Supplementary Information

Iodine-Catalyzed Cyclization-Allylation of N-Allyl-2-alkynylanilines via Iodocyclization-Rearrangement-Deiodination Sequence

Sae Tsubata, Akira Tsubouchi and Akio Saito*

Division of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.

* Correspondence: akio-sai@cc.tuat.ac.jp; Tel.: +81-42-388-7667

Table of contents

- 1. Optimization of Reaction Conditions (Table S1)......S1
- 2. General Information......S2
- 3. Preparation and Characterization of N,N-Disubstituted o-Alkynylanilines 1......S2
- 4. Preparation and Characterization of 3-Allylindoles 2 and 4......S5
- 5. ¹H and ¹³C NMR Spectra of 1b-1q, 2a-2f, 2h-2q, 4p and 4q......S10

1. Optimization of Reaction Conditions

Table S1. Evaluation of iodine catalysts, additives and solvents

DCE = 1,2-dicloroethane, DMF = N,N-dimethylformamide, DMP = N-methylpyrrolidone, THF = tetrahedrofuran, DCM = dicloromethane, Py = pyridine.

^a Determined by ¹H NMR analysis using an internal standard. ND = Not determined. ^b 30 mol%.

2. General Information

All reactions were carried out under an argon atmosphere. According to procedures reported in the literatures, *o*-alkynylanilines **1a** were prepared.¹ Molecular iodine, Iodine monochloride, *N*-iodosuccinimide (NIS), Barluenga's reagent (Py₂IBF₄, Py = pyridine) and HBF₄·OEt₂ are commercially available. All solvents were purchased as the "anhydrous" and used without further purification. For the thin-layer chromatography (TLC) analysis, Merck precoated TLC plates (silica gel 60 F₂₅₄) were used. Column chromatography was performed on silica gel 60N (63-200 µm, neutral, Kanto Kagaku Co., Ltd.). Preparative thin layer chromatography (PTLC) was performed on Wakogel[®] B-5F (FUJIFILM Wako Pure Chemical Corp.). Medium pressure liquid chromatography (MPLC) was carried out with YAMAZEN EPCLC-Wprep 2XY.

¹H and ¹³C NMR spectra were measured at 500 and 125 MHz in CDCl₃ and the chemical shifts are given in ppm using CHCl₃ (7.26 ppm) in CDCl₃ for ¹H NMR and CDCl₃ (77.0 ppm) for ¹³C NMR as an internal standard, respectively. ¹⁹F NMR spectra were measured at 470 MHz in CD₃Cl and the chemical shifts are given in ppm using C_6F_6 (-162.90 ppm) as an internal standard. Splitting patterns of an apparent multiplet associated with an averaged coupling constant were designed as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broadened). Mass spectra and HRMS were recorded on double-focusing magnetic sector by FAB or ESI methods.

3. Preparation and Characterization of N,N-disubstituted o-alkynylanilines 1

General procedure A (GP-A)

To a suspension of NaH (60% in oil, 3.5 equiv.) in DMF was added **S1b-S1l**² (0.985-8.11 mmol) in DMF at 0 °C. After being stirred for 30 min at ambient temperature, allylic bromide R⁴Br (R⁴ = allyl, methallyl or prenyl, 3.6 equiv.) and tetrabutylammonium iodide (0.3 equiv.) was added. After being stirred at ambient temperature for 18h, the reaction mixture was quenched with sat. NH₄Cl aq. and 20 wt% Na₂S₂O₃ aq., and exacted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. In the reaction with **S1b**, **S1h** and **S1i**, since NMR analysis of the crude products indicated that the monoallylated products still remained, the crude products were treated with allyl bromide (1.2 equiv.) in a same manner to complete the allylation. The residue was purified by silica gel column chromatography (hexane:CH₂Cl₂ = 10:1) to give **1b-1l**, **1n** and **1q**.

General procedure B (GP-B)

To a suspension of NaH (60% in oil, 1.5 equiv. for **S2a** and **S2c** or 1.2 equiv. for **S2b**) in DMF was added **S2a-S2c³** (1.64-3.14 mmol) in DMF at 0 °C. After being stirred for 30 min at ambient temperature, allylic bromide $R^{3}Br$ (R^{3} = allyl or crotyl, 1.8 equiv.; R^{3} = methallyl, 1.3 equiv.) was added 0 °C. After being stirred at ambient temperature overnight, the reaction mixture was quenched with sat. NH₄Cl aq. and exacted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. The residue was purified by silica gel column chromatography (hexane:CH₂Cl₂ = 10:1) to give **1m**, **1o**

¹ S.-L. Niu, J. Hu, K. He, Y.-C. Chen and Q. Xiao, Org. Lett., 2019, 21, 4250–4254.

 ² (a) C. Peng, Y. Wang, L. Liu, H. Wang, J. Zhao and Q. Zhu, *Eur. J. Org. Chem.*, 2010, 818–822. (b) H. Liang, G. Zhu, X. Pu and L. Qiu, *Org. Lett.*, 2021, 23, 9246–9250. (c) A. S. K. Raj, A. S. Narode and R.-S. Liu, *Org. Lett.*, 2021, 23, 1378–1382. (d) J. I. Murray, N. J. Flodén, A. Bauer, N. D. Fessner, D. L. Dunklemann, O. Bob-Egbe, H. S. Rzepa, T. Bürgi, J. Richardson and A. C. Spivey, *Angew. Chem. Int. Ed.*, 2017, 56, 5760–5764.

³ (a) L. Zhou, X. Liu, H. Lu, G. Deng, Y. Liang, Y. Yang and J.-H. Li, Org. Chem. Front., 2021, 8, 5092–5097. (b) M. Mandal and R. Balamurugan, Chem. Commun., 2022, 58, 9778–9781.

and 1p.

N,N-Diallyl-2-(*p*-tolylethynyl)aniline (1b): 85% (1.34 g from S1b 1.14 g, GP-A). $R_{\rm f} = 0.35$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2209, 1591, 1511, 1485, 1441, 1276, 1216. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.56-7.52 (m, 2H), 7.39-7.30 (m, 4H), 7.04 (dd, J = 8.0, 1.7 Hz, 1H), 6.86 (d, J = 8.6 Hz, 1H), 5.92 (ddt, J = 17.2, 10.3, 5.5 Hz, 2H), 5.25 (dd, J = 17.2, 1.7 Hz, 2H), 5.17 (dd, J = 10.3, 1.7 Hz, 2H), 3.94 (d, J = 5.5 Hz, 4H), 2.29 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 150.1, 135.4, 134.6, 131.4, 130.1, 129.6, 128.2, 127.8, 123.9, 119.7, 117.1, 115.9, 94.0, 88.9, 54.6, 20.3. HRMS (ESI): m/z calcd. for C₂₁H₂₂N⁺ [M+H]⁺ 288.1747; found 288.1750.

N,*N*-Diallyl-2-[(4-methoxyphenyl)ethynyl]aniline (1c): 43% (1.06 g from S1c 1.81 g, GP-A). $R_f = 0.28$ (hexane: AcOEt = 20:1). Yellow solid. Mp 43-44 °C. IR (KBr) v cm⁻¹; 2208, 1590, 1513, 1490, 1413, 1288, 1248, 1223, 1032. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.49-7.44 (m, 3H), 7.19 (ddd, J = 7.3, 7.3, 1.7 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.90-6.84 (m, 3H), 5.91 (ddt, J = 17.2, 10.3, 6.3 Hz, 2H), 5.23 (dd, J = 17.2, 1.7 Hz, 2H), 5.17 (dd, J = 10.3, 1.7 Hz, 2H), 3.97 (d, J = 6.3 Hz, 4H), 3.83 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 159.3, 152.2, 135.3, 134.3, 132.8, 128.5, 120.5, 119.3, 117.2, 116.0, 115.8, 113.9, 94.3, 87.5, 55.3, 54.2. HRMS (ESI): *m*/*z* calcd. for C₂₁H₂₂NO⁺ [M+H]⁺ 304.1696; found 304.1703.

