Supporting Information

Enantioselective synthesis of chiral sulfones by hydrogen-bonding/organophotoredox co-catalyzed asymmetric sulfonylation

Jian-Qiang Chen,^a Qiangwei Li,^a Wenlin Xie^b and Jie Wu^{*a,c,d}

^a School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.

^b School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China. ^c State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences,

Shanghai 200032, China. ^d School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.

Corresponding author: jie_wu@fudan.edu.cn

Table of Contents

1.	General Information	S2
2.	General experimental procedure	S2
3.	Substrate scopes with limitations	S3
4.	Devices for the photocatalytic reactions	S5
5.	Mechanistic Studies	S5
6.	Characterization of new substrates and all products	S6
7.	NMR spectra of compounds	S22

1. General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thinlayer chromatography plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200–300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM-400 (400 MHz). The spectra were recorded in deuterochloroform (CDCl₃) as solvent at room temperature, ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.0$ ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet, br = broad), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. Electrospray–ionisation HRMS data were acquired on a Q–TOF mass spectrometer (Waters SYNAPT G2-Si) LC-MS TOF.

2. General experimental procedure

To an oven-dried flask was charged with (E)- α , β -unsaturated *N*-acylpyrazole **1** (0.1 mmol), DABCO·(SO₂)₂ (0.12 mmol), 4-substituted Hantzsch esters **2** (0.12 mmol), 4CzIPN (5 mol %), and **C1** (10 mol %) under nitrogen atmosphere. Then an-hydrous CH₃CN (2 mL) was added to the flask. The mixture was placed around a 36

W blue LEDs and stirred under blue light irradiation for 24 hours at 20 °C. After completion of reaction as as monitored by TLC analysis, the solvent was evaporated and the residue was purified directly by flash column chromatography on silica gel (petroleum ether /ethyl acetate/dichloromethane = 6:1:1) to give the corresponding product **3**.

To an oven-dried flask was charged with **4** (0.1 mmol), DABCO·(SO₂)₂ (0.12 mmol), 4-substituted Hantzsch esters **2** (0.15 mmol), Acr-Mes·ClO₄ (5 mol %), and **C7** (2 mol %) under nitrogen atmosphere. Then anhydrous CH₃Cl₂ (2 mL) was added to the flask. The mixture was placed around a 36 W blue LEDs and stirred under blue light irradiation for 48 hours at 10 °C. After completion of reaction as as monitored by TLC analysis, the solvent was evaporated and the residue was purified directly by flash column chromatography on silica gel (petroleum ether /ethyl acetate / dichloromethane = 6:1:1) to give the corresponding product **5**.

a, Transformation of 3b

To a solution of **3b** (91% ee, 0.2 mmol) in THF (2.0 mL) was added *p*-anisidine (1.0 mmol). The reaction mixture was stirred at 80 °C for 18 h, then cooled down to room temperature and concentrated to dryness. The residue was purified by flash silica gel column chromatography (n-hexane/EtOAc (v/v): 2/1) to afford **3b'** (90% yield, 91% ee).

3. Substrate scopes with limitations

DABCO⁻(SO₂)₂ 4CzIPN (5 mol %) EtO₂C CO₂Et **C1** (10 mol %) MeCN, 20 °C, 24 h Ме Me Me N` H blue LEDs M Ъ 2 Ъ 1 3 Me ⊾Me Me Me .CO₂Et EtO₂C .CO2Et EtO2C `Ме EtO₂C CO2Et EtO2C EtO₂C CO₂Et CO₂Et Me Me Мe Ме Me Me N Me Ме Me NH 'n No reaction No reaction No reaction No reaction No reaction

Table S1 Substrate scope of Hantzsch esters

Table S2 Substrate scope of α , β -unsaturated carbonyl compounds

Table S3 Substrate scope of "SO2"

"SO ₂ "	+ EtO ₂ C Me N Me	C7 (2 mol%) Acr-Mes·ClO₄ (5 mol%) DCM, 10 °C, 48 h blue LEDs	
4a	2b		5a
Entry ^a	"SO ₂ "	yield $(\%)^b$	ee $(\%)^c$
1	$K_2S_2O_5$	14	13
2	$Na_2S_2O_5$	9	7
3	NaHSO ₃	11	0

^{*a*} Reaction conditions: chalcone **4a** (0.1 mmol), 4-cyclopentyl substituted Hantzsch ester **2b** (0.15 mmol), "SO₂" (0.12 mmol), Acr-Mes·ClO₄ (5 mol %), **C7** (2 mol %), DCM (2.0 mL), blue LEDs, 10 °C, 48 h, N₂ atmosphere, ^{*b*} Isolated yields. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.

