Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supplementary Information

Metal-Free Heteroarene C(sp²)-H Aminations with Unprotected

(Hetero)arylamines

Tao Wen,¹ Zhen Zhang,^{1,*} Lihua Ye,¹ Chihong Zhang,¹ Bo Jin,¹ Wenkun Wang,¹ Zhong-Ning Chen,² Hu Cai^{1,*}

¹ School of Chemistry and Chemical Engineering, Nanchang University, Jiangxi Province, Nanchang 330031, People's Republic of China

² Fujian Institute of Research on the Structure, Chinese Academy of Science, Fuzhou,

Fujian 350002, People's Republic of China

*Correspondence: <u>zhangzhen@ncu.edu.cn</u>

*Correspondence: <u>caihu@ncu.edu.cn</u>

Contents:

1. General Information	S2
2. Preparation of Starting Materials	S3
3. Detailed Reaction Optimization	S28
4. Intramolecular C(sp ²)-H Amination of Azines	S34
5. Synthesis of Important Molecules and Scale-up Experiment	S60
6. Mechanistic Studies	S66
7. X-Ray Ellipsoid Plots of 2a-31, 2a-34 and 2b-21	S69
8. NMR Spectra of Substrates and Products	S72
9. References	\$335

1. General Information

All reactions under standard conditions were carried out under nitrogen and monitored by thin-layer chromatography (TLC) on gel F254 plates. Hexane and ethyl acetate were used as eluents. All solvents were purified and dried by standard techniques and distilled prior to use. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ solution on *Agilent ProPulse* AM-400 MHz instruments and the spectral data were reported in ppm relative to tetramethylsilane (0.00 ppm) or residual undeuterated solvent CHCl₃ (7.26 ppm) and DMSO (2.50 pm) as internal standard for ¹H NMR and deuterated solvent CDCl₃ (77.0 ppm) and DMSO-*d*₆ (39.5 ppm) as internal standard for ¹³C NMR. All coupling constants are apparent J values measured at the indicated field strengths in Hertz (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, hept = heptet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublet of doublets, tt = triplet of triplet, ttt = triplet of triplet of triplets). Highresolution mass spectral analysis (HRMS) data were measured on an *Agilent* 7890-5975C spectrometer by means of the ESI technique.

Known componds:

1a-1, 1a-2, 1a-3, 1a-4, 1a-5, 1a-9, 1a-15, 1a-17, 1a-19, 1a-28, 1a-29;

1b-1, 1b-2, 1b-5, 1b-8, 1b-15, 1b-19, 1b-21, 1b-22, 1b-23;

2a-1, 2a-2, 2a-3, 2a-4, 2a-5, 2a-7, 2a-8, 2a-9, 2a-10, 2a-14, 2a-15, 2a-16, 2a-17, 2a-18, 2a-19, 2a-20, 2a-28, 2a-29, 2a-30, 2a-31;

2b-1, 2b-2, 2b-4, 2b-5, 2b-6, 2b-10, 2b-11, 2b-12, 2b-13, 2b-16, 2b-18, 2b-19, 2b-21, 2b-22, 2b-23, 2b-25.

2. Preparation of Starting Materials

2.1 General procedure 1: for the synthesis of 2-(pyridin-3-yl)aniline derivatives 1a-1-1a-10, 1a-12-1a-20, 1a-22-1a-34, 1b-1-1b-25

A clean, oven-dried Schlenk tube with previously placed magnetic stir-bar was charged with 2-bromoaniline (860.0 mg, 1.0 equiv.), pyridin-3-ylboronic acid (738.0 mg, 1.2 equiv.), Pd(dppf)₂Cl₂ (76.2 mg, 2.0 mmol%) and Na₂CO₃ (2.12 g, 4.0 equiv.). The reaction was evacuated and back filled with nitrogen and this sequence was repeated for three additional times. Under the positive flow of nitrogen, a 2.5/1 mixture of 1,4-dioxane (25 mL) and water (10 mL) was added to the reaction mixture. The reaction mixture was vigorously stirred at 85 °C for 12 h. Next, the reaction was allowed to cool at room temperature and the reaction mixture was extracted with ethyl acetate (3×50 mL) and brine solution (3×25 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and chromatographic separation with silica gel to give the desired **1a-1**. Substrates **1a-1**a-10, 1a-12-1a-20, 1a-22-1a-34, 1b-1-1b-25 were prepared by this method. ^[1]