N,*N*-Diallyl-2-{[4-(trifluoromethyl)phenyl]ethynyl}aniline (1d): 79% (1.78 g from S1d 1.72 g, GP-A). $R_{\rm f}$ = 0.30 (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2211, 1614, 1593, 1486, 1416, 1321, 1277, 1219. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.65-7.58 (m, 4H), 7.51 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.25 (ddd, *J* = 8.2, 7.5, 1.7 Hz, 1H), 6.95 (d, *J* = 8.2 Hz, 1H), 6.89 (ddd, *J* = 7.6, 7.5, 1.2 Hz, 1H), 5.91 (ddt, *J* = 17.2, 10.3, 5.7 Hz, 2H), 5.26 (dd, *J* = 17.2, 1.7 Hz, 2H), 5.20 (dd, *J* = 10.3, 1.7 Hz, 2H), 3.98 (d, *J* = 5.7 Hz, 4H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 152.6, 135.0, 134.7, 131.5, 129.48 (q, ²*J*_{C-F} = 32.4 Hz), 129.46, 127.7, 125.2 (q, ³*J*_{C-F} = 3.6 Hz), 124.0 (q, ¹*J*_{C-F} = 272.3 Hz), 120.4, 119.2, 117.3, 114.4, 92.8, 91.6, 54.3. ¹⁹F-NMR (470 MHz, CD₃Cl) δ ppm; - 63.9 (s, 3F). HRMS (ESI): *m/z* calcd. for C₂₁H₁₉F₃N⁺ [M+H]⁺ 342.1464; found 342.1465.

N,N-Diallyl-2-[(4-chlorophenyl)ethynyl]aniline (1e): 81% (1.30 g from S1e 1.19 g, GP-A). $R_{\rm f} = 0.28$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2212, 1592, 1492, 1470, 1439, 1416, 1277, 1218, 1054. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.50 (dd, J = 7.5, 1.7 Hz, 1H), 7.46 (d, J = 8.6 Hz, 2H), 7.33 (d, J = 8.6 Hz, 2H), 7.24 (ddd, J = 7.5, 7.5, 1.7 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 6.90 (dd, J = 7.5, 7.5 Hz, 1H), 5.92 (ddt, J = 17.2, 9.7, 5.7 Hz, 2H), 5.26 (dd, J = 17.2, 1.7 Hz, 2H), 5.20 (d, J = 9.7, 1.7 Hz, 2H), 3.99 (d, J = 5.7 Hz, 4H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 152.4, 135.1, 134.5, 133.8, 132.5, 129.1, 128.6, 122.4, 120.4, 119.2, 117.3, 114.9, 93.1, 90.0, 54.2. HRMS (ESI): m/z calcd. for C₂₀H₁₉ClN⁺ [M+H]⁺ 308.1201; found 308.1209.

N,*N*-Diallyl-2-[(3-chlorophenyl)ethynyl]aniline (1f): 83% (1.77 g from S1f 1.57 g, GP-A). $R_f = 0.33$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2217, 1591, 1491, 1473, 1440, 1416, 1276, 1218, 1089. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.53 (d, J = 1.4 Hz, 1H), 7.50 (ddd, J = 7.7, 1.4, 1.4 Hz, 1H), 7.41 (ddd, J = 7.2, 1.4, 1.4 Hz, 1H), 7.34-7.27 (m, 2H), 7.24 (ddd, J = 7.2, 1.4, 1.4 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.90 (dd, J = 7.5, 7.5 Hz, 1H), 5.92 (ddt, J = 17.2, 10.3, 6.0 Hz, 2H), 5.27 (ddt, J = 17.2, 1.4 Hz, 2H), 5.21 (ddt, J = 10.3, 1.4 Hz, 2H), 3.99 (d, J = 6.0 Hz, 4H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 152.5, 135.0, 134.6, 134.1, 131.1, 129.5, 129.2, 128.1, 125.6, 120.4, 119.2, 117.3, 114.7, 92.8, 90.3, 54.2 (note that two carbon peaks overlap with each other). HRMS (ESI): m/z calcd. for C₂₀H₁₉CIN⁺ [M+H]⁺ 308.1201; found 308.1207.

N,*N*-Diallyl-2-[(2-chlorophenyl)ethynyl]aniline (1g): 97% (1.57 g from S1g 1.20 g, GP-A). $R_f = 0.30$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2213, 1593, 1491, 1470, 1439, 1416, 1277, 1217, 1053. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.59-7.53 (m, 2H), 7.46-7.41 (m, 1H), 7.28-7.22 (m, 3H), 6.94 (d, J = 7.5 Hz, 1H), 6.90 (ddd, J = 7.5, 7.5, 1.2 Hz, 1H), 5.90 (ddt, J = 17.2, 10.3, 5.7 Hz, 2H), 5.23 (dd, J = 17.2, 1.7 Hz, 2H), 5.17 (dd, J = 10.3, 1.7 Hz, 2H), 4.01 (d, J = 5.7 Hz, 4H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 152.3, 135.6, 135.0, 134.8, 133.0, 129.3, 129.2, 128.9, 126.4, 123.8, 120.4, 119.4, 117.2, 115.0, 94.1, 91.1, 54.3. HRMS (ESI): *m/z* calcd. for C₂₀H₁₉ClN⁺ [M+H]⁺ 308.1201; found 308.1202.

N,*N*-Diallyl-2-[(2-methoxyphenyl)ethynyl]aniline (1h): 66% (0.477 g from S1h 0.534 g, GP-A). $R_{\rm f} = 0.26$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2208, 1591, 1496, 1484, 1434, 1274, 1247, 1217, 1025. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.52 (dd, J = 7.5, 1.7 Hz, 1H), 7.49 (dd, J = 7.5, 1.7 Hz, 1H), 7.29 (ddd, J = 7.5, 7.5, 1.7 Hz, 1H), 7.20 (ddd, J = 8.6, 7.5, 1.7 Hz, 1H), 6.96-6.86 (m, 4H), 5.92 (ddt, J = 17.2, 10.3, 5.7 Hz, 2H), 5.22 (dd, J = 17.2, 1.7 Hz, 2H), 5.15 (dd, J = 10.3, 1.7 Hz, 2H), 4.01 (d, J = 5.7 Hz, 4H), 3.90 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ

ppm; 159.8, 152.2, 135.4, 134.6, 133.2, 129.3, 128.7, 120.4, 119.4, 117.0, 115.9, 113.1, 110.6, 92.9, 90.8, 55.6, 54.2 (note that two carbon peaks overlap with each other). HRMS (ESI): m/z calcd. for C₂₁H₂₂NO⁺ [M+H]⁺ 304.1696; found 304.1696.