4. Devices for the photocatalytic reactions

Figure S1 Devices for the photocatalytic reactions

5. Mechanistic study

An oven-dried flask was charged with (*E*)-chalcone **4a** (0.1 mmol, 1.0 equiv.), DABCO·(SO₂)₂ (0.12 mmol, 1.2 equiv.), 4-substituted Hantzsch esters **2b** (0.15 mmol, 1.5 equiv.), Acr-Mes·ClO₄ (5 mol %), **C7** (2 mol %) and TEMPO (0.3 mmol, 3.0 equiv.) under nitrogen atmosphere. Then a mixture of anhydrous CH₂Cl₂ (2 mL) was added to the flask. The mixture was stirred under 36 W blue light irradiation for 48 hours at 10 °C. As a result, significant inhibition of the reactivity was observed, and the corresponding trapping product **3** was detected by HRMS.

HRMS (ESI) calcd for C₁₄H₂₈NO⁺ (M+H+): 226.2171, found: 226.2173.

6. Characterization of new substrates and all products

(S)-3-(cyclohexylsulfonyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)butan-1-one (3a)

 $[\alpha]_{D}^{20} = 30.1^{\circ} (c = 0.10, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) = 16.8, 8.8 Hz, 1H), 3.07$

(tt, J = 12.1, 3.3 Hz, 1H), 2.53 (s, 3H), 2.27–2.11 (m, 5H), 1.95 (d, J = 12.7 Hz, 2H), 1.74 (d, J = 10.6 Hz, 1H), 1.68–1.55 (m, 2H), 1.46 (d, J = 6.9 Hz, 3H), 1.30 (dd, J = 20.8, 10.8 Hz, 3H); ¹³**C NMR (100 MHz, CDCl**₃) δ 170.3, 152.7, 144.2, 111.6, 58.2, 49.8, 35.6, 25.1, 24.9, 24.6, 14.4, 13.8, 13.6. HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 12.411$ min (major), $t_{\rm R} = 21.059$ min (minor).

(S)-3-(cyclopentylsulfonyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)butan-1-one (3b)

 $[\alpha]_D{}^{20} = -7.9^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.98 (s, 1H), 3.93 – 3.69 (m, 2H), 3.63 – 3.47

(m, 1H), 3.32 (dd, J = 17.2, 8.8 Hz, 1H), 2.54 (s, 3H), 2.23 (s, 3H), 2.18 – 1.99 (m, 4H), 1.89 – 1.78 (m, 2H), 1.75 –1.62 (m, 2H), 1.48 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 152.7, 144.2, 111.6, 58.5, 52.1, 35.6, 27.0, 26.7, 26.1, 26.0, 14.4, 14.0, 13.8. HPLC analysis: CHIRALPAK AD-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 8.889$ min (major), $t_{\rm R} = 10.148$ min (minor).

(S)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-((tetrahydro-2H-pyran-4-yl)sulfonyl)butan-1-one (3c)

0 II		(
N		-
1=	0, 0	

 $[\alpha]_D{}^{20} = -6.6^\circ$ (c = 0.10, CHCl₃);¹H NMR (400 MHz, CDCl₃) δ 6.00 (s, 1H), 4.14 (d, *J* = 11.1 Hz, 2H), 3.84 (dd, *J* = 17.1, 3.2 Hz, 2H), 3.51 - 3.38 (m, 2H), 3.37 -

3.19 (m, 2H), 2.53 (s, 3H), 2.22 (s, 3H), 2.11 – 1.93 (m, 4H), 1.48 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 152.8, 144.2, 111.7, 66.5, 55.5, 50.0, 35.8, 24.9, 14.4, 13.8, 13.6; HRMS (ESI) m/z Calcd for C₁₄H₂₂N₂O₄NaS [M+Na]⁺: 337.1198, Found: 337.1190; HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R}$ = 19.553 min (major), $t_{\rm R}$ = 32.075 min (minor).

PDA C	h1 254nm				PDA Ch1 254nm				
Peak#	Ret. Time	Area	Height	Aera%	Peak#	Ret. Time	Area	Height	Aera%
1	19.553	27041663	301448	93.565	1	20.524	484736	5801	50.753
2	32.075	1859742	16949	6.435	2	32.759	470348	4977	49.247

(S)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-(isopropylsulfonyl)butan-1-one (3d)

 $[\alpha]_D{}^{20} = -3.8^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.99 (s, 1H), 3.96 – 3.71 (m, 2H), 3.44 – 3.23 (m, 2H), 2.54 (s, 3H), 2.23 (s, 3H), 1.56 – 1.32 (m, 9H); ¹³C

NMR (100 MHz, CDCl₃) δ 170.3, 152.7, 144.2, 111.6, 50.1, 49.9, 35.7, 15.3, 15.0, 14.4, 13.8, 13.8. HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R}$ = 8.531 min (major), $t_{\rm R}$ = 10.996 min (minor).

