, J = 6.2 Hz, 3H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 170.9, 158.8, 145.5, 142.3, 140.2, 130.5, 130.1, 129.8, 129.6, 127.4, 127.0, 125.5, 124.7, 123.0 122.3, 120.1, 110.5, 109.1, 69.4, 65.1, 52.9, 41.7, 21.5, 21.3.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{25}H_{24}N_2O_5Na^+]$: 455.1577 found 455.1577.

IR (neat) 3300, 2980, 1717, 1627, 1519, 1464, 1374, 1257, 1106, 925, 812, 735 cm⁻¹.

Racemate: 5:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

Methyl (7a*R*,12a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,12dihydrobenzo[*e*]indeno[1,2-*b*]indole-12a(7*H*)-carboxylate (C14):

7.6 Hz, 1H), 5.90 (s, 1H), 4.98 (s, 1H), 4.65 (d, *J* = 16.1 Hz, 1H), 3.37 (s, 3H), 3.23 (s, 1H), 3.16 (s, 3H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 171.9, 145.4, 142.3, 130.6, 130.5, 130.2, 129.9, 129.7, 127.1, 125.5, 123.1, 122.0, 110.6, 65.4, 52.8, 52.2, 41.8, 30.2.

minor isomer ¹**H** NMR (400 MHz, Benzene- d_6) δ 7.75 (d, J = 7.6 Hz, 1H), 7.62 (s, 1H), 7.57 – 7.50 (m, 3H), 7.40 (d, J = 9.3 Hz, 1H), 7.27 (s, 1H), 7.20 (m, 2H), 6.98 (t, J = 7.5 Hz, 1H), 6.80 (t, J = 7.1 Hz, 2H), 4.05 (d, J = 17.1 Hz, 1H), 3.73 (d, J = 17.1 Hz, 1H), 3.32 (s, 3H), 3.13 (s, 3H).

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{23}H_{20}N_2O_5Na^+]$: 427.1264 found 427.1263.

IR (neat) 3302, 2953, 1727, 1628, 1519, 1259, 1158, 1080, 860, 734 cm⁻¹.

Racemate: 3.6:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Aroa	% Aroa
	Time	Area	70 Alea
1	4.102	879922	22.62
2	4.804	3009417	77.38

Methyl (((7a*R*,12a*R*)-12a-(tert-butylcarbamoyl)-7a-hydroxy-12,12adihydrobenzo[*e*]indeno[1,2-*b*]indol-7(7a*H*)-yl)carbamate (C15):

White solid, 92% yield, 34% ee, 81:19 dr, m.p. 139-141 °C, [α] ²⁴_D = -152.1 (c = 0.82, in CH₂Cl₂).

SFC Daicel Chiralcel OX-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 3.80$ min, $t_2 = 4.43$ min, $t_3 = 5.47$ min, $t_2 = 6.88$ min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 9.01 (s, 1H), 7.83 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.62 (d, J = 8.6 Hz, 1H), 7.56–

7.48 (m, 2H), 7.33–7.28 (m, 1H), 7.23 (q, J = 7.0, 6.2 Hz, 3H), 6.95 (d, J = 8.7 Hz, 1H), 6.08 (s, 1H), 5.15 (s, 1H), 4.65 (d, J = 15.8 Hz, 1H), 3.81 (s, 3H), 3.11 (d, J = 15.8 Hz, 1H), 1.17 (s, 9H). ¹³C NMR (101 MHz, Acetone- d_6) δ 169.4, 160.6, 143.0, 131.2, 131.0, 130.8, 128.1, 127.6, 125.7, 124.9, 123.7, 123.0, 111.9, 108.5, 60.7, 66.3, 53.4, 51.8, 40.9, 28.7, 21.0, 14.6.

HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₂₆H₂₇N₃O₄Na⁺]: 468.1894 found 468.1895. **IR** (neat) 3267, 2964, 1714, 1664, 1626, 1518, 1455, 1364, 1224, 813, 747 cm⁻¹.

	Retention	Area	% Area
1	3.802	1422648	10.15
2	4.431	1227002	8.76
3	5.474	7620989	54.39
4	6.879	3740644	26.70

(3*S*,5*S*,7*S*)-adamantan-1-yl (7a*R*,10a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,8,9,10-tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C16):

White solid, 98% yield, 95% ee, >19:1 dr, m.p. 136-138 °C, [α] 28 _D = -59.4 (c = 0.86, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, CO₂/MeOH = 85/15, 1.5 mL/min, λ = 240 nm, t₁ = 4.10 min, t₂ = 4.73 min