N,*N*-Diallyl-2-(hex-1-yn-1-yl)aniline (1i): 62% (0.902 g from S1i 1.00 g, GP-A). $R_f = 0.29$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2227, 1612, 1508, 1464, 1431, 1252, 1179. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.37 (dd, J = 7.4, 1.7 Hz, 1H), 7.16 (ddd, J = 8.0, 7.4, 1.7 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.84 (ddd, J = 7.4, 7.4, 1.2 Hz, 1H), 5.87 (ddt, J = 17.4, 10.3, 5.7 Hz, 2H), 5.21 (dd, J = 17.4, 1.4 Hz, 2H), 5.16 (dd, J = 10.3, 1.4 Hz, 2H), 3.91 (d, J = 5.7 Hz, 4H), 2.48 (t, J = 7.2 Hz, 2H), 1.67-1.58 (m, 2H), 1.55-1.46 (m, 2H), 0.96 (t, J = 7.4 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 152.3, 135.4, 134.3, 127.9, 120.6, 119.5, 117.0, 116.9, 95.5, 79.6, 54.2, 30.9, 22.1, 19.6, 13.7. HRMS (ESI): *m/z* calcd. for C₁₈H₂₄N⁺ [M+H]⁺ 254.1903; found 254.1905.

N,N-Diallyl-2-(3-methylbut-1-yn-1-yl)aniline (1j): 61% (0.734 g from S1j 0.796 g, GP-A). $R_f = 0.41$ (hexane: AcOEt = 20:1). Colorless oil. IR (neat) v cm⁻¹; 2224, 1592, 1488, 1442, 1411, 1321, 1214. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.37 (dd, J = 7.4, 1.7 Hz, 1H), 7.16 (ddd, J = 7.9, 7.6, 1.7 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.83 (dd, J = 7.6, 7.4 Hz, 1H), 5.88 (ddt, J = 17.4, 10.3, 6.0 Hz, 2H), 5.22 (dd, J = 17.4, 1.4 Hz, 2H), 5.16 (dd, J = 10.3, 1.4 Hz, 2H), 3.91 (d, J = 6.0 Hz, 4H), 2.84 (septet, J = 6.9 Hz, 1H), 1.29 (d, J = 6.9 Hz, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 152.2, 135.4, 134.4, 127.9, 120.5, 119.4, 116.9, 116.6, 100.7, 78.9, 54.0, 23.0, 21.5. HRMS (ESI): m/z calcd. for C₁₇H₂₂N⁺ [M+H]⁺ 240.1747; found 240.1751.

N,N-Diallyl-4-methyl-2-(phenylethynyl)aniline (1k): 87% (1.25 g from S1k 1.04 g, GP-A). $R_f = 0.33$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2202, 1598, 1499, 1488, 1442, 1416, 1277, 1216. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.57-7.53 (m, 2H), 7.39-7.30 (m, 4H), 7.04 (dd, J = 8.3, 1.7 Hz, 1H), 6.86 (d, J = 8.3 Hz, 1H), 5.92 (ddt, J = 17.2, 10.3, 5.7 Hz, 2H), 5.25 (dd, J = 17.2, 1.7 Hz, 2H), 5.17 (dd, J = 10.3, 1.7 Hz, 2H), 3.94 (d, J = 5.7 Hz, 4H), 2.29 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 150.1, 135.4, 134.6, 131.4, 130.1, 129.6, 128.3, 127.9, 123.9, 119.7, 117.1, 115.9, 94.0, 88.9, 54.6, 20.3. HRMS (ESI): m/z calcd. for C₂₁H₂₂N⁺ [M+H]⁺ 288.1747; found 288.1751.

N,*N*-Diallyl-2,4-dimethyl-6-(phenylethynyl)aniline (11): 71% (1.10 g from S11 1.13 g, GP-A). $R_f = 0.35$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2208, 1598, 1492, 1472, 1442, 1415, 1268, 1216. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.59-7.55 (m, 2H), 7.42-7.33 (m, 3H), 7.18 (d, *J* = 2.3 Hz, 1H), 7.01 (s, 1H), 5.90 (ddt, *J* = 17.1, 10.5, 6.3 Hz, 2H), 5.18 (dd, *J* = 17.1, 1.7 Hz, 2H), 5.04 (dd, *J* = 10.5, 1.7 Hz, 2H), 3.87 (d, *J* = 6.3 Hz, 4H), 2.32 (s, 3H), 2.28 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 148.5, 137.8, 136.7, 134.1, 132.04, 132.00, 131.0, 128.4, 128.0, 123.9, 122.0, 116.2, 93.1, 89.5, 56.2, 20.6, 18.9. HRMS (ESI): *m/z* calcd. for C₂₂H₂₄N⁺ [M+H]⁺ 302.1903; found 302.1911.

N-Allyl-*N*-methyl-2-(phenylethynyl)aniline (1m): 96% (0.420 g from S2a 0.368 g, GP-B). $R_f = 0.31$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2209, 1590, 1496, 1482, 1443, 1276, 1228, 1185. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.57-7.53 (m, 2H), 7.51 (dd, J = 8.0, 1.7 Hz, 1H), 7.38-7.30 (m, 3H), 7.26 (ddd, J = 7.7, 7.7, 1.7 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.91 (ddd, J = 7.7, 7.7, 1.2 Hz, 1H), 6.03 (ddt, J = 17.2, 10.3, 6.3 Hz, 1H), 5.29 (ddt, J = 17.2, 1.7 Hz, 1H), 5.21 (dd, J = 10.3, 1.7 Hz, 1H), 3.99 (d, J = 6.3 Hz, 2H), 2.87 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 153.9, 135.6, 134.4, 131.4, 129.2, 128.3, 127.9, 123.8, 120.4, 117.7, 117.3, 115.1, 94.6, 88.7, 59.2, 38.8. HRMS (ESI): m/z calcd. for C₁₈H₁₈N⁺ [M+H]⁺ 248.1434; found 248.1435.

2-[(4-Methoxyphenyl)ethynyl]-*N*,*N*-bis(2-methylallyl)aniline (1n): 83% (0.271 g from S1c 0.220 g, GP-A). $R_f = 0.29$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2211, 1606, 1512, 1486, 1441, 1287,1249, 1214, 1033. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.48 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.46 (d, *J* = 8.9 Hz, 2H), 7.20 (ddd, *J* = 7.9, 7.5, 1.6 Hz, 1H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.90 (d, *J* = 8.9 Hz, 2H), 6.88 (dd, *J* = 7.5, 7.5 Hz, 1H), 4.99 (s, 2H), 4.90 (s, 2H), 3.90 (s, 4H), 3.84 (s, 3H), 1.74 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 159.3, 152.5, 142.5, 134.3, 132.6, 128.4, 120.3, 119.5, 116.2, 115.7, 113.9, 112.3, 93.8, 87.7, 57.8, 55.2, 20.6. HRMS (ESI): *m*/z calcd. for C₂₃H₂₆NO⁺ [M+H]⁺ 332.2009; found 332.2010.

N-Allyl-2-[(4-methoxyphenyl)ethynyl]-*N*-(2-methylallyl)aniline (10): Quant. (0.532 g from S2b 0.432 g, GP-B). $R_f = 0.29$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2212, 1606, 1512, 1486, 1441, 1287,1249, 1215, 1033. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.47 (d, J = 7.6 Hz, 1H), 7.45 (d, J = 8.6 Hz, 2H), 7.19 (ddt, J = 7.9, 7.7, 1.2 Hz, 1H), 6.92 (d, J = 7.9 Hz, 1H), 6.88 (d, J = 8.6 Hz, 2H), 6.87 (dd, J = 7.7, 7.6 Hz, 1H), 5.91 (ddt, J = 17.2, 10.6, 6.0 Hz, 1H), 5.20 (d, J = 17.2 Hz, 1H), 5.15 (d, J = 10.6 Hz, 1H), 4.98 (s, 1H), 4.90 (s, 1H), 3.98 (d, J = 6.0 Hz, 2H), 3.83 (s, 5H), 1.73 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 159.3, 152.3, 142.4, 135.3, 134.2, 132.7, 128.4, 120.5, 119.6, 117.1, 116.2, 116.0, 113.9, 112.3, 94.0, 87.6, 57.1, 55.3, 54.9, 20.5. HRMS (ESI): m/z calcd. for C₂₂H₂₄NO⁺ [M+H]⁺ 318.1852; found 318.1850.