(S)-1-(3,5-dimethyl-1H-pyrazol-1-yl)-3-(pentan-3-ylsulfonyl)butan-1-one (3e)

 $[\alpha]_D{}^{20} = +5.6^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.99 (s, 1H), 3.93–3.75 (m, 2H), 3.28 (dd, *J* = 17.0, 8.7 Hz, 1H), 3.01–2.81 (m, 1H), 2.54 (s, 3H), 2.23

(s, 3H), 2.07–1.94 (m, 2H), 1.88–1.83 (m, 2H), 1.46 (d, J = 6.8 Hz, 3H), 1.10 (t, J = 7.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 152.7, 144.2, 111.6, 61.4, 51.0, 35.7, 19.9, 19.6, 14.4, 13.9, 13.8, 11.1, 11.0; HRMS (ESI) m/z Calcd for C₁₄H₂₄N₂O₃NaS [M+Na]⁺: 323.1405, Found: 323.1400; HPLC analysis: CHI-RALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 240 nm, 30 °C, $t_{\rm R} = 13.040$ min (major), $t_{\rm R} = 16.959$ min (minor).

PDA Ch1 254nm							PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Aera%		Peak#	Ret. Time	Area	Height	Aera%		
1	6.814	64935084	1430495	89.793		1	6.772	730802	31652	50.144		
2	9.834	7381049	126090	10.207		2	9.774	726595	22863	49.856		

(R) - 3 - (cyclopentylsulfonyl) - 1 - (3, 5 - dimethyl - 1H - pyrazol - 1 - yl) - 3 - (tetrahydro - 2H - yl) - 3 - (tetrahydro - 2

pyran-4-yl)propan-1-one (3f)

 $[\alpha]_D{}^{20} = +9.9^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.00 (s, 1H), 3.99 (dd, J = 11.0, 3.3 Hz, 2H), 3.88 (dd, J = 18.9, 6.9 Hz, 1H), 3.77 (dt, J = 7.0, 3.7 Hz, 1H), 3.57 – 3.39 (m, 4H), 2.65–2.56 (m, 1H), 2.53 (s, 3H),

2.24 (s, 3H), 2.16 (dd, J = 13.5, 7.1 Hz, 1H), 2.12 – 2.02 (m, 2H), 1.95 (d, J = 13.6 Hz, 2H), 1.88–1.76 (m, 2H), 1.72–1.60 (m, 3H), 1.55 (dd, J = 9.4, 3.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 152.8, 144.2, 111.7, 67.9, 67.6, 60.9, 59.5, 34.6, 31.2, 30.9, 28.3, 27.5, 26.2, 26.1, 26.1, 14.5, 13.8. HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_R = 8.637$ min (major), $t_R = 11.014$ min (minor).

(R)-3-cyclopentyl-3-(cyclopentylsulfonyl)-1-(3,5-dimethyl-1H-pyrazol-1-yl)propan-1-one (3g)

 $[\alpha]_{D}^{20} = +4.8^{\circ}$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.98 (s, 1H), 4.09–3.77 (m, 2H), 3.62–3.40 (m, 1H), 3.28 (dd, J = 21.2, 6.4 Hz, 1H), 2.66–2.41 (m, 4H), 2.23 (s, 3H), 2.13 (dd, J = 13.7, 6.9 Hz, 2H), 2.06–1.89

(m, 4H), 1.87–1.74 (m, 2H), 1.70–1.58 (m, 6H), 1.40 (dd, J = 14.7, 7.4 Hz, 2H); ¹³C **NMR (100 MHz, CDCl₃)** δ 171.2, 152.6, 144.2, 111.6, 60.5, 59.4, 38.9, 32.1, 31.5, 28.9, 27.0, 26.8, 26.1, 25.0, 24.9, 14.5, 13.8; HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 9.524$ min (minor), $t_{\rm R} = 11.098$ min (major).