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.2 Hz, 1H),

7.68 (d, *J* = 8.6 Hz, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.40 (t, *J* = 7.3 Hz, 1H), 7.28 – 7.20 (m, 1H), 6.89 (s, 1H), 6.87 (s, 1H), 4.14 (s, 1H), 3.79 (s, 3H), 2.99 (q, *J* = 11.7 Hz, 1H), 2.20 (s, 1H), 2.07 (s, 4H), 1.98 (s, 7H), 1.81 (s, 1H), 1.74 (s, 1H), 1.57 (s, 6H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 170.8, 158.3, 145.9, 129.8, 129.1, 126.8, 122.4, 121.9, 119.1, 109.6, 107.4, 82.1, 64.6, 60.4, 53.1, 41.1, 37.0, 36.0, 35.3, 30.7, 23.1.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{28}H_{32}N_2O_5Na^+]$: 499.2203 found 499.2204.

IR (neat) 3302, 2911, 1723, 1628, 1520, 1257, 1054, 810, 741 cm⁻¹.

Racemate: 17:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention Time	Area	% Area
1	4.102	634155	2.42
2	4.727	25615884	97.58

Tert-butyl (7a*R*,10a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,8,9,10-tetrahydrobenzo [*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C17):

White solid, 89% yield, 96% ee, >19:1 dr, m.p. 90-91 °C, $[\alpha]^{24}_{D} =$ -407.7 (c = 1.19, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 3.02$ min, $t_2 = 3.39$ min.

¹**H** NMR (600 MHz, Benzene- d_6) δ 7.78 (d, J = 7.5 Hz, 1H), 7.63

(d, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.14 – 7.09 (m, 1H), 6.71 (d, 1H), 6.03 (s, 1H), 4.60 (s, 1H), 3.31 (s, 4H), 2.26 – 1.88 (m, 3H), 1.59 (s, 1H), 1.25 (s, 9H), 1.18 (s, 1H).

¹³C NMR (151 MHz, Benzene-*d*₆) δ 171.1, 158.9, 146.7, 130.5, 130.3, 129.8, 129.6, 127.1, 122.6, 122.3, 110.0, 108.3, 81.5, 64.9, 52.6, 37.6, 35.8, 27.8, 23.3.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{22}H_{26}N_2O_5Na^+]$: 421.1734 found 421.1734.

IR (neat) 3297, 2972, 1723, 1520, 1368, 1257, 1159, 810, 740 cm⁻¹.

Racemate: 8.6:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention Time	Area	% Area
1	3.020	92594	2.05
2	3.391	4428784	97.95

Cyclohexyl (7a*R*,10a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,8,9,10-tetrahydrobenzo [*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C18):

White solid, 77% yield, 90% ee, >19:1 dr, m.p. 90-95 °C, $[\alpha]^{24}_{D} = -201.6$ (c = 0.96, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 2.93$ min, $t_2 = 3.37$ min

¹**H NMR** (600 MHz, Benzene- d_6) δ 7.76 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 6.82 – 6.62 (m, 1H), 6.02 (s, 1H), 5.02 (s, 1H), 3.40 (s, 1H), 3.31 (s, 3H), 2.23 – 1.94 (m, 3H), 1.58 (m, 4H), 1.30 (m, 3H), 1.15 – 0.89 (m, 5H), 0.73 (s, 1H).

¹³C NMR (151 MHz, Benzene-*d*₆) δ 171.5, 158.9, 146.7, 130.6, 130.3, 130.0, 129.6, 127.2, 122.7, 122.2, 119.5, 109.9, 108.5, 73.7, 64.4, 52.7, 37.5, 36.0, 31.7, 31.4, 25.2, 23.6, 23.4.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{24}H_{28}N_2O_5Na^+]$: 447.1890 found 447.1890.

IR (neat) 3293, 2937, 2858, 1720, 1628, 1520, 1449, 1374, 1236, 1156, 810, 738 cm⁻¹.

Racemate: 12.5:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Area
	Time		
1	2.926	322754	4.76
2	3.369	6459431	95.24

Ethyl (7a*R*,10a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,8,9,10tetrahydrobenzo [*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C19):

White solid, 94% yield, 86% ee, >19:1 dr, m.p. 85-89 °C, $[\alpha]^{24}_{D} = -407.7$ (c = 1.15, in CH₂Cl₂).

SFC Daicel Chiralpak IA-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 2.45$ min, $t_2 = 2.87$ min.

¹**H NMR** (600 MHz, Benzene- d_6) δ 7.69 (d, J = 6.3 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.26 (t, J = 7.5 Hz, 1H), 7.11 (t, J = 7.3 Hz, 1H), 6.71 (s, 1H), 6.15 (s, 1H), 4.62 (s, 1H)3.95 (p, J = 7.1 Hz, 1H), 3.86 (s, 1H), 3.31 (s, 4H), 2.09 (m, 3H), 1.61 (s, 1H), 0.74-0.79 (m, 4H).