2-(pyridin-3-yl)aniline (1a-1)^[2]

Prepared according to general procedure 1 to afford **1a-1** (807 mg, 95% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 8.59 (d, *J* = 3.8 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.37 (dd, *J* = 7.8, 4.9 Hz, 1H), 7.20 (t, *J* = 8.2 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.85 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 3.35 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.8, 148.2, 143.8, 136.6, 135.6, 130.6, 129.4, 123.8, 123.7, 118.9, 115.9. HRMS (m/z): calcd for C₁₁H₁₀N₂ [M+H]⁺: 171.0917, Found: 171.0922.

2-methyl-6-(pyridin-3-yl)aniline (1a-2)^[3]

Prepared according to general procedure 1 to afford **1a-2** (298 mg, 81% yield) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.51 (s, 1H), 8.36 (d, *J* = 4.9 Hz, 1H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.14 (dd, *J* = 7.5, 4.6 Hz, 1H), 6.91 (d, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 7.5 Hz, 1H), 6.62-6.56 (m, 1H), 3.56 (s, 2H), 2.03 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0, 148.2, 142.0, 136.7, 135.7, 130.5, 128.4, 123.6, 123.4, 122.7, 118.2, 17.8. HRMS (m/z): calcd for C₁₂H₁₂N₂ [M+H]⁺: 185.1073, Found: 185.1072.

3-methyl-6-(pyridin-3-yl)aniline (1a-3)^[4]

Prepared according to general procedure 1 to afford **1a-3** (290 mg, 79% yield) as a brown oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 8.56 (s, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.33 (t, *J* = 6.3 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 6.66 (d, *J* = 7.7 Hz, 1H), 6.59 (s, 1H), 3.62 (s, 2H), 2.29 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0, 148.1, 143.6, 139.4, 136.5, 135.4, 130.4, 123.6, 121.0, 119.8, 116.5, 21.2. HRMS (m/z): calcd for C₁₂H₁₂N₂ [M+H]⁺: 185.1073, Found: 185.1085.

4-methyl-2-(pyridin-3-yl)aniline (1a-4)^[2]

Prepared according to general procedure 1 to afford **1a-4** (294 mg, 80% yield) as a brown oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.53 (s, 1H), 8.38 (s, 1H), 7.65-7.58 (m, 1H), 7.16 (dd, J = 8.2, 4.0 Hz, 1H), 6.86-6.79 (m, 1H), 6.75 (s, 1H), 6.53 (dd, J = 8.0, 2.8 Hz, 1H), 3.58 (s, 2H), 2.12 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.9, 148.1, 141.4,

136.6, 135.5, 130.9, 129.9, 128.0, 123.6, 123.5, 116.1, 20.4. HRMS (m/z): calcd for $C_{12}H_{12}N_2$ [M+H]⁺: 185.1073, Found: 185.1082.

3-methyl-2-(pyridin-3-yl)aniline (1a-5)

Prepared according to general procedure 1 to afford **1a-5** (258 mg, 70% yield) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.58 (dd, J = 4.8, 1.7 Hz, 1H), 8.49 (d, J = 2.1 Hz, 1H), 7.59 (dt, J = 7.7, 2.0 Hz, 1H), 7.38 (dd, J = 7.7, 4.9 Hz, 1H), 7.06 (t, J = 7.8 Hz, 1H), 6.69 (d, J = 7.5 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 3.38 (s, 2H), 1.97 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.8, 148.5, 144.3, 137.9, 137.1, 134.1, 128.8, 124.0, 123.5, 120.1, 113.0, 20.7. HRMS (m/z): calcd for C₁₂H₁₂N₂ [M+H]⁺: 185.1073, Found: 185.1082.