(S)-3-(cyclopentylsulfonyl)-1-(3,5-diphenyl-1H-pyrazol-1-yl)butan-1-one (3h)

10.821

2

373600

11292

94.809

11.098

 $[\alpha]_D{}^{20} = +5.0^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.0 Hz, 2H), 7.44 (dd, J = 10.0, 7.0 Hz, 8H), 6.75 (s, 1H), 4.04 (dd, J = 17.7, 3.8 Hz,

33709432

919312

50.389

1H), 3.76 (ddd, J = 10.6, 6.8, 3.9 Hz, 1H), 3.66–3.40 (m, 2H), 2.24–1.92 (m, 4H), 1.83 (d, J = 2.1 Hz, 2H), 1.67 (dd, J = 12.3, 5.9 Hz, 2H), 1.49 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 154.1, 147.6, 131.3, 130.7, 129.5, 129.1, 129.0, 128.9, 128.0, 126.4, 110.3, 58.5, 52.1, 35.6, 27.2, 26.4, 26.1, 26.0, 14.3; HRMS (ESI) calcd for C₂₄H₂₆N₂O₃NaS [M+Na]⁺: 445.1562, found: 445.1555. HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 13.818$ min (minor), $t_{\rm R} = 19.383$ min (major).

PDA C	h1 254nm					PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Aera%]	Peak#	Ret. Time	Area	Height	Aera9
1	13.818	34239	979	2.737	1	1	13.973	486596	11432	50.32
2	19.383	1216569	18062	97.263	1	2	19.661	480346	6647	49.67

(S)-3-(cyclopentylsulfonyl)-1-(1H-pyrazol-1-yl)butan-1-one (3i)

 $[\alpha]_D{}^{20} = -4.5^\circ$ (c = 0.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 2.8 Hz, 1H), 7.74 (d, J = 0.8 Hz, 1H), 6.48 (dd, J = 2.8, 0.8 Hz, 1H), 3.91 (dd, J = 17.4, 4.5 Hz,

1H), 3.85–3.75 (m, 1H), 3.62–3.51 (m, 1H), 3.35 (dd, J = 17.4, 8.7 Hz, 1H), 2.20– 1.98 (m, 4H), 1.90–1.78 (m, 2H), 1.73–1.62 (m, 2H), 1.50 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 144.5, 128.4, 110.2, 58.6, 52.0, 34.3, 27.1, 26.5, 26.0, 26.0, 14.1; HRMS (ESI) calcd for C₁₂H₁₈N₂O₃NaS [M+Na]⁺: 293.0936, found: 293.0938. HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 70:30, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 15.588$ min (minor), $t_{\rm R} = 30.086$ min (major).

(S)-3-(cyclopentylsulfonyl)-1-(furan-2-yl)butan-1-one (3j)

 $[\alpha]_D{}^{20} = -21.1^\circ$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 1.0 Hz, 1H), 7.28 (d, J = 3.4 Hz, 1H), 6.58 (dd, J = 3.6, 1.0 Hz, 1H), 3.85–3.75 (m, 1H), 3.62–3.47

(m, 2H), 3.07 (dd, J = 17.6, 9.0 Hz, 1H), 2.24–2.12 (m, 1H), 2.21–1.96 (m, 3H), 1.91– 1.77 (m, 2H), 1.71–1.59 (m, 2H), 1.44 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 152.0, 147.0, 118.1, 112.5, 58.4, 51.2, 37.2, 27.3, 26.2, 26.0, 25.9, 14.3; HRMS (ESI) calcd for C₁₃H₁₈O₄NaS [M+Na]⁺: 293.0823, found: 293.0825.

HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R}$ = 10.896 min (major), $t_{\rm R}$ = 13.624 min (minor).

PDA C	h1 254nm				PDA Ch1 254nm					
Peak#	Ret. Time	Area	Height	Aera%	Peak#	Ret. Time	Area	Height	Aera%	
1	10.896	30037868	1604958	93.056	1	10.950	24474997	1411339	48.877	
2	13.624	2241544	110050	6.944	2	13.399	25599707	982935	51.123	

(S)-3-(cyclopentylsulfonyl)-1,3-diphenylpropan-1-one (5a)

Ph Ph

 $[\alpha]_D^{20} = -47.9^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.89 (m, 2H), 7.60–7.51 (m,3H), 7.44 (t, J = 7.7 Hz, 2H), 7.41–7.31 (m, 3H), 4.96 (dd, J = 9.6, 3.3 Hz, 1H), 4.08

(dd, J = 18.0, 3.3 Hz, 1H), 3.83 (dd, J = 18.0, 9.7 Hz, 1H), 3.15–2.96 (m, 1H), 2.19– 1.90 (m, 3H), 1.85–1.65 (m, 3H), 1.63 – 1.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 136.2, 133.7, 133.6, 129.6, 129.1, 129.0, 128.7, 128.2, 77.4, 77.1, 76.8, 62.1, 58.5, 37.1, 28.0, 26.1, 26.1, 25.6; HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_R = 13.085$ min (major), $t_R = 17.048$ min (minor).