N-(But-2-en-1-yl)-2-[(4-methoxyphenyl)ethynyl]-*N*-methylaniline (1p): 96% (0.880 g from S2c 0.746 g, GP-B). $R_f = 0.23$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2210, 1606, 1512, 1487, 1447, 1287,1248, 1175, 1032. ¹H-NMR (500 MHz, CDCl₃, 83:17 mixture of geometrical isomers) δ ppm; 7.51-7.45 (m, 3H), 7.25-7.19 (m, 1H), 6.96-6.91 (m, 1H), 6.90-6.85 (m, 3H), 5.73-5.61 (m, 2H), 4.02 (d, J = 4.0 Hz, 0.34H), 3.89 (d, J = 4.0 Hz, 1.66H), 3.83 (s, 3H), 2.85 (s, 0.51H), 2.83 (s, 2.49H), 1.71 (d, J = 4.0 Hz, 2.49H), 1.67 (d, J = 5.2 Hz, 0.51H). ¹³C-NMR (125 MHz, CDCl₃, 83:17 mixture of geometrical isomers) δ ppm; 159.3, 153.9, 134.13, 134.06 (minor), 132.7, 128.8, 128.4, 128.2, 127.8 (minor), 126.8 (minor), 120.6 (minor), 120.3, 117.8 (minor), 58.4, 55.2, 53.4 (minor), 52.6 (minor), 39.0 (minor), 38.6, 17.8, 13.0 (minor) [note that five sp² carbon peaks of the minor isomer overlap with the peaks of the major isomer]. HRMS (ESI): m/z calcd. for C₂₀H₂₂NO⁺ [M+H]⁺ 292.1696; found 292.1703.

2-[(4-Methoxyphenyl)ethynyl]-*N*,*N*-bis(3-methylbut-2-en-1-yl)aniline (1q): 99% (1.80 g from S1c 1.13 g, GP-A). $R_f = 0.31$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 2211, 1606, 1512, 1485, 1441, 1248, 1174. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.49-7.44 (m, 3H), 7.18 (ddd, J = 7.7, 7.7, 1.7 Hz, 1H), 6.90-6.83 (m, 4H), 5.32 (t, J = 6.3 Hz, 2H), 3.89 (d, J = 6.3 Hz, 4H), 3.83 (s, 3H), 1.71 (s, 6H), 1.64 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 159.3, 153.0, 134.2, 134.1, 132.8, 128.4, 122.3, 120.1, 119.1, 116.3, 116.1, 113.8, 94.3, 87.8, 55.3, 49.5, 25.8, 17.9. HRMS (ESI): m/z calcd. for C₂₅H₃₀NO⁺ [M+H]⁺ 360.2322; found 360.2319.

4. Preparation and Characterization of 3-allylindoles 2 and 4

After Barluenga's reagent (30 mol%) was treated with HBF₄·OEt₂ (30 mol%) in CH₂Cl₂ (1.5 mL) at 0 °C for 15 min, a solution of **1a-1q** (0.49-0.60 mmol) in CH₂Cl₂ (3.0 mL) was added at 0 °C. After being stirred at 40 °C for 24 h, the reaction mixture was quenched with sat. NaHCO₃ aq. and 20 wt% Na₂S₂O₃ aq., and exacted with AcOEt. The organic layer was dried over MgSO₄ and concentrated in vacuo to dryness. The residue was purified by MPLC on silica gel modified with amino groups (hexane only) and by MPLC on silica gel modified with octadecylsilyl (ODS) groups (MeCN:H₂O = 9:1 to 1:0) in turn to give **2a-2f**, **2h-2q**, **4p** and **4q**.

1,3-Diallyl-2-phenyl-1*H***-indole (2a):** 53% (72.9 mg from **1a** 137.5 mg). $R_f = 0.30$ (hexane:AcOEt = 20:1). Yellow solid. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.66 (d, J = 8.0 Hz, 1H), 7.51-7.46 (m, 2H), 7.46-7.41 (m, 3H), 7.34 (d, J = 8.0 Hz, 1H), 7.25 (dd J = 8.0, 6.9 Hz, 1H), 7.17 (dd, J = 8.0, 6.9 Hz, 1H), 6.05 (ddt, J = 17.2, 9.7, 5.2 Hz, 1H), 5.93 (ddt, J = 16.9, 10.6, 4.6 Hz, 1H), 5.15 (dd, J = 10.6, 1.7 Hz, 1H), 5.08-5.01 (m, 2H), 4.93 (dd, J = 17.2, 1.2 Hz, 1H), 4.62 (ddd, J = 4.6, 1.7, 1.7 Hz, 2H), 3.47 (ddd, J = 5.2, 1.7, 1.7 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 138.0, 137.9, 136.7, 133.9, 131.8, 130.4, 128.3, 128.1, 128.0, 121.7, 119.34, 119.30, 116.2, 114.6, 110.9, 110.1, 46.4, 29.2. ¹H and ¹³C NMR spectra of **2a** were identical with those reported in literature.⁴

⁴ M. E. Kieffer, L. M. Repka and S. E. Reisman, J. Am. Chem. Soc., 2012, 134, 5131-5137.

1,3-Diallyl-2-(*p***-tolyl)-1***H***-indole (2b): 58% (85.4 mg from 1b 146.0 mg). R_f = 0.33 (hexane: AcOEt = 20:1). Yellow solid. Mp 41-42 °C. IR (KBr) v cm⁻¹; 1462, 1435, 1415, 1358, 1189, 748. ¹H-NMR (500 MHz, CDCl₃) \delta ppm; 7.64 (d, J = 8.0 Hz, 1H), 7.33 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 7.23 (dd, J = 8.0, 6.9 Hz, 1H), 7.15 (dd, J = 8.0, 6.9 Hz, 1H), 6.09 (ddt, J = 16.6, 10.5, 5.2 Hz, 1H), 5.92 (ddt, J = 16.6, 10.5, 5.2 Hz, 1H), 5.14 (d, J = 10.5 Hz, 1H), 5.06 (d, J = 16.6 Hz, 1H), 5.02 (d, J = 10.5 Hz, 1H), 4.93 (d, J = 16.6 Hz, 1H), 4.64-4.59 (m, 2H), 3.46 (d, J = 5.2 Hz, 2H), 2.45 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) \delta ppm; 138.1, 138.0, 137.9, 136.7, 134.0, 130.3, 129.0, 128.8, 128.1, 121.6, 119.3, 119.2, 116.2, 114.5, 110.7, 110.0, 46.4, 29.3, 21.3. HRMS (ESI): m/z calcd. for C₂₁H₂₀N⁺ [M-H]⁺ 286.1590; found 286.1594.**

1,3-Diallyl-2-(4-methoxyphenyl)-1*H***-indole (2c):** 60% (93.8 mg from **1c** 155.7 mg). $R_f = 0.28$ (hexane: AcOEt = 20:1). Yellow solid. Mp 82-83 °C. IR (KBr) v cm⁻¹; 1508, 1464, 1431, 1362, 1250, 1179, 1028,745. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.61 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.6 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.21 (ddd, *J* = 8.0, 6.9, 1.2 Hz, 1H), 7.13 (dd, *J* = 8.0, 6.9 Hz, 1H), 6.99 (d, *J* = 8.6 Hz, 2H), 6.02 (ddt, *J* = 17.0, 10.1, 6.0 Hz, 1H), 5.91 (ddt, *J* = 17.0, 10.1, 4.6 Hz, 1H), 5.12 (ddt, *J* = 10.1, 1.7, 1.7 Hz, 1H), 5.03 (ddt, *J* = 17.0, 1.7, 1.7 Hz, 1H), 5.00 (ddt, *J* = 10.1, 1.7, 1.7 Hz, 1H), 4.90 (ddt, *J* = 17.0, 1.7, 1.7 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 159.5, 138.0, 137.8, 136.6, 134.0, 131.6, 128.0, 124.0, 121.5, 119.3, 119.2, 116.2, 114.5, 113.7, 110.6, 110.0, 55.3, 46.3, 29.3. HRMS (ESI): *m*/z calcd. for C₂₁H₂₀NO⁺ [M-H]⁺ 302.1539; found 302.1531.