5-isopropyl-2-(pyridin-3-yl)aniline (1a-6)

Prepared according to general procedure 1 to afford **1a-6** (256 mg, 61% yield) as a brown oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.71 (d, J = 2.2 Hz, 1H), 8.55 (d, J = 4.6 Hz, 1H), 7.81 (dt, J = 7.5, 1.6 Hz, 1H), 7.33 (dd, J = 7.8, 4.8 Hz, 1H), 7.06 (dd, J = 8.2, 2.1 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 6.73 (d, J = 0.6 Hz, 1H), 3.67 (s, 2H), 2.84 (hept, J = 6.9 Hz, 1H), 1.23 (d, J = 6.9 Hz, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0, 148.2, 141.7, 139.4, 136.6, 135.6, 128.4, 127.3, 123.6, 123.5, 116.1, 33.2, 24.3. HRMS (m/z): calcd for C₁₄H₁₆N₂ [M+H]⁺: 213.1386, Found: 213.1400.

4-(tert-butyl)-2-(pyridin-3-yl)aniline (1a-7)

Prepared according to general procedure 1 to afford **1a-7** (360 mg, 80% yield) as a red oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.73 (s, 1H), 8.56 (d, *J* = 4.3 Hz, 1H), 7.82 (d, *J* = 7.9 Hz, 1H), 7.37-7.31 (m, 1H), 7.23 (dd, *J* = 8.3, 1.8 Hz, 1H), 7.12 (d, *J* = 2.3 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 3.68 (s, 2H), 1.31 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.1, 148.2, 141.7, 141.4, 136.6, 135.9, 127.3, 126.3, 123.5, 123.3, 115.8, 34.0, 31.6. HRMS (m/z): calcd for C₁₅H₁₈N₂ [M+H]⁺: 227.1543, Found: 227.1552.

2-methoxy-6-(pyridin-3-yl)aniline (1a-8)

Prepared according to general procedure 1 to afford **1a-8** (240 mg, 60% yield) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.69 (s, 1H), 8.52 (dd, J = 4.9, 1.5 Hz, 1H), 7.78 (dt, J = 7.8, 1.9 Hz, 1H), 7.30 (dd, J = 7.8, 4.9 Hz, 1H), 6.82-6.69 (m, 3H), 3.84 (s, 3H), 3.77 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0, 148.2, 147.3, 136.4, 135.2, 133.9, 123.5, 123.5, 122.4, 117.9, 110.0, 55.7. HRMS (m/z): calcd for C₁₂H₁₂N₂O [M+H]⁺: 201.1022, Found: 201.1032.

4-methoxy-2-(pyridin-3-yl)aniline (1a-9)^[2]

Prepared according to general procedure 1 to afford **1a-9** (256 mg, 64% yield) as a yellowish-brown solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 8.58 (d, *J* = 5.1 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.37 (dd, *J* = 7.9, 4.8 Hz, 1H), 6.80 (dd, *J* = 8.7, 2.9 Hz, 1H), 6.77-6.64 (m, 2H), 3.76 (s, 3H), 3.21 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 152.9, 149.9, 148.4, 137.4, 136.6, 135.3, 124.8, 123.5, 117.3, 115.7, 115.3, 55.8. HRMS (m/z): calcd for C₁₂H₁₂N₂O [M+H]⁺: 201.1022, Found: 201.1030.

3-methoxy-2-(pyridin-3-yl)aniline (1a-10)

Prepared according to general procedure 1 to afford **1a-10** (260 mg, 56% yield) as a brown solid, (m.p. 118-119 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.59-8.52 (m, 2H), 7.67 (dt, J = 7.8, 1.9 Hz, 1H), 7.35 (dd, J = 7.8, 4.8 Hz, 1H), 7.12 (t, J = 8.2 Hz, 1H), 6.40 (t, J = 8.5 Hz, 2H), 3.66 (s, 3H), 3.51 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 157.7, 151.6, 148.2, 145.4, 138.5, 131.1, 129.6, 123.6, 112.3, 108.6, 100.9, 55.5. HRMS (m/z): calcd for C₁₂H₁₂N₂O [M+H]⁺: 201.1022, Found: 201.1018.