¹³C NMR (151 MHz, Benzene-*d*₆) δ 172.3, 158.8, 146.8, 130.5, 130.4, 130.1, 129.6, 127.3, 122.7, 122.1, 119.3, 110.0, 108.5, 64.4, 61.5, 52.7, 37.4, 36.2, 23.4, 14.1.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{20}H_{22}N_2O_5Na^+]$: 393.1421 found 393.1421.

IR (neat) 3293, 2960, 1714, 1628, 1596, 1520, 1444, 1235, 1097, 810, 777, 736 cm⁻¹.

Racemate: 5.5:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

Methyl ((7a*R*,10a*R*)-10a-(((3*S*,5*S*,7*S*)-adamantan-1-yl)carbamoyl)-7a-hydroxy-8,9,10,10a-tetrahydrobenzo[*e*]cyclopenta[*b*]indol-7(7a*H*)-yl)carbamate (C20):

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.81 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 8.7 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 8.7 Hz, 1H), 5.50 (s, 1H), 3.74 (s, 3H), 3.17 (q, *J* = 11.4 Hz, 1H), 2.22–2.20 (m, 1H), 1.92 (s, 3H), 1.85 (d, *J* = 11.9 Hz, 5H), 1.77 (d, *J* = 11.8 Hz, 4H), 1.56 (t, *J* = 10.7 Hz, 6H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 169.8, 148.9, 131.1, 130.8, 130.7, 130.1, 127.8, 123.3, 123.1, 119.5, 111.3, 108.2, 65.5, 60.7, 53.3, 52.3, 42.0, 37.2, 23.8, 21.0, 14.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{28}H_{33}N_3O_4Na^+]$: 498.2363 found 498.2364. **IR** (neat) 3267, 2908, 1730, 1657, 1518, 1359, 1261, 1122, 810, 739 cm⁻¹.

	Retention	Area	% Area
	Time		
1	7.898	576924	4.85
2	9.033	2263363	19.03
3	10.698	928155	7.81
4	27.208	8122189	68.31

(3*S*,5*S*,7*S*)-adamantan-1-yl (7a*R*,10a*R*)-7-((ethoxycarbonyl)amino)-7a-hydroxy-7a,8,9,10 tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C21):

White solid, 88% yield, 96% ee, >19:1 dr, m.p. 98-101 °C, $[\alpha]^{24}_{D}$ = -235.4 (c = 0.75, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 3.72$ min, $t_2 = 4.21$ min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.2 Hz, 1H), 7.68 (d, *J* = 8.6 Hz, 1H), 7.54 (d, *J* = 8.3 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.26 – 7.19 (m, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 6.79 (s, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 4.15 (s, 1H), 2.99 (q, *J* = 12.0 Hz, 1H), 2.22 (s, 1H), 2.09 (d, *J* = 20.1 Hz, 4H), 1.98 (s, 7H), 1.86 – 1.76 (m, 1H), 1.75 – 1.63 (m, 1H), 1.57 (s, 6H), 1.32 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.9, 157.8, 146.0, 129.7, 129.1, 126.7, 122.4, 121.9, 119.0, 109.6, 107.4, 82.0, 64.5, 62.2, 41.1, 37.0, 36.0, 35.3, 30.7, 29.7, 23.0, 14.5.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{29}H_{34}N_2O_5Na^+]$: 513.2360 found 513.2364.

IR (neat) 3299, 2911, 1720, 1628, 1520, 1321, 1236, 1054, 809, 741 cm⁻¹.

Racemate: 7:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Area
	Time		
1	3.721	167975	2.12
2	4.214	7771404	97.88

(3*R*)-adamantan-1-yl (7a*R*,10a*R*)-7a-hydroxy-7-((isopropoxycarbonyl)amino)-7a,8,9,10tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C22):

White solid, 86% yield, 96% ee, >19:1 dr, m.p. 101-105 °C, $[\alpha]^{24}_{D}$ = -276.0 (c = 0.87, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 3.16$ min, $t_2 = 3.56$ min.

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.65 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 8.6 Hz, 1H), 7.30 (dt, J = 15.8, 8.3 Hz, 2H), 7.08 (ddd, J = 8.0, 6.6, 1.3 Hz, 1H), 6.74 (d, J = 8.6 Hz, 1H), 4.81 (p, J = 6.2 Hz, 1H), 2.87 (q, J = 12.1 Hz, 1H), 2.11 (d, 1H), 1.93 (m, 2H), 1.85 (m, 8H), 1.77 - 1.69 (m, 1H), 1.67 - 1.58 (m, 1H), 1.51 - 1.42 (m, 6H), 1.15 (d, J = 5.0 Hz, 6H).