	PDA Ch1 254nm												
ĺ	Peak#	Ret. Time	Area	Height	Aera%		Peak#	Ret. Time	Area	Height	Aera%		
Ì	1	13.085	1290436	34154	95.766		1	14.038	992575	23590	50.344		
Ì	2	17.048	57052	1422	4.234		2	18.199	978993	19044	49.656		

(S)-3-(cyclohexylsulfonyl)-1,3-diphenylpropan-1-one (5b)

Ph S

 $[\alpha]_D{}^{20} = -3.3^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.4 Hz, 2H), 7.59–7.53 (m, 3H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.38 (d, *J* = 7.5 Hz, 3H), 5.02 (dd, *J* = 9.5, 3.2 Hz,

1H), 4.13–3.97 (m, 3H), 3.83 (dd, J = 18.0, 9.5 Hz, 1H), 3.22 (dt, J = 7.3, 5.7 Hz, 2H), 2.90–2.85 (m, 1H), 2.02–1.85 (m, 3H), 1.76 (dd, J = 13.1, 1.9 Hz, 1H).; ¹³C NMR (100 MHz, CDCl₃) δ 195.0, 136.0, 133.8, 133.2, 129.5, 129.3, 129.2, 128.8, 128.2, 66.6, 66.0, 60.6, 55.4, 37.3, 26.3, 23.5; HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 21.871$ min (major), $t_{\rm R} = 26.115$ min (minor).

PDA C	<u>n1 254nm</u>				PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Aera%	Peak#	Ret. Time	Area	Height	Aera%
1	21.871	797664	25182	85.886	1	20.581	646956	21957	50.183
2	26.115	131081	3634	14.114	2	24.659	642239	18489	49.817

(S)-3-(isopropylsulfonyl)-1,3-diphenylpropan-1-one (5c)

Ph $[\alpha]_D{}^{20} = -28.1^{\circ} (c = 0.10, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta$ 7.94 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 8.0 Hz, 3H), 7.45 (t, J = 7.7 Hz, 2H), 7.41–7.31 (m, 3H), 5.07 (dd, J = 9.7, 3.1 Hz, 1H), 4.07

(dd, J = 17.9, 3.1 Hz, 1H), 3.84 (dd, J = 17.9, 9.7 Hz, 1H), 2.87 (dt, J = 13.7, 6.8 Hz, 1H), 1.37 (d, J = 6.7 Hz, 3H), 1.27 (d, J = 7.0 Hz, 3H).; ¹³C NMR (100 MHz, CDCl₃) δ 195.2, 136.1, 133.7, 133.5, 129.5, 129.1, 129.0, 128.7, 128.2, 60.3, 50.1, 37.4, 16.6, 13.7; HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 12.216$ min (minor), $t_{\rm R} = 12.961$ min (major).

(R)-3-(cyclopentylsulfonyl)-1-phenylbutan-1-one (5d)

 $[\alpha]_{D}^{20} = +11.9^{\circ} (c = 0.10, CHCl_3); ^{1}H NMR (400 MHz, CDCl_3)$ $\delta 8.02 - 7.96 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 3.89-3.82 (m, 1H), 3.76 (dd, J = 17.9, 3.4 Hz, 1H), 3.59-3.48 (m, 1H), 3.20 (dd, J = 17.9, 9.1 Hz, 1H), 2.20 (dd, J = 13.4, 7.8 Hz, 1H), 2.10-1.97 (m, 3H), 1.88-1.78 (m, 2H), 1.73-1.62 (m, 2H), 1.46 (d, J = 6.8 Hz, 3H); 1^{3}C NMR (100 MHz, CDCl_3) \delta 196.1, 136.2, 133.8, 128.8, 128.2, 58.4, 51.7, 37.4, 27.4, 26.2, 26.1, 26.0, 14.6; HRMS (ESI) calcd for C₁₅H₂₀O₃NaS [M+Na]⁺: 303.1031, found: 303.1032; HPLC analysis: CHIRALPAK IA (Hexane/$ *i* $-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, <math>t_{R} = 7.887$ min (minor), $t_{R} = 9.380$ min (major).

(S)-3-(cyclopentylsulfonyl)-3-cyclopropyl-1-phenylpropan-1-one (5e)

 $[\alpha]_D^{20} = +9.8^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.93 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 3.93–3.81 (m, 1H), 3.80–3.67 (m, 1H), 3.35–3.22 (m, ď ò 2H), 2.25 (td, J = 14.2, 7.1 Hz, 1H), 2.14–2.00 (m, 2H), 2.01–1.90 (m, 1H), 1.91–1.75 (m, 2H), 1.74–1.56 (m, 2H), 1.21 (ddd, *J* = 10.3, 6.7, 4.2 Hz, 1H), 0.90–0.79 (m, 1H), 0.68 - 0.51 (m, 2H), 0.47 - 0.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 136.4, 133.6, 128.8, 128.3, 60.7, 59.2, 36.7, 28.0, 26.2, 26.2, 25.9, 12.0, 6.5, 3.7; HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R}$ = 7.583 min (minor), $t_{\rm R}$ = 9.393 min (major).