4-benzyl-2-(pyridin-3-yl)aniline (1a-12)

Prepared according to general procedure 1 to afford **1a-12** (411 mg, 79% yield) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.47 (d, J = 2.2 Hz, 1H), 8.29 (d, J = 3.1 Hz, 1H), 7.50 (dt, J = 7.8, 2.0 Hz, 1H), 7.07-6.92 (m, 6H), 6.78 (d, J = 8.1 Hz, 1H), 6.73 (s, 1H), 6.44 (d, J = 8.1 Hz, 1H), 3.67 (s, 2H), 3.50 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0, 148.2, 142.3, 142.3, 141.7, 136.6, 135.5, 131.5, 130.9, 129.9, 128.9, 128.6, 126.1, 123.8, 123.6, 116.3, 41.1. HRMS (m/z): calcd for C₁₈H₁₆N₂ [M+H]⁺: 261.1386, Found: 261.1393.

2-(pyridin-3-yl)-5-(trifluoromethoxy)aniline (1a-13)

Prepared according to general procedure 1 to afford **1a-13** (366 mg, 72% yield) as a yellow solid, (m.p. 56-57 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.49 (s, 1H), 8.40 (d, J = 4.3 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.20 (dd, J = 7.9, 4.8 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.54-6.47 (m, 2H), 3.97 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0 (q, J = 1.8 MHz), 149.7, 148.5, 145.5, 136.5, 134.2, 131.5, 123.6, 121.9, 121.7, 110.3, 107.6. HRMS (m/z): calcd for C₁₂H₉F₃N₂O [M+H]⁺: 255.0744, Found: 255.0748.

2-(pyridin-3-yl)-4-(trifluoromethoxy)aniline (1a-14)

Prepared according to general procedure 1 to afford **1a-14** (386 mg, 76% yield) as a brown liquid. ¹H-NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 8.43 (d, *J* = 4.6 Hz, 1H), 7.64 (dt, *J* = 7.8, 2.0 Hz, 1H), 7.24 (dd, *J* = 7.8, 4.8 Hz, 1H), 6.93 (d, *J* = 8.3 Hz, 1H), 6.54 (d, *J* = 8.4 Hz, 1H), 6.51 (s, 1H), 3.89 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0 (q, *J* = 1.9 MHz), 149.7, 148.5, 145.5, 136.6, 134.2, 131.6, 123.7, 121.9, 121.7, 119.1, 110.4, 107.6. HRMS (m/z): calcd for C₁₂H₉F₃N₂O [M+H]⁺: 255.0744, Found: 255.0750.

2-fluoro-6-(pyridin-3-yl)aniline (1a-15)^[5]

Prepared according to general procedure 1 to afford **1a-15** (229 mg, 61% yield) as a gray solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.71 (s, 1H), 8.61 (d, J = 4.7 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 6.3 Hz, 1H), 7.03 (t, J = 9.5 Hz, 1H), 6.90 (d, J = 7.7 Hz, 1H), 6.76 (q, J = 7.4 Hz, 1H), 3.74 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 152.9, 150.6, 149.8, 148.7, 136.4, 134.2, 132.5 (d, J = 13.0 Hz), 125.6 (d, J = 3.0 Hz), 123.6, 118.0 (d, J = 8.0 Hz), 114.8 (d, J = 19.0 Hz). HRMS (m/z): calcd for C₁₁H₉FN₂ [M+H]⁺: 189.0823, Found: 189.0827.

5-fluoro-2-(pyridin-3-yl)aniline (1a-16)

Prepared according to general procedure 1 to afford **1a-16** (331 mg, 88% yield) as a pale-yellow solid, (m.p. 73-74 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.68-8.55 (m, 2H), 7.75 (d, J = 7.8 Hz, 1H), 7.36 (dd, J = 7.8, 4.8 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 6.58-6.43 (m, 2H), 3.82 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 164.8, 162.4, 150.1, 148.5, 145.5 (d, J = 11.0 Hz), 136.6, 134.5, 131.8 (d, J = 10.0 Hz), 123.6, 105.5 (d, J = 22.0 Hz), 102.3 (d, J = 24.0 Hz). HRMS (m/z): calcd for C₁₁H₉FN₂ [M+H]⁺: 189.0823, Found: 189.0829.