¹³C NMR (101 MHz, Acetone- d₆) 171.4, 157.9, 148.1, 131.0, 130.6, 130.3, 130.1, 127.5, 122.9, 120.0, 110.7, 108.7, 81.5, 70.0, 65.4, 42.1, 38.1, 37.0, 31.8, 23.8, 22.5, 22.4, 14.7.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{30}H_{36}N_2O_5Na^+]$: 527.2516 found 527.2518.

IR (neat) 3303, 2912, 1722, 1628, 1520, 1256, 1108, 809, 743 cm⁻¹.

Racemate: 18:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Area
	Time		
1	3.163	60389	2.09
2	3.558	2826624	97.91

(3*R*)-adamantan-1-yl (7a*R*,10a*R*)-7a-hydroxy-7-((isobutoxycarbonyl)amino)-7a,8,9,10tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C23):

White solid, 84% yield, 96% ee, >19:1 dr, m.p. 103-107 °C, [α] 26 _D = -69.4 (c = 0.50, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, CO₂/MeOH = 85/15, 1.5 mL/min, λ = 240 nm, t₁ = 3.34 min, t₂ = 3.83 min

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.75 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 8.6 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.26 – 7.19 (t, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 6.83 (s, 1H), 4.15 (s, 1H), 3.97 (d, *J* = 5.4 Hz, 2H), 3.05 – 2.91 (m, 1H), 2.22 (s, 1H), 2.07 (s, 4H), 1.97 (s, 8H), 1.79 (s, 1H), 1.70 (s, 1H), 1.57 (s, 6H), 0.92 (d, *J* = 43.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.0, 158.1, 146.1, 129.7, 129.1, 126.7, 122.3, 121.9, 119.2, 109.6, 107.4, 82.1, 77.4, 77.0, 76.7, 72.2, 64.5, 45.3, 41.1, 37.0, 36.0, 35.4, 30.7, 29.7, 28.0, 23.1, 19.0.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{31}H_{38}N_2O_5Na^+]$: 541.2673 found 541.2673. **IR** (neat) 3306, 2912, 1724, 1257, 1236, 1055, 809 cm⁻¹.

	Retention	Area	% Area
	Time		
1	3.339	119340	2.22
2	3.827	5245045	97.78

(*3R*)-adamantan-1-yl (7*aR*,10*aR*)-7-(((benzyloxy)carbonyl)amino)-7a-hydroxy-7a,8,9,10-tetrahydrobenzo[*e*]cyclopenta[b]indole-10a(7*H*)-carboxylate (C24):

White solid, 98% yield, 95% ee, >19:1 dr, m.p. 101-105 °C, $[\alpha]^{23}_{D}$ = -190.2 (c = 0.96, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 9.36$ min, $t_2 = 10.43$ min.

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.66 (d, J = 8.2 Hz, 1H), 7.59

(d, *J* = 8.6 Hz, 1H), 7.28 (m, 7H), 7.09 (t, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 8.5 Hz, 1H), 5.10 (s, 2H), 2.95 – 2.80 (m, 1H), 2.14 (d, *J* = 7.5 Hz, 1H), 1.93 (s, 2H), 1.91 (m, 2H), 1.90 – 1.80 (m, 7H), 1.78 – 1.71 (m, 1H), 1.62 (s, 1H), 1.46 (m, 6H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 171.4, 147.9, 137.8, 131.0, 130.7, 130.3, 130.1, 129.6, 129.2, 129.1, 127.5, 123.0, 110.8, 81.6, 67.9, 65.5, 46.5, 42.1, 38.1, 37.0, 36.8, 31.8, 23.9.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{34}H_{36}N_2O_5Na^+]$: 575.2516 found 575.2512.

IR (neat) 3296, 2911, 1721, 1258, 1052, 808, 739 cm⁻¹.

Racemate: 8.6:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention Time	Area	% Area
1	9.355	57604	2.47
2	10.428	2270051	97.53

(3*R*)-adamantan-1-yl (7a*R*,10a*R*)-7a-hydroxy-7-((phenoxycarbonyl)amino)-7a,8,9,10tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C25):

Red solid, 69% yield, 82% ee, >19:1 dr, m.p. 112-114 °C, $[\alpha]^{25}_{D} = -123.0$ (c = 0.27, in CH₂Cl₂).