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Aera%
1	7.583	137049	12808	7.880
2	9.393	1602170	121683	92.120

<u>PDA C</u>	2DA Ch1 254nm									
Peak#	Ret. Time	Area	Height	Aera%						
1	7.592	437220	40928	49.873						
2	9.406	439450	34173	50.127						

(S)-3-(cyclopentylsulfonyl)-1-phenyl-3-(tetrahydro-2H-pyran-4-yl)propan-1-one (5f) $[\alpha]_D^{20} = -9.4^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.5 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 3.98 (dd, J = 6.7, 3.4 Hz, 3H), 3.77 (dd, J = 19.0, ď δ

6.7 Hz, 1H), 3.50–3.36 (m, 3H), 3.25 (dd, *J* = 19.0, 3.9 Hz, 1H),

2.64–2.58 (m, 1H), 2.17–2.04 (m, 3H), 1.94 (t, J = 10.7 Hz, 2H), 1.86–1.74 (m, 2H), 1.70–1.40 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 135.9, 133.9, 128.9, 128.3, 67.9, 67.6, 61.1, 58.7, 34.4, 33.8, 30.9, 28.4, 27.5, 26.2, 26.1, 26.0; HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R}$ = 9.289 min (major), $t_{\rm R}$ = 13.464 min (minor).

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Aera%
1	9.289	1244536	43717	89.944
2	13.464	139146	3649	10.056

PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Aera%
1	9.240	16408297	522227	50.208
2	13.353	16272071	374383	49.792

(R)-3-(cyclohexylsulfonyl)-1-phenylbutan-1-one (5g)

 $[\alpha]_{D}^{20} = +7.3^{\circ} (c = 0.10, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3)$ $\delta 8.07-7.92 (m, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 3.95-3.90 (m, 1H), 3.72 (dd, J = 18.0, 3.2 Hz, 1H),$ 3.22 (dd, J = 18.0, 9.2 Hz, 1H), 3.03 (tt, J = 12.1, 3.4 Hz, 1H), 2.17 (dd, J = 39.1, 12.8 Hz, 2H), 1.96 (dd, J = 15.4, 7.4 Hz, 2H), 1.77-1.55 (m, 3H), 1.43 (d, J = 6.8 Hz, 3H), $1.36-1.22 (m, 3H); {}^{13}C NMR (100 MHz, CDCl_3) \delta 196.1, 136.2, 133.8, 128.8, 128.2,$ 58.2, 49.5, 37.2, 25.6, 25.1, 25.1, 25.1, 23.9, 14.5; HRMS (ESI) calcd forC₁₆H₂₂O₃NaS [M+Na]⁺: 317.1187, found: 317.1192. HPLC analysis: CHIRALPAKIA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $<math>t_R = 7.558 \min (minor), t_R = 8.480 \min (major).$

PDA Ch1 254nm						PDA Ch1 254nm				
Peak#	Ret. Time	Area	Height	Aera%		Peak#	Ret. Time	Area	Height	Aera%
1	7.558	65459	6359	5.844		1	7.529	25922092	2110443	48.538
2	8.480	1054689	90507	94.156		2	8.415	27483541	1905274	51.462

(S)-3-(4-(tert-butyl)phenyl)-3-(cyclopentylsulfonyl)-1-phenylpropan-1-one (5h)

 $[\alpha]_{D}^{20} = -65.9^{\circ}$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.5 Hz, 2H), 7.55 (t, J = 7.4 Hz, 1H), 7.49–7.41 (m, 4H), 7.37 (d, J = 8.3 Hz, 2H), 4.96 (dd, J = 9.4, 3.3 Hz, 1H), 4.07 (dd, J = 18.0, 3.3 Hz, 1H), 3.81 (dd, J = 18.0, 9.5 Hz, 1H), 3.10 (dd, J = 11.4, 4.2 Hz, 1H), 2.20–1.90 (m, 3H), 1.88–1.67

(m, 3H), 1.66–1.48 (m, 2H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 152.0, 136.2, 133.6, 130.4, 129.1, 128.7, 128.2, 126.0, 61.5, 58.2, 37.0, 34.6, 31.2,

28.0, 26.2, 26.1, 25.5; HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R}$ = 8.438 min (major), $t_{\rm R}$ = 11.885 min (minor).