4-fluoro-2-(pyridin-3-yl)aniline (1a-17)^[2]

Prepared according to general procedure 1 to afford **1a-17** (282 mg, 75% yield) as a light gray oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 8.61 (d, J = 4.8 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.38 (dd, J = 7.8, 4.9 Hz, 1H), 6.91 (td, J = 8.5, 2.9 Hz, 1H), 6.84 (dd, J = 9.0, 2.9 Hz, 1H), 6.72 (dd, J = 8.8, 4.8 Hz, 1H), 3.40 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 157.5, 155.1, 149.8, 148.8, 139.9, 136.4, 134.4, 123.6, 116.80,116.7 (d, J = 30.0 Hz), 115.8 (d, J = 22.0 Hz). HRMS (m/z): calcd for C₁₁H₉FN₂ [M+H]⁺: 189.0823, Found: 189.0827.

3-fluoro-2-(pyridin-3-yl)aniline (1a-18)

Prepared according to general procedure 1 to afford **1a-18** (226 mg, 60% yield) as a black solid, (m.p. 78-79 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.71-8.54 (m, 2H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 6.3 Hz, 1H), 7.12 (q, *J* = 7.6 Hz, 1H), 6.56 (d, *J* = 6.8 Hz, 2H), 3.75 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 161.9, 159.5, 151.0 (d, *J* = 1.3 Hz), 149.02, 145.8 (d, *J* = 5.6 Hz), 138.0 (d, *J* = 1.3 Hz), 123.0 (d, *J* = 10.5 Hz), 128.6, 123.7, 111.0 (d, *J* = 2.8 Hz), 105.1 (d, *J* = 22.8 Hz). HRMS (m/z): calcd for C₁₁H₉FN₂ [M+H]⁺: 189.0823, Found: 189.0829.

4-chloro-2-(pyridin-3-yl)aniline (1a-19)^[2]

Prepared according to general procedure 1 to afford **1a-19** (258 mg, 63% yield) as a brown solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 8.61 (dd, J = 4.9, 1.6 Hz, 1H), 7.77 (dt, J = 7.9, 2.0 Hz, 1H), 7.38 (dd, J = 7.8, 4.9 Hz, 1H), 7.14 (dd, J = 8.6, 2.4 Hz, 1H), 7.07 (d, J = 2.4 Hz, 1H), 6.71 (d, J = 8.5 Hz, 1H), 3.72 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.8, 148.9, 142.4, 136.4, 134.1, 130.0, 129.1, 125.0, 123.7, 123.4, 117.0. HRMS (m/z): calcd for C₁₁H₉ClN₂ [M+H]⁺: 205.0527, Found: 205.0523.

3-chloro-2-(pyridin-3-yl)aniline (1a-20)^[2]

Prepared according to general procedure 1 to afford **1a-20** (247 mg, 60% yield) as a brown solid, (m.p. 110-112 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.65 (s, 1H), 8.58 (s, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.41 (dd, *J* = 7.8, 4.7 Hz, 1H), 7.08 (t, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 7.9 Hz, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 3.52 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.9, 149.0, 145.9, 138.1, 134.2, 132.3, 129.8, 124.0, 122.1, 119.1, 113.7. HRMS (m/z): calcd for C₁₁H₉ClN₂ [M+H]⁺: 205.0527, Found: 205.0535.