SFC Daicel Chiralpak IB-3, $CO_2/MeOH = 85/15$, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 9.77$ min, $t_2 = 15.67$ min

¹**H NMR** (400 MHz, Acetone- d_6) δ 9.81 (s, 1H), 8.00 – 7.90 (m, 2H), 7.66 (d, J = 8.2 Hz, 1H), 7.57 (d, J = 8.6 Hz, 1H), 7.55 – 7.49 (m, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.37 – 7.27 (m, 2H), 7.13 – 7.06 (m, 1H), 6.81 (d, J = 8.6 Hz, 1H), 4.75 (s, 1H), 2.91 (td, J = 12.4, 7.0 Hz, 1H), 2.19 (dd, J = 12.6, 5.8 Hz, 1H), 1.96 – 1.94 (m, 1H), 1.90 – 1.82 (m, 6H), 1.80 – 1.71 (m, 1H), 1.70 – 1.61 (m, 1H), 1.49 (m,, 7H), 1.16 (s, 3H).

¹³C NMR (101 MHz, Acetone-*d*₆) δ 171.3, 147.8, 133.7, 133.3, 131.0, 130.6, 130.2, 130.1, 129.7, 128.7, 127.4, 122.9, 120.5, 110.9, 109.5, 81.3, 65.6, 60.7, 42.1, 38.3, 37.0, 36.7, 31.7, 23.9.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{33}H_{34}N_2O_4Na^+]$: 545.2411 found 545.2413.

IR (neat) 3300, 2911, 2852, 1722, 1520, 1257, 1103, 809 cm⁻¹.

	Retention	Area	% Area
	Time		
1	9.765	170895	8.99
2	15.671	1730639	91.01

(3S,5S,7S)-adamantan-1-yl (7aR,10aR)-7a-hydroxy-7-(4-methylbenzamido)-7a,8,9,10tetrahydrobenzo[e]cyclopenta[b]indole-10a(7H)-carboxylate (C26):

White solid, 90% yield, 93% ee, >19:1 dr, m.p. 142-145 °C, $[\alpha]^{13}_{D} = 32.1$ (c = 0.20, in CH₂Cl₂).

SFC Daicel Chiralcel OD-3, CO₂/MeOH = 85/15, 1.5 mL/min, $\lambda = 240$ nm, $t_1 = 6.43$ min, $t_2 = 22.52$ min

¹**H NMR** (400 MHz, Benzene- d_6) δ 7.90 (d, J = 8.4 Hz, 1H), 7.86 (s, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.54 (m, 3H), 7.38 (t, J = 7.6 Hz, 1H), 7.18 (m, 1H), 6.80 (m, 3H), 5.18 (s, 1H), 3.40 (q, J = 12.1 Hz, 1H),

2.38 – 2.27 (m, 1H), 2.18 (m, 8H), 1.97 (s, 3H), 1.79 (s, 3H), 1.73 – 1.63 (m, 2H), 1.29 (q, *J* = 12.2 Hz, 6H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 171.1, 169.3, 147.0, 142.7, 130.7, 130.3, 129.8, 129.7, 129.6, 129.4, 127.0, 122.5, 122.5, 120.3, 110.2, 109.0, 81.6, 65.3, 45.6, 41.4, 38.1, 36.1, 35.9, 31.0, 23.4, 21.2.

HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₃₄H₃₆N₂O₄Na⁺]: 559.2567 found 559.2567. **IR** (neat) 3293, 2912, 2852, 1722, 1659, 1520, 1278, 1258, 1104, 833, 748 cm⁻¹.

	Retention Time	Area	% Area
1	6.434	304735	3.50
2	22.524	8406697	96.50

(38,58,78)-adamantan-1-yl (7aR,10aR)-7-(1-naphthamido)-7a-hydroxy-7a,8,9,10tetrahydrobenzo[e]cyclopenta[b]indole-10a(7H)-carboxylate (C27):

Red solid, 91% yield, 92% ee, >19:1 dr, m.p. 164-167 °C, $[\alpha]^{13}_{D} = 52.1$ (c = 1.0, in CH₂Cl₂).

SFC Daicel Chiralcel OD-3, CO₂/MeOH = 70/30, 1.5 mL/min, λ = 240 nm, t₁ = 8.41 min, t₂ = 21.43 min

¹**H** NMR (400 MHz, Benzene- d_6) δ 7.76 (s, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.26 – 7.17 (m, 3H), 7.10 (t, J = 7.6 Hz, 1H), 6.98 – 6.93 (m, 2H), 6.90 (m, 1H), 6.53 (d, J = 7.6 Hz, 1H), 6.98 – 6.93 (m, 2H), 6.90 (m, 2H), 6.91 (m, 2H), 6.92 (m, 2H), 6.92 (m, 2H), 6.92 (m, 2H), 6.92 (m, 2H), 6.93 (m, 2H), 6.9