1,3-Diallyl-2-[4-(trifluoromethyl)phenyl]-1*H***-indole (2d):** 31% (53.7 mg from 1d 172.8 mg). $R_{\rm f} = 0.29$ (hexane: AcOEt = 20:1). Yellow solid. Mp 55-56 °C. IR (KBr) v cm⁻¹; 1462, 1436, 1420, 1361, 1327, 1161, 739. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.73 (d, *J* = 8.0 Hz, 2H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.27 (ddd, *J* = 8.0, 7.3, 1.2 Hz, 1H), 7.17 (ddd, *J* = 8.0, 7.3, 1.2 Hz, 1H), 6.04 (ddt, *J* = 17.6, 9.6, 5.7 Hz, 1H), 5.92 (ddt, *J* = 172, 10.3, 4.6 Hz, 1H), 5.16 (ddt, *J* = 10.3, 1.7, 1.7 Hz, 1H), 5.05-5.00 (m, 2H), 4.90 (ddt, *J* = 17.2, 1.7, 1.7 Hz, 1H), 4.61 (ddd, *J* = 4.6, 1.9, 1.9 Hz, 2H), 3.44 (ddd, *J* = 5.7, 1.7, 1.7 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 137.5, 137.1, 136.3, 135.5, 133.7, 130.6, 130.0 (q, ²*J*_{C-F} = 32.5 Hz), 127.9, 125.3 (³*J*_{C-F} = 3.8 Hz), 124.1 (q, ¹*J*_{C-F} = 272.2 Hz), 122.4, 119.7, 119.6, 116.4, 114.9, 111.9, 110.2, 46.5, 29.1. ¹⁹F-NMR (470 MHz, CDCl₃) δ ppm; -63.7 (s, 3F). HRMS (ESI): *m/z* calcd. for C₂₁H₁₇F₃N⁺ [M-H]⁺ 340.1308; found 340.1304.

1,3-Diallyl-2-(4-chlorophenyl)-1*H***-indole (2e):** 39% (60.0 mg from **1e** 155.7 mg). $R_f = 0.29$ (hexane: AcOEt = 20:1). Yellow solid. Mp 47-48 °C. IR (KBr) v cm⁻¹; 1489, 1461, 1438, 1361, 1338, 1193, 1092, 1015, 750. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.63 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.25 (dd, J = 8.0, 7.8 Hz, 1H), 7.16 (dd, J = 8.0, 7.8 Hz, 1H), 6.02 (ddt, J = 17.2, 10.3, 6.0 Hz, 1H), 5.90 (ddt, J = 17.2, 10.3, 4.6 Hz, 1H), 5.14 (d, J = 10.3 Hz, 1H), 5.04-5.01 (m, 2H), 4.89 (d, J = 17.2 Hz, 1H), 4.59 (ddd, J = 4.6, 2.3, 2.3 Hz, 2H), 3.43 (d, J = 6.0 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 137.7, 136.8, 136.6, 134.2, 133.8, 131.6, 130.2, 128.6, 127.9, 122.0, 119.5, 119.4, 116.3, 114.8, 111.3, 110.1, 46.4, 29.1. HRMS (ESI): *m/z* calcd. for C₂₀H₁₇ClN⁺ [M-H]⁺ 306.1044; found 306.1041.

1,3-Diallyl-2-(3-chlorophenyl)-1*H***-indole (2f):** 26% (39.9 mg from **1f** 155.1 mg). $R_f = 0.30$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 1460, 1439, 1361, 1193, 1118, 1078, 741. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.64 (d, J = 7.4 Hz, 1H), 7.45-7.37 (m, 3H), 7.32 (d, J = 7.4 Hz, 1H), 7.32-7.29 (m, 1H), 7.25 (dd, J = 7.4, 7.4 Hz, 1H), 7.16 (dd, J = 7.4, 7.4 Hz, 1H), 6.03 (ddt, J = 18.0, 11.2, 5.7 Hz, 1H), 5.91 (ddt, J = 17.2, 10.3, 4.6 Hz, 1H), 5.15 (d, J = 10.3 Hz, 1H), 5.05-5.02 (m, 2H), 4.90 (d, J = 17.2 Hz, 1H), 4.61 (d, J = 4.6 Hz, 2H), 3.44 (d, J = 5.7 Hz, 2H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 137.6, 136.9, 136.4, 134.1, 133.7, 133.6, 130.3, 129.5, 128.5, 128.2, 127.9, 122.1, 119.6, 119.5, 116.4, 114.8, 111.6, 110.1, 46.5, 29.1. HRMS (ESI): m/z calcd. for C₂₀H₁₇ClN⁺ [M-H]⁺ 306.1044; found 306.1038.

1,3-Diallyl-2-(2-methoxyphenyl)-1*H***-indole (2h):** 58% (90.2 mg from 1h 156.2 mg). $R_f = 0.26$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 1489, 1464, 1435, 1363, 1253, 1192, 1025, 741. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.64 (d, J = 7.4 Hz, 1H), 7.44 (ddd, J = 7.9, 7.9, 1.7 Hz, 1H), 7.34 (d, J = 7.9 Hz, 1H), 7.27 (dd, J = 7.4, 2.0 Hz, 1H), 7.21 (ddd, J = 7.9, 7.9, 1.7 Hz, 1H), 7.12 (dd, J = 7.4, 7.4 Hz, 1H), 7.04 (dd, J = 7.4, 7.4 Hz, 1H), 7.01 (d, J = 7.9 Hz, 1H), 5.97 (ddt, J = 17.1, 10.2, 6.1 Hz, 1H), 5.83 (ddt, J = 17.1, 10.2, 5.2 Hz, 1H), 5.05 (ddt, J = 10.2, 1.7, 1.7 Hz, 1H), 5.03 (ddt, J = 17.1, 1.7, 1.7 Hz, 1H), 4.96 (ddt, J = 10.2, 1.7, 1.7 Hz, 1H), 4.92 (ddt, J = 17.1, 1.7, 1.7 Hz, 1H), 4.58 (ddt, J = 16.9, 5.2, 1.7 Hz, 1H), 3.76 (s, 3H), 3.42 (ddt, J = 15.8, 6.1, 1.7 Hz, 1H), 3.32 (ddt, J = 15.8, 6.1, 1.7 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 158.0, 138.0, 136.5, 134.5, 134.3, 133.0, 130.2, 128.0, 121.3, 120.6, 120.4, 119.2, 118.9, 116.0, 114.2, 111.1, 110.9, 110.0, 55.3, 46.7, 29.5. HRMS (ESI): m/z calcd. for C₂₁H₂₀NO⁺ [M-H]⁺ 302.1539; found 302.1544.