3-(pyridin-3-yl)-[1,1'-biphenyl]-4-amine (1a-22)

Prepared according to general procedure 1 to afford **1a-22** (247 mg, 70% yield) as a red oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.63 (s, 1H), 8.50 (s, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.28 (dd, *J* = 7.9, 4.7 Hz, 1H), 7.20 (t, *J* = 7.9 Hz, 2H), 6.92 (dd, *J* = 22.6, 7.7 Hz, 3H), 6.84 (dd, *J* = 8.6, 2.7 Hz, 1H), 6.77 (d, *J* = 2.7 Hz, 1H), 6.68 (d, *J* = 8.6 Hz, 1H), 3.45 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 158.5, 149.8, 148.9, 148.6, 140.0, 136.5, 134.7, 129.6, 124.8, 123.6, 122.4, 121.9, 121.1, 117.4, 117.1. HRMS (m/z): calcd for C₁₇H₁₄N₂ [M+H]⁺: 247.1230, Found: 247.1236.

2,6-di(pyridin-3-yl)aniline (1a-23)

Prepared according to general procedure 1 to afford **1a-23** (198 mg, 40% yield) as a yellow solid, (m.p. 184-185 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.74 (s, 2H), 8.60 (s, 2H), 7.84 (d, J = 7.8 Hz, 2H), 7.39 (t, J = 4.3 Hz, 2H), 7.13 (d, J = 6.3 Hz, 2H), 6.92 (t, J = 6.6 Hz, 1H), 3.71 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.1, 148.6, 141.2, 136.8, 135.1, 130.7, 124.4, 123.6, 118.7. HRMS (m/z): calcd for C₁₆H₁₃N₃ [M+H]⁺: 248.1182, Found: 248.1197.

3,4-difluoro-2-(pyridin-3-yl)aniline (1a-24)

Prepared according to general procedure 1 to afford **1a-24** (313 mg, 76% yield) as a gray solid, (m.p. 92-94 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.63 (s, 2H), 7.73 (d, J = 7.9 Hz, 1H), 7.41 (dd, J = 7.9, 4.9 Hz, 1H), 6.99 (q, J = 9.1 Hz, 1H), 6.49-6.41 (m, 1H), 3.36 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.8 (d, J = 1.5 Hz), 149.4, 147.0 (d, J = 13.6 Hz), 145.0 (d, J = 13.6 Hz), 142.5 (d, J = 13.6 Hz), 137.9, 127.8, 123.8, 117.1 (dd, J = 18.0, 2.0 Hz), 113.3 (d, J = 15.6 Hz), 110.0 (q, J = 3.7 Hz). HRMS (m/z): calcd for C₁₁H₈F₂N₂ [M+H]⁺: 207.0728, Found: 207.0735.

2,2-difluoro-6-(pyridin-3-yl)benzo[d][1,3]dioxol-5-amine (1a-25)

Prepared according to general procedure 1 to afford **1a-25** (360 mg, 72% yield) as a brown solid, (m.p. 125-127 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.66 (d, J = 15.4 Hz, 2H), 7.74 (d, J = 7.6 Hz, 1H), 7.40 (d, J = 6.5 Hz, 1H), 6.79 (s, 1H), 6.52 (s, 1H), 3.51 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.0, 148.7, 144.4, 140.6, 137.0, 136.8, 134.2, 131.7, 129.2, 117.8, 110.9, 97.8. HRMS (m/z): calcd for C₁₂H₈F₂N₂O₂ [M+H]⁺: 251.0627, Found: 251.0632.

2-chloro-4-fluoro-6-(pyridin-3-yl)aniline (1a-26)

Prepared according to general procedure 1 to afford **1a-26** (293 mg, 66% yield) as a brown solid, (m.p. 126-128 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.73-8.58 (m, 2H), 7.79 (dt, *J* = 7.9, 2.0 Hz, 1H), 7.41 (dd, *J* = 7.8, 4.8 Hz, 1H), 7.09 (dd, *J* = 8.0, 2.9 Hz, 1H), 6.79 (dd, *J* = 8.6, 2.9 Hz, 1H), 3.95 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 156.0, 153.6, 149.6, 149.2, 136.6, 133.9, 123.8, 116.5, 116.3, 115.9, 115.7. HRMS (m/z): calcd for C₁₁H₈ClFN₂ [M+H]⁺: 223.0433, Found: 223.0439.