8.6 Hz, 1H), 4.85 (s, 1H), 3.15 (dq, *J* = 12.4, 7.1 Hz, 1H), 2.05 – 1.82 (m, 9H), 1.51 (s, 3H), 1.01 (q, *J* = 12.2 Hz, 8H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 170.9, 169.5, 146.9, 135.4, 132.8, 130.8, 130.4, 130.0, 129.7, 129.6, 129.2, 128.8, 127.1, 126.9, 124.3, 122.7, 122.5, 120.4, 110.1, 109.1, 81.6, 65.3, 41.5, 38.2, 36.2, 35.9, 31.0, 23.4, 20.5.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{37}H_{36}N_2O_4Na^+]$: 595.2567 found 595.2567. **IR** (neat) 3291, 2911, 2852, 1721, 1661, 1520, 1291, 1258, 1237, 1103, 808, 760 cm⁻¹.

	Retention Time	Area	% Area
1	8.410	312258	4.07
2	21.433	7353561	95.93

(3*R*)-adamantan-1-yl (7a*R*,10a*R*)-3-bromo-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,8,9,10-tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C28):

(d, *J* = 6.8 Hz, 1H), 5.97 (s, 1H), 4.63 (s, 1H), 3.31 (s, 3H), 3.25 (s, 1H), 2.15 – 1.89 (m, 9H), 1.76 (s, 3H), 1.59 (s, 1H), 1.26 (m, 7H).

¹³C NMR (151 MHz, Benzene-*d*₆) δ 170.5, 158.5, 147.0, 131.6, 131.3, 130.3, 129.0, 128.9, 124.0, 119.9, 116.1, 110.7, 108.2, 81.9, 64.8, 52.7, 41.4, 37.6, 36.1, 35.9, 31.0, 23.2.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{28}H_{31}^{79}BrN_2O_5Na^+]$: 577.1309 found 577.1310.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{28}H_{31}^{81}BrN_2O_5Na^+]$: 579.1288 found 579.1287.

IR (neat) 3298, 2911, 1723, 1623, 1584, 1507, 1356, 1255, 1053, 813, 735 cm⁻¹.

Racemate: 5.5:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

(3*R*)-adamantan-1-yl (7a*R*,10a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-3-methyl-7a,8,9,10-tetrahydrobenzo[e]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C29):

6.77 (d, 1H), 6.10 (s, 1H), 4.64 (s, 1H), 3.34 (s, 4H), 2.24 (s, 3H), 2.20 (d, *J* = 11.4 Hz, 1H), 2.16 – 2.04 (m, 7H), 2.00 (s, 1H), 1.76 (s, 3H), 1.63 (s, 1H), 1.34 – 1.18 (m, 7H).

 13 C NMR (151 MHz, Benzene- d_6) δ 170.9, 158.7, 146.1, 131.7, 130.7, 129.3, 129.1, 128.8, 128.7,

122.3, 119.9, 110.0, 108.0, 81.7, 65.1, 52.6, 41.4, 37.6, 36.1, 35.9, 31.0, 23.3, 21.4.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{29}H_{34}N_2O_5Na^+]$: 513.2360 found 513.2361.

IR (neat) 3297, 2912, 1724, 1603, 1580, 1237, 1054, 815 cm⁻¹.

Racemate: 11:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Area
	Time		
1	5.745	17167014	88.16
2	6.672	2306161	11.84

(3*R*)-adamantan-1-yl (7a*R*,10a*R*)-7a-hydroxy-7-((methoxycarbonyl)amino)-2-phenyl-7a,8,9,10-tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C30):

7.67 - 7.55 (m, 4H), 7.41 (dd, J = 8.5, 1.7 Hz, 1H), 7.37 (t, J = 7.7 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 8.6 Hz, 1H), 3.62 (s, 3H), 2.89 (q, J = 11.7 Hz, 1H), 2.23 - 2.10 (m, 1H), 1.95 (s, 1H), 1.87 (m, 9H), 1.75 (m, 1H), 1.62 (s, 1H), 1.42 (q, J = 12.3 Hz, 6H), 1.15 (s, 1H).

¹³C NMR (101 MHz, Acetone-*d₆*) δ 171.4, 148.3, 142.2, 139.8, 131.1, 130.7, 130.0, 129.9, 128.4, 128.0, 122.3, 122.3, 120.5, 120.2, 110.8, 108.5, 81.6, 65.4, 53.1, 42.0, 38.0, 36.8, 31.6, 23.8.
HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₃₄H₃₆N₂O₅Na⁺]: 575.2516 found 575.2518.
IR (neat) 3298, 2911, 2853, 1724, 1627, 1516, 1457, 1371, 1247, 1104, 879, 758, 698 cm⁻¹.