1,3-Diallyl-2-butyl-1*H***-indole (2i):** 62% (80.7 mg from **1i** 129.6 mg). $R_f = 0.35$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 1468, 1438, 1415, 1364, 1180, 740. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.53 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.14 (dd, J = 8.0, 7.4 Hz, 1H), 7.07 (dd, J = 8.0, 7.4 Hz, 1H), 6.05-5.90 (m, 2H), 5.12 (dd, J = 10.3, 1.2 Hz, 1H), 5.08 (dd, J = 16.9, 1.9 Hz, 1H), 5.00 (dd, J = 10.2, 1.9 Hz, 1H), 4.85 (dd, J = 17.2, 1.2 Hz, 1H), 4.70 (ddd, J = 4.6, 1.7, 1.7 Hz, 2H), 3.50 (d, J = 5.9 Hz, 2H), 2.71 (t, J = 8.0 Hz, 2H), 1.56-1.52 (m, 2H), 1.46-1.36 (m, 2H), 0.95 (t, J = 7.4 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 137.8, 137.3, 136.1, 133.8, 128.0, 120.6, 118.8, 118.4, 116.0, 114.3, 109.2, 108.8, 45.4, 32.4, 29.0, 24.2, 22.7, 13.9. HRMS (ESI): m/z calcd. for C₁₈H₂₂N⁺ [M-H]⁺ 252.1747; found 252.1752.

1,3-Diallyl-2-isopropyl-1*H***-indole (2j):** 47% (56.0 mg from **1j** 120.0 mg). $R_{\rm f} = 0.41$ (hexane: AcOEt = 20:1). Colorless oil. IR (neat) v cm⁻¹; 1469, 1416, 1362, 1189, 916, 742. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.52 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.14 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H), 7.07 (ddd, J = 8.0, 6.9, 1.2 Hz, 1H), 6.07-5.91 (m, 2H), 5.13 (ddt, $\underline{J} = 10.3$, 1.7, 1.7 Hz, 1H), 5.05 (ddt J = 17.2, 1.7, 1.7 Hz, 1H), 5.01 (ddt, J = 10.3, 1.7, 1.7 Hz, 1H), 4.86 (ddt, J = 17.2, 1.7, 1.7 Hz, 1H), 4.62 (ddd, J = 4.6, 1.7, 1.7 Hz, 2H), 3.61 (ddd, J = 5.7, 1.7, 1.7 Hz, 2H), 3.24 (sep, J = 7.1 Hz, 1H), 1.40 (d, J = 7.1 Hz, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 141.6, 138.0, 136.0, 133.9, 128.5, 120.8, 118.9, 118.2, 116.0, 114.4, 109.1, 107.9, 45.7, 29.0, 25.8, 22.2. HRMS (ESI): m/z calcd. for C₁₇H₂₀N⁺ [M-H]⁺ 238.1590; found 238.1597.

1,3-Dially1-5-methy1-2-pheny1-1*H***-indole (2k)**: 61% (87.0 mg from 1k 142.7 mg). $R_f = 0.31$ (hexane:AcOEt = 20:1). Yellow solid. Mp 66-68 °C. IR (KBr) v cm⁻¹; 1483, 1442, 1407, 1362, 1178, 761. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.48-7.40 (m, 6H), 7.21 (d, J = 8.3 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 6.03 (ddt, J = 16.7, 10.3, 5.7 Hz, 1H), 5.89 (ddt, J = 17.2, 10.3, 4.6 Hz, 1H), 5.12 (d, J = 10.3 Hz, 1H), 5.04 (dd, J = 16.7, 1.2 Hz, 1H), 5.01 (dd, J = 10.3, 1.2 Hz, 1H), 4.90 (dd, J = 17.2, 1.2 Hz, 1H), 4.58 (ddd, J = 4.6, 1.7, 1.7 Hz, 2H), 3.42 (d, J = 5.7 Hz, 2H), 2.48 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 138.1, 138.0, 135.2, 134.1, 131.9, 130.4, 128.6, 128.2, 128.0, 123.3, 119.0, 116.1, 114.5, 110.4, 109.8, 46.4, 29.2, 21.5 (note that two carbon peaks overlap with each other). HRMS (ESI): m/z calcd. for C₂₁H₂₀N⁺ [M-H]⁺ 286.1590; found 286.1583.

1,3-Diallyl-5,7-dimethyl-2-phenyl-1*H***-indole (2l**): 67% (99.4 mg from **1I** 148.9 mg). $R_{\rm f} = 0.33$ (hexane:AcOEt = 20:1). Yellow solid. Mp 48-49 °C. IR (KBr) v cm⁻¹; 1468, 1446, 1417, 1364, 1176, 756. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.58-7.48 (m, 5H), 7.38 (s, 1H), 6.92 (s, 1H), 6.12 (ddt, *J* = 17.2, 10.3, 5.7 Hz, 1H), 5.93 (ddt, *J* = 17.2, 10.3, 3.7 Hz, 1H), 5.15-5.10 (m, 3H), 4.84 (ddd, *J* = 3.7, 1.7, 1.7 Hz, 2H), 4.69 (d, *J* = 17.2 Hz, 1H), 3.48 (d, *J* = 5.7 Hz, 2H), 2.78 (s, 3H), 2.56 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 139.2, 137.9, 136.0, 133.9, 132.2, 130.6, 129.1, 128.7, 128.1, 128.0, 126.6, 120.7, 116.8, 115.2, 114.4, 111.1, 47.5, 29.1, 21.2, 19.5. HRMS (ESI): *m/z* calcd. for C₂₂H₂₄N⁺ [M+H]⁺ 302.1903; found 302.1899.

3-Allyl-1-methyl-2-phenyl-1*H***-indole** (**2m**): 49% (59.1 mg from **1m** 120.4 mg). $R_f = 0.29$ (hexane:AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 1469, 1442, 1428, 1363, 1155, 741. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.63 (d, J = 8.0 Hz, 1H), 7.51-7.46 (m, 2H), 7.45-7.38 (m, 3H),7.35 (d, J = 8.0 Hz, 1H), 7.26 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 7.15 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H), 6.02 (ddt, J = 16.6, 10.3, 5.9 Hz, 1H), 5.05 (ddt, J = 16.6, 1.7, 1.7 Hz, 1H), 5.00 (ddt, J = 10.3, 1.7, 1.7 Hz, 1H), 3.63 (s, 3H), 3.45 (ddt, J = 5.9, 1.7, 1.7 Hz, 2H). ¹³C-

NMR (125 MHz, CDCl₃) δ ppm; 138.1, 138.0, 137.3, 131.8, 130.5, 128.3, 128.0, 127.7, 121.7, 119.3, 119.2, 114.6, 110.6, 109.3, 30.9, 29.2. HRMS (ESI): m/z calcd. for C₁₈H₁₆N⁺ [M-H]⁺ 246.1277; found 246.1272.