(S)-3-(cyclopentylsulfonyl)-1-phenyl-3-(4-(trifluoromethyl)phenyl)propan-1-one (5i)

Ph CF3

 $[\alpha]_{D}^{20} = -10.3^{\circ}$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 7.4 Hz, 2H), 7.71 (d, J = 8.2 Hz, 2H), 7.64 (d, J = 8.3 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 5.01 (dd, J = 9.9, 3.2 Hz, 1H), 4.12 (dd, J = 18.1, 3.2 Hz, 1H), 3.83 (dd, J = 18.1, 9.9 Hz, 1H), 3.06 (t, J = 18.1, 9.9 Hz, 1H), 9.9 Hz, 1H), 9.9

= 7.9 Hz, 1H), 2.10 (dt, J = 19.8, 6.4 Hz, 2H), 1.96 (d, J = 8.3 Hz, 1H), 1.88–1.71 (m, 3H), 1.67–1.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 137.7, 135.9, 133.9, 131.3, 131.0, 130.1, 128.8, 128.2, 126.0, 126.0, 125.1, 122.4, 61.6, 58.8, 37.2, 28.0, 26.1, 26.0, 25.6; HPLC analysis: CHIRALPAK AS-H (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 9.324$ min (major), $t_{\rm R} = 11.678$ min (minor).

DA Ch1 254nm					. PD	DA CI	h1 254nm			
eak#	Ret. Time	Area	Height	Aera%	Pe	ak#	Ret. Time	Area	Height	Aera%
1	9.324	869132	23774	93.127		1	9.536	17715041	465887	49.816
2	11.678	64145	1648	6.873		2	11.968	17845892	398496	50.184

(S)-3-(cyclopentylsulfonyl)-3-phenyl-1-(thiophen-3-yl)propan-1-one (5j)

$$[\alpha]_{D}^{20} = -45.1^{\circ} (c = 0.10, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.96 (d, J = 7.6 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.7 Hz, 2H), 7.32 (d, J = 5.1 Hz, 1H), 7.00 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 4.05 (dd, J = 4.8, 3.9 Hz, 1H), 5.26 (dd, J = 9.7, 3.2 Hz, 1H), 5.26 (d$$

= 17.8, 3.3 Hz, 1H), 3.82 (dd, J = 17.8, 9.7 Hz, 1H), 3.27 (t, J = 7.8 Hz, 1H), 2.17– 1.97 (m, 3H), 1.89–1.72 (m, 3H), 1.69–1.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 136.1, 135.3, 133.8, 128.8, 128.2, 127.3, 127.1, 58.1, 57.6, 38.0, 28.2, 26.1, 26.1, 25.5; HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 13.506$ min (major), $t_{\rm R} = 14.712$ min (minor).

PDA Ch1 254nm					PD	DA CI	h1 254nm			
Peak#	Ret. Time	Area	Height	Aera%	Pe	eak#	Ret. Time	Area	Height	Aera%
1	13.506	1319279	69238	88.735		1	12.874	2976074	151565	50.443
2	14.712	167488	7950	11.265		2	15.551	2923850	127887	49.557

(S)-3-(cyclopentylsulfonyl)-1,3-bis(4-fluorophenyl)propan-1-one (5k)

F F F $[\alpha]_{D}^{20} = -39.8^{\circ}$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.91 (m, 2H), 7.54 (dd, J = 8.6, 5.3 Hz, 2H), 7.10 (dt, J = 21.3, 8.6 Hz, 4H), 4.93 (dd, J = 9.7, 3.3 Hz, 1H), 4.05 (dd, J = 17.9, 3.3 Hz, 1H), 3.73 (dd, J = 17.9, 9.7 Hz, 1H), 3.08 (dd, J = 11.5, 4.2 Hz, 1H),

2.15–1.99 (m, 2H), 1.98–1.93 (m, 1H), 1.86–1.68 (m, 3H), 1.64–1.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 193.6, 167.4, 164.8, 164.3, 161.8, 132.5, 132.5, 131.4, 131.3, 130.9, 130.8, 129.4, 129.3, 116.3, 116.1, 115.8, 61.2, 58.5, 37.1, 27.9, 26.1, 26.0, 25.6; HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate =

1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R}$ = 13.897 min (major), $t_{\rm R}$ = 15.322 min (minor).