Racemate: 11:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention	Area	% Aroa
	Time		70 Alea
1	10.916	20860056	92.06
2	12.727	1798158	7.94

(3*R*)-adamantan-1-yl (7a*R*,10a*R*)-2-bromo-7a-hydroxy-7-((methoxycarbonyl)amino)-7a,8,9,10-tetrahydrobenzo[*e*]cyclopenta[*b*]indole-10a(7*H*)-carboxylate (C31):

7.50 (s, 1H), 7.19 (dd, J = 8.7, 1.9 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 3.62 (s, 3H), 2.94 – 2.80 (m, 1H), 2.14 (d, J = 8.2 Hz, 1H), 1.96 (s, 3H), 1.88 (d, J = 10.7 Hz, 8H), 1.76 (m, 1H), 1.68 – 1.60 (m, 1H), 1.47 (d, J = 14.8 Hz, 6H).

¹³**C NMR** (101 MHz, Acetone-*d*₆) δ 171.3, 149.0, 132.3, 132.2, 130.7, 129.0, 125.2, 121.6, 111.4, 108.9, 82.0, 65.3, 53.3, 42.2, 38.0, 37.1, 31.9, 23.9, 18.4.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{28}H_{31}^{79}BrN_2O_5Na^+]$: 577.1309 found 577.1306.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{28}H_{31}^{81}BrN_2O_5Na^+]$: 579.1288 found 579.1285.

IR (neat) 3283, 2916, 1719, 1621, 1509, 1455, 1378, 1262, 1055, 828, 797 cm⁻¹.

Racemate: 7:1 dr determined by isolate yield. The HPLC of the cis-isomer as below:

	Retention Time	Area	% Area
1	8.303	2539424	93.56
2	9.488	174698	6.44

(3S,5S,7S)-adamantan-1-yl (7aR,10aR)-7-((methoxycarbonyl)amino)-7a-((trimethylsilyl)oxy)-7a,8,9,10-tetrahydrobenzo[e]cyclopenta[b]indole-10a(7H)-carboxylate (D1):

White solid, 86% yield, 92% ee, >19:1 dr, m.p. 187-189 °C, $[\alpha]^{13}_{D} = 51.0$ (c = 0.70, in CH₂Cl₂).

SFC Daicel Chiralcel OD-3, CO₂/MeOH = 95/5, 1.5 mL/min, λ = 240 nm, t₁ = 7.46 min, t₂ = 8.47 min.

¹**H NMR** (400 MHz, Benzene- d_6) δ 7.66 (dd, J = 11.6, 8.5 Hz, 2H), 7.52 (d, J = 8.6 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.19 (m, 1H), 6.90 (d, J = 7.9 Hz, 1H), 6.42 (s, 1H), 3.47 (s, 3H), 3.19 (s, 1H), 2.66 (s, 1H), 2.14 – 1.98 (m, 8H), 1.83 (s, 3H), 1.66 (m, 1H), 1.34 (q, J = 12.0 Hz, 7H), 0.32 (s, 9H).

¹³C NMR (101 MHz, Benzene-*d*₆) δ 168.9, 145.6, 127.7, 127.6, 126.7, 124.4, 121.9, 120.8, 119.1, 109.7, 108.3, 78.7, 64.7, 50.5, 39.6, 34.6, 34.4, 29.1, 22.5, 0.2.

HRMS (ESI) m/z: [M + Na]⁺ Calculated for [C₃₁H₄₀N₂O₅SiNa⁺]: 571.2599 found 571.2601. **IR** (neat) 3287, 2912, 2852, 1716, 1520, 1354, 1317, 1259, 1238, 1149, 897, 843 cm⁻¹.

	Retention Time	Area	% Area
1	7.530	1946010	49.91
2	8.504	1953312	50.09

	Retention Time	Area	% Area
1	7.458	24544	3.87
2	8.471	609340	96.13

(7aR,12aS)-12a-(hydroxymethyl)-7-(methylamino)-12,12a-dihydrobenzo[e]indeno[1,2b]indol-7a(7H)-ol (D2):

Pale yellow solid, 38% yield, 88% ee, >19:1 dr, m.p. 98-101 °C, $[\alpha]_{D}^{13}$ = -295.7 (c = 0.08, in CH₂Cl₂).

HPLC Daicel Chiralpak AZH, hexane/isopropanol=70/30, 1.0 mL/min, $\lambda = 254$ nm, $t_1 = 14.32$ min, $t_2 = 16.25$ min.

¹**H** NMR (600 MHz, Chloroform-*d*) δ 7.86 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.69 (d, *J* = 8.7 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.46 (t, *J* = 7.5 Hz, 1H), 7.32 -7.27 (m, 2H), 7.22 (m, 3H), 5.17 (s, 1H), 4.49 (d, J = 11.2 Hz, 1H), 3.76 – 3.63 (m, 2H), 3.34 (d, J = 16.4 Hz, 1H), 2.96 (s, 3H), 2.27 (s, 2H).