2-(4-Methoxyphenyl)-1,3-bis(2-methylallyl)-1*H***-indole (2n): 79% (131.6 mg from 1n 166.2 mg). R_{\rm f} = 0.29 (hexane:AcOEt = 20:1). Yellow solid. Mp 68-69 °C. IR (KBr) v cm⁻¹; 1508, 1465, 1442, 1363, 1251, 1178, 1030, 742. ¹H-NMR (500 MHz, CDCl₃) \delta ppm; 7.62 (d,** *J* **= 8.0 Hz, 1H), 7.36 (d,** *J* **= 8.6 Hz, 2H), 7.29 (d,** *J* **= 8.0 Hz, 1H), 7.22 (dd,** *J* **= 8.0, 7.4 Hz, 1H), 7.14 (dd,** *J* **= 8.0, 7.4 Hz, 1H), 7.00 (d,** *J* **= 8.6 Hz, 2H), 4.85 (s, 1H), 4.79 (s, 1H), 4.69 (s, 1H), 4.52 (s, 2H), 4.49 (s, 1H), 3.89 (s, 3H), 3.40 (s, 2H), 1.75 (s, 3H), 1.63 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) \delta ppm; 159.4, 145.4, 141.5, 138.4, 136.7, 131.4, 128.3, 124.2, 121.4, 119.3, 119.2, 113.7, 111.1, 110.6, 110.5, 110.0, 55.2, 49.6, 33.3, 22.7, 20.0. HRMS (ESI): m/z calcd. for C₂₃H₂₄NO⁺ [M-H]⁺ 330.1852; found 330.1851.**

1-Allyl-2-(4-methoxyphenyl)-3-(2-methylallyl)-1H-indole (20)3-allyl-2-(4and methoxyphenyl)-1-(2-methylallyl)-1*H*-indole (20'): 58% (20:20' = 64:36, 111.0 mg from **1n** 190.0 mg). $R_{\rm f} = 0.29$ (hexane: AcOEt = 20:1). Yellow oil. IR (neat) v cm⁻¹; 1509, 1465, 1432, 1360, 1256, 1180, 1030, 746. ¹H-NMR (500 MHz, CDCl₃, 64:36 mixture of **20** and **20'**) δ ppm; 7.61 (d, J = 8.0 Hz, 0.36H), 7.60 (d, J = 7.6 Hz, 0.64H), 7.35-7.26 (m, 3H), 7.23-7.18 (m, 1H), 7.15-7.10 (m, 1H), 7.01-6.96 (m, 2H), 6.94 (ddt, J = 16.9, 10.0, 5.7 Hz, 0.36H), 5.90 (ddt, J = 17.2, 10.3, 4.6 Hz, 0.64H), 5.11 (ddt, J = 10.3, 1.2, 1.7 Hz, 0.64H), 5.05-4.99 (m, 0.72H), 4.87 (ddt, J = 17.2, 1.2, 1.7 Hz, 0.64H), 4.83 (s, 0.36H), 4.75 (s, 0.64H, 4.66 (s, 0.64H), 4.59 (ddd, J = 4.6, 2.3, 2.3 Hz, 1.28H), 4.48 (s, 1.08H), 3.87 (s, 3H), 3.43 (ddd, *J* = 5.7, 1.7, 1.7 Hz, 0.72H), 3.36 (s, 1.28H), 1.71 (s, 1.92H), 1.62 (s, 1.08H). ¹³C-NMR (125 MHz, CDCl₃, 64:36 mixture of 20 and 20') δ ppm; 159.4, 145.4, 141.4 (minor), 138.3 (minor), 138.1, 136.8 (minor), 136.6, 134.1, 131.6, 131.5 (minor), 128.3, 128.0 (minor), 124.10, 124.06 (minor), 121.5 (minor), 121.4, 119.4, 119.22 (minor), 119.19, 119.1 (minor), 116.1, 114.5 (minor), 113.7, 111.1 (minor), 110.7, 110.6, 110.4 (minor), 110.1 (minor), 109.9, 55.3, 49.6 (minor), 46.3, 33.3, 29.2 (minor), 22.7, 20.1 (minor) [note that four carbon peaks of 20' overlap with the peaks of 20]. HRMS (ESI): m/z calcd. for $C_{22}H_{22}NO^{+}$ [M-H]⁺ 316.1696; found 316.1691.

3-(But-3-en-2-yl)-2-(4-methoxyphenyl)-1-methyl-1*H***-indole (2p**) and **3-(but-2-en-1-yl)-2-(4-methoxyphenyl)-1-methyl-1***H***-indole (4p**): 61% (**2p**:*E*-**4p**:*Z*-**4p** = 73:14:13, 87.0 mg from **1p** 142.0 mg). $R_f = 0.25$ (hexane:AcOEt = 20:1). Yellow solid. Mp 105-107 °C. IR (KBr) v cm⁻¹; 1504, 1465, 1433, 1365, 1248, 1178, 1025, 745. ¹H-NMR (500 MHz, CDCl₃, 73:14:13 mixture of **2p**, *E*-**4p** and *Z*-**4p**) δ ppm; 7.70 (d, *J* = 8.0 Hz, 0.73H), 7.61 (dd, *J* = 8.0, 8.0 Hz, 0.27H), 7.35-7.28 (m, 3H), 7.22 (ddd, *J* = 8.0, 8.0, 1.2 Hz, 1H), 7.13 (dd, *J* = 7.4, 7.4 Hz, 0.27H), 7.09 (dd, *J* = 7.2, 7.2 Hz, 0.73H), 7.02 (d, *J* = 8.6 Hz, 2H), 6.21 (ddd, *J* = 17.5, 10.3, 5.2 Hz, 0.73H), 5.68-5.54 (m, 0.27H), 5.52-5.40 (m, 0.27H), 5.05 (ddd, *J* = 17.5, 1.7, 1.7 Hz, 0.73H), 5.00 (ddd, *J* = 10.3, 1.7, 1.7 Hz, 0.73H), 3.89 (s, 3H), 3.64-3.57 (m, 0.73H), 3.60 (s, 0.42H), 3.59 (s, 0.39H), 3.55 (s, 2.19H), 3.43 (d, *J* = 6.9 Hz, 0.27H), 3.35 (ddq, *J* = 5.7, 1.4, 1.5 Hz, 0.27H), 1.68 (dd, *J* = 7.2, 1.4 Hz, 0.39H), 1.63 (ddt, *J* = 7.3, 1.7, 1.5 Hz, 0.42H), 1.45 (d, *J* = 7.4 Hz, 2.19H). ¹³C-NMR (125 MHz, CDCl₃, **2p** in 73:14:13 mixture of **2p**, *E*-**4p** and *Z*-**4p**) δ ppm; 159.5, 143.3, 137.2, 137.1, 132.0, 126.2, 124.3, 121.2, 120.4, 118.8, 115.8, 113.7, 112.4, 109.4, 55.3, 34.9, 30.6, 20.2. HRMS (ESI): *m/z* calcd. for C₂₀H₂₀NO⁺ [M-H]⁺ 290.1539; found 290.1541.

2-(4-Methoxyphenyl)-1-(3-methylbut-2-en-1-yl)-3-(2-methylbut-3-en-2-yl)-1H-indole

(2q): 16% (28.7 mg from 1q 181.4 mg). $R_f = 0.29$ (hexane: AcOEt = 20:1). Yellow solid. Mp 103-104 °C. IR (KBr) v cm⁻¹; 1502, 1463, 1439, 1358, 1246, 1181, 1033, 746. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.86 (d, J = 8.0 Hz, 1H), 7.31-7.23 (m, 3H), 7.20 (dd, J = 8.0, 6.9 Hz, 1H), 7.08 (dd, J = 7.5, 6.9 Hz, 1H), 6.94 (d, J = 8.6 Hz, 2H), 6.16 (dd, J = 17.2, 10.9 Hz, 1H), 5.13 (t, J = 6.3 Hz, 1H), 5.04 (dd, J = 17.2, 1.2 Hz, 1H), 4.93 (dd, J = 10.9, 1.2 Hz, 1H), 4.36 (d, J = 6.3 Hz, 2H), 3.89 (s, 3H), 1.64 (s, 3H), 1.50 (s, 3H), 1.32 (s, 6H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 159.5, 149.4, 136.0, 135.9, 133.4, 132.9, 126.83, 126.77, 122.1, 121.1, 121.0, 118.6, 118.3, 113.0, 109.5, 109.3, 55.3, 41.5, 39.0, 29.7, 25.5, 17.7. HRMS (ESI): m/z calcd. for C₂₅H₂₈NO⁺ [M-H]⁺ 358.2165; found 358.2155.