1		A	00/:*		5.127	PDA Mu	lti 1 254nn	n,4nm
150-				/	<u> </u>			
100-								
50-								
0								
13.0	13.5 14.0	14.5	15.0	15.5 16.0	16.5	17.0	17.5	18.0

PDA Ch1 254nm Peak# Ret_Time

Peak#	Ret. Time	Area	Height	Aera%
1	13.897	2025819	103785	91.678
2	15.322	183900	8344	8.322

ó``o

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Aera%			
1	14.700	3884146	183079	49.913			
2	16.127	3897634	166206	50.087			

(S)-1,3-bis(4-chlorophenyl)-3-(cyclopentylsulfonyl)propan-1-one (5l)

 $[\alpha]_{D}^{20} = -69.3^{\circ}$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 4.89 (dd, J = 9.7, 3.0 Hz, 1H), 4.04 (dd, J = 18.0, 3.1 Hz, 1H), 3.72 (dd, J = 18.0, 9.8 Hz, 1H), 3.15 – 3.00 (m,

1H), 2.07 (dd, J = 14.9, 7.6 Hz, 2H), 1.94 (dd, J = 13.4, 5.4 Hz, 1H), 1.77 (dd, J = 8.0, 3.9 Hz, 3H), 1.66–1.49 (m, 2H); ¹³**C NMR (100 MHz, CDCl**₃) δ 193.9, 140.4, 135.2, 134.3, 132.0, 130.8, 129.6, 129.4, 129.1, 61.3, 58.6, 37.1, 27.9, 26.1, 26.0, 25.6; HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_{\rm R} = 15.566$ min (major), $t_{\rm R} = 20.559$ min (minor).

(S)-3-(cyclopentylsulfonyl)-1,3-di-p-tolylpropan-1-one (5m)

 $[\alpha]_D{}^{20} = -54.9^\circ$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.27–7.20 (m, 2H), 7.16 (d, J = 7.9 Hz, 2H), 4.91 (dd, J = 9.8, 3.2 Hz, 1H), 4.01 (dd, J = 17.8, 3.3 Hz, 1H), 3.79 (dd, J = 17.8, 9.8 Hz, 1H), 3.14–3.00 (m, 1H), 2.39

(s, 3H), 2.32 (s, 3H), 2.16–2.02 (m, 2H), 1.99–1.90 (m, 1H), 1.85–1.68 (m, 3H), 1.61 – 1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 144.5, 138.9, 133.8, 130.5, 129.7, 129.4, 128.3, 61.8, 58.3, 36.8, 28.0, 26.1, 26.1, 25.5, 21.7, 21.2; HRMS (ESI) calcd for C₂₂H₂₆O₃NaS [M+Na]⁺ : 393.1500, found: 393.1497; HPLC analysis: CHI-RALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, *t*_R = 12.869 min (major), *t*_R = 19.335 min (minor).

(S)-3-(cyclopentylsulfonyl)-N-(4-methoxyphenyl)butanamide (3b')

 $[\alpha]_D{}^{20} = -2.4^\circ$ (c = 0.24, CHCl₃); ¹H NMR (400 MHz, **CDCl₃**) δ 8.1 (s, 1H), 7.43 (d, *J* = 8.9 Hz, 2H), 6.84 (d, *J* = 8.9 Hz, 2H), 3.82–3.70 (m, 4H), 3.58–3.49 (m, 1H), 3.12 (dd, *J* = 15.4, 4.3 Hz, 1H), 2.56 (dd, *J* = 15.4, 9.1

Hz, 1H), 2.21-1.94 (m, 4H), 1.89-1.75 (m, 2H), 1.72-1.61 (m, 2H), 1.46 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 156.5, 130.9, 121.7, 114.1, 58.6, 55.4, 52.7, 36.1, 27.2, 26.3, 26.0, 26.0, 14.2; HRMS (ESI) calcd for C₁₆H₂₃NO₄NaS [M+Na]⁺ : 348.1245, found: 348.1254; HPLC analysis: CHIRALPAK IA (Hexane/*i*-PrOH) = 80:20, flow rate = 1.0 mL/min, wave length = 254 nm, 30 °C, $t_R = 16.941$ min (major), $t_R = 26.924$ min (minor).

PDA Ch1 254nm

Peak#	Ret. Time	Area	Height	Aera%
1	16.941	92473846	1672700	95.381
2	26.924	4477926	66711	4.619

<u>PDA Ch1 254nm</u>

Peak#	Ret. Time	Area	Height	Aera%
1	17.391	33461197	860723	49.719
2	25.522	33839386	331255	50.281

7. NMR spectra of compounds

-5.88 -5.387 -5.387 -5.387 -5.377 -5.2577 -5.25777 -5.25777 -5.25777 -5.25777 -5.25777 -5.25777 -5.25777 -5.25777 -5.257777 -5.

---5.99

S35

Ph

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

77.77 77.85 77

ST ST

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