¹³C NMR (151 MHz, Chloroform-d) δ 150.8, 141.9, 141.8, 130.8, 130.3, 129.6, 128.4, 127.6, 126.6, 125.8, 125.3, 122.8, 121.6, 120.7, 78.8, 67.2, 59.6, 40.5, 37.1.

HRMS (ESI) m/z: $[M + Na]^+$ Calculated for $[C_{21}H_{20}N_2O_2Na^+]$: 355.1417 found 355.1414. IR (neat) 3334, 2924, 1720, 1622, 1518, 1467, 1375, 1209, 1027, 815, 746 cm⁻¹.

424405

49.61

16.144

	Retention	Area	% Area
	Time		
1	14.316	1259195	94.23
2	16.245	77071	5.77

11. Copies of ¹ H, ¹³C and ¹⁹F NMR spectra of the products

C12:

f1 (ppm)

C22:

7.76 7.74 7.76 7.76 7.68 7.54 7.54 7.54 7.52 7.25 7.25 6.83 6.83 6.83 4.15 3.97 3.96 3.03 3.00 2.98 2.97 2.95 2.22 2.07 1.97 1.79 1.79 ~ 0.97 ~ 0.86 - 0.00 Ad-O Values Parameter rarameter Values Title songyj-20220719-121-3.1.1.1r Solvent CDC13 Temperature 294.7 Number of Scans 16 Spectrometer Frequency 400.18 Nucleus 1H Oł 1 2 3 4 5 6 ò 7.76 7.74 7.70 7.76 7.54 7.52 7.52 7.41 7.7.40 7.7.37 7.7.40 7.7.37 7.7.25 6.89 6.89 1. 2 2 M Mi <u>→</u> +96. -7. 1.03 0.62 0.62 0.62 o 0.95-00. 7. 4 7. f1 (ppm) 7. 2 7. 0 8 W 1.004 0.967 0.954 1.004 1.034 1.05 4.09 8.04 1.15 0.94 6.21 0.94 0.83 0.62¹ 0.64 2.09 1.00-6.04 8 6 5 4 3 2 0 7 1 f1 (ppm) 129.7 129.1 126.7 122.3 119.2 119.2 109.6 117.4 158.1 146.1 - 171.0 82.1 77.4 77.0 77.0 76.7 64.5 45.3 41.1 37.0 35.4 35.4 30.7 23.1 29.7 23.1 19.0 0.0- -ī ï Ad-O OH C Ň ò N H Parameter Values Title songyj-20220719-121-3.2.1.1r Solvent CDC13 Temperature 295.2 Number of Scans 1024 Spectrometer Frequency 100.63 Nucleus 13C 2 3 4 5 6

C23:

180 160 140 120 100 80 60 40 20 0 f1 (ppm)

C25:

f1 (ppm)

C27:

D2:

The 1H NMR of the trans-isomers:

G19:

12. Copies of CD spectra of the products

S89

13. Reference.

1. L. W. Qi, J. H. Mao, J. Zhang, B. Tan, Organocatalytic asymmetric arylation of indoles enabled by azo groups, *Nat. Chem.*, 2018, **10**, 58-64.

2. (1). X. Y. Zhang, W. B. Wu, W. D. Cao, H. Yu, X. Xu, X. H. Liu, X. M. Feng, Enantioselective Radical-Polar Crossover Reactions of Indanonecarboxamides with Alkenes, *Angew. Chem. Int. Ed.*, 2020, **59**, 4846-4850. (2). C. Q. He, Z. K. Wu, Y. Q. Zhou, W. D. Cao, X. M. Feng, Asymmetric catalytic nitrooxylation and azidation of β -keto amides/esters with hypervalent iodine reagents, *Org. Chem. Front.*, 2022, **9**, 703-708.

3. Z. P. Yu, X. H. Liu, L. Zhou, L. L. Lin, X. M. Feng, Bifunctional Guanidine via an Amino Amide Skeleton for Asymmetric Michael Reactions of β-Ketoesters with Nitroolefins: A Concise Synthesis of Bicyclic β-Amino Acids, *Angew. Chem. Int. Ed.*, 2009, **48**, 5195-5198.

4. S. X. Dong, X. H. Liu, X. H. Chen, F. Mei, Y. L. Zhang, B. Gao, L. L. Lin, X. M. Feng, Chiral Bisguanidine-Catalyzed Inverse-Electron-Demand Hetero-Diels-Alder Reaction of Chalcones with Azlactones, *J. Am. Chem. Soc.*, 2010, **132**, 10650-10651.