2-(4-Methoxyphenyl)-1,3-bis(3-methylbut-2-en-1-yl)-1*H***-indole** (**4q**): 9% (17.0 mg from **1q** 181.4 mg). $R_f = 0.29$ (hexane: AcOEt = 20:1). Yellow solid. Mp 78-79 °C. IR (KBr) v cm⁻¹; 1505, 1466, 1442, 1359, 1249, 1176, 1034, 741. ¹H-NMR (500 MHz, CDCl₃) δ ppm; 7.60 (d, *J* = 8.0 Hz, 1H), 7.32-7.29 (m, 3H), 7.21 (dd, *J* = 8.0, 6.9 Hz, 1H), 7.12 (dd, *J* = 8.0, 6.9 Hz, 1H), 7.00 (d, *J* = 8.6 Hz, 2H), 5.32 (t, *J* = 6.9 Hz, 1H), 5.23 (t, *J* = 6.3 Hz, 1H), 4.57 (d, *J* = 6.3 Hz, 2H), 3.88 (s, 3H), 3.36 (d, *J* = 6.9 Hz, 2H), 1.67 (s, 6H), 1.66 (s, 3H), 1.58 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ ppm; 159.3, 137.1, 136.3, 133.8, 132.1, 130.2, 127.9, 124.49, 124.47, 121.32, 121.28, 119.1, 119.0, 113.7, 112.6, 109.8, 55.3, 42.3, 25.7, 25.5, 23.9, 17.84, 17.76. HRMS (ESI): *m/z* calcd. for C₂₅H₂₈NO⁺ [M-H]⁺ 358.2165; found 358.2165.

5. ¹H and ¹³C NMR Spectra of 1b-1q, 2a-2f, 2h-2q, 4p and 4q

¹H NMR (500 MHz, CDCl₃) of **1b**

¹³C NMR (125 MHz, CDCl₃) of **1b**

¹H NMR (500 MHz, CDCl₃) of 1c

5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0

¹³C NMR (125 MHz, CDCl₃) of 1c

S13

1 H NMR (500 MHz, CDCl₃) of 1d

^{13}C NMR (125 MHz, CDCl₃) of 1d

¹H NMR (500 MHz, CDCl₃) of 1e

¹³C NMR (125 MHz, CDCl₃) of **1e**

Enlarged view

132

126

1 H NMR (500 MHz, CDCl₃) of **1f**

^{13}C NMR (125 MHz, CDCl₃) of 1f

1 H NMR (500 MHz, CDCl₃) of **1g**

1 H NMR (500 MHz, CDCl₃) of **1h**

13 C NMR (125 MHz, CDCl₃) of **1h**

¹H NMR (500 MHz, CDCl₃) of 1i

¹³C NMR (125 MHz, CDCl₃) of 1i

Enlarged view

135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117

¹H NMR (500 MHz, CDCl₃) of 1j

¹³C NMR (125 MHz, CDCl₃) of 1j

Enlarged view

135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117

¹H NMR (500 MHz, CDCl₃) of 1k

¹³C NMR (125 MHz, CDCl₃) of 1k

¹H NMR (500 MHz, CDCl₃) of **11**

5.95 5.90 5.85 5.80 5.75 5.70 5.65 5.60 5.55 5.50 5.45 5.40 5.35 5.30 5.25 5.20 5.15 5.10 5.05

^{13}C NMR (125 MHz, CDCl₃) of 11

n n 131.0 130.5 137.5 137.0 135.5 135.0 134.5 134.0 133.5 133.0 132.5 132.0 131.5 130.0 129.5 129.0 128.5 128.0 127.5 136.5 136.0

1 H NMR (500 MHz, CDCl₃) of **1m**

¹³C NMR (125 MHz, CDCl₃) of 1m

136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117

1 H NMR (500 MHz, CDCl₃) of 1n

^{13}C NMR (125 MHz, CDCl₃) of 1n

¹H NMR (500 MHz, CDCl₃) of **10**

¹³C NMR (125 MHz, CDCl₃) of **10**

129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112

¹H NMR (500 MHz, CDCl₃) of **1p** (83:17 mixture of geometrical isomers)

¹³C NMR (125 MHz, CDCl₃) of **1p** (83:17 mixture of geometrical isomers)

Enlarged view

134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116

1 H NMR (500 MHz, CDCl₃) of 1q

¹³C NMR (125 MHz, CDCl₃) of 1q

¹H NMR (500 MHz, CDCl₃) of **2a**

^{13}C NMR (125 MHz, CDCl₃) of 2a

¹H NMR (500 MHz, CDCl₃) of **2b**

Enlarged view

^{13}C NMR (125 MHz, CDCl₃) of 2b

¹H NMR (500 MHz, CDCl₃) of **2c**

 ^{13}C NMR (125 MHz, CDCl₃) of 2c

1 H NMR (500 MHz, CDCl₃) of **2d**

S48

¹³C NMR (125 MHz, CDCl₃) of 2d

¹H NMR (500 MHz, CDCl₃) of 2e

¹³C NMR (125 MHz, CDCl₃) of **2e**

¹H NMR (500 MHz, CDCl₃) of **2f**

13 C NMR (125 MHz, CDCl₃) of **2f**

138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119

¹H NMR (500 MHz, CDCl₃) of **2h**

¹³C NMR (125 MHz, CDCl₃) of **2h**

138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119

¹H NMR (500 MHz, CDCl₃) of **2i**

¹³C NMR (125 MHz, CDCl₃) of 2i

¹H NMR (500 MHz, CDCl₃) of **2j**

¹³C NMR (125 MHz, CDCl₃) of **2j**

¹H NMR (500 MHz, CDCl₃) of 2k

^{13}C NMR (125 MHz, CDCl₃) of 2k

138 136 134 132 130 128 126 124 122 120 118 116 114 112 110

¹H NMR (500 MHz, CDCl₃) of **2l**

¹³C NMR (125 MHz, CDCl₃) of **2l**

139.5 139.0 138.5 138.0 137.5 137.0 136.5 136.0 135.5 135.0 134.5 134.0 133.5 133.0 132.5 132.0 131.5 131.0 130.5 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5

¹H NMR (500 MHz, CDCl₃) of **2m**

6.05 6.00 5.95 5.90 5.85 5.80 5.75 5.70 5.65 5.60 5.55 5.50 5.45 5.40 5.35 5.30 5.25 5.20 5.15 5.10 5.05 5.00 4.95 4.90

^{13}C NMR (125 MHz, CDCl₃) of 2m

1 H NMR (500 MHz, CDCl₃) of **2n**

¹³C NMR (125 MHz, CDCl₃) of **2n**

¹H NMR (500 MHz, CDCl₃) of **20** and **20'** (**20:20'** = 64:36)

¹³C NMR (125 MHz, CDCl₃) of **20** and **20'** (**20:20'** = 64:36)

Enlarged view

¹H NMR (500 MHz, CDCl₃) of **2p**, *E*-**4p** and *Z*-**4p** (**2p**:*E*-**4p**:*Z*-**4p** = 73:14:13)

^{13}C NMR (125 MHz, CDCl₃) of 2q

Enlarged view

1 H NMR (500 MHz, CDCl₃) of 4q

13 C NMR (125 MHz, CDCl₃) of 4q

130.5 130.0 129.5 129.0 128.5 128.0 127.5 127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5 121.0 120.5 120.0 119.5 119.0 118.5