2,3,4-trifluoro-6-(pyridin-3-yl)aniline (1a-27)

Prepared according to general procedure 1 to afford **1a-27** (278 mg, 62% yield) as a white solid, (m.p. 142-143 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.63 (dd, J = 12.7, 3.5 Hz, 2H), 7.75 (d, J = 7.6 Hz, 1H), 7.39 (dd, J = 7.8, 4.9 Hz, 1H), 6.76 (t, J = 8.7 Hz, 1H), 3.76 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.7, 149.3, 144.8 (d, J = 6.9 Hz), 142.4 (d, J = 13.7 Hz), 141.3, 136.4, 132.7, 130.2 (d, J = 10.2 Hz), 123.7, 118.8, 112.4 (dd, J = 14.9, 3.4 Hz). HRMS (m/z): calcd for C₁₁H₇F₃N₂ [M+H]⁺: 225.0634, Found: 225.0633.

[3,3'-bipyridin]-2-amine (1a-28)^[6]

Prepared according to general procedure 1 to afford **1a-28** (250 mg, 73% yield) as a gray solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.66 (s, 1H), 8.57 (d, J = 4.7 Hz, 1H), 8.06 (d, J = 5.0 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.34 (dd, J = 14.8, 6.2 Hz, 2H), 6.73 (dd, J = 7.3, 4.9 Hz, 1H), 4.71 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 156.0, 149.7, 149.0, 148.1, 138.2, 136.1, 133.9, 123.7, 118.1, 114.5. HRMS (m/z): calcd for C₁₀H₉N₃ [M+H]⁺: 172.0869, Found: 172.0865.

[2,3'-bipyridin]-3-amine (1a-29)^[7]

Prepared according to general procedure 1 to afford **1a-29** (250 mg, 68% yield) as a gray solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.88 (s, 1H), 8.54 (s, 1H), 8.06 (d, J = 2.1

Hz, 1H), 7.95 (d, J = 7.4 Hz, 1H), 7.36-7.29 (m, 1H), 7.02 (s, 2H), 3.61 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.4, 149.2, 141.5, 140.5, 140.3, 136.2, 134.5, 123.8, 123.6, 123.1. HRMS (m/z): calcd for C₁₀H₉N₃ [M+H]⁺: 172.0869, Found: 172.0865.

2-(pyridin-3-yl)naphthalen-1-amine (1a-30)

Prepared according to general procedure 1 to afford **1a-30** (440 mg, 75% yield) as a brown solid, (m.p. 117-119 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.80 (d, J = 1.5 Hz, 1H), 8.61 (dd, J = 4.8, 1.7 Hz, 1H), 7.88-7.79 (m, 3H), 7.52-7.45 (m, 2H), 7.37 (dt, J = 7.8, 2.1 Hz, 2H), 7.24 (d, J = 8.4 Hz, 1H), 4.36 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.5, 148.3, 139.2, 137.1, 135.9, 134.0, 128.6, 128.2, 126.3, 125.5, 123.8, 123.4, 121.2, 118.7, 117.8. HRMS (m/z): calcd for C₁₅H₁₂N₂ [M+H]⁺: 221.1073, Found: 221.1070.

1-(pyridin-3-yl)naphthalen-2-amine (1a-31)

Prepared according to general procedure 1 to afford **1a-31** (304 mg, 69% yield) as a red solid, (m.p. 148-150 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.62 (dt, J = 4.6, 2.1 Hz, 1H), 8.56 (t, J = 2.3 Hz, 1H), 7.70-7.61 (m, 3H), 7.40 (ddd, J = 7.6, 4.9, 2.4 Hz, 1H), 7.24-7.13 (m, 2H), 7.11 (dd, J = 8.2, 2.0 Hz, 1H), 6.95 (dd, J = 8.8, 2.4 Hz, 1H), 3.52 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 151.9, 148.8, 141.7, 139.0, 133.7, 133.1, 129.6, 128.1, 127.9, 126.8, 124.1, 123.5, 122.4, 118.1, 115.4. HRMS (m/z): calcd for C₁₅H₁₂N₂ [M+H]⁺: 221.1073, Found: 221.1079.

6-(pyridin-3-yl)quinolin-5-amine (1a-32)

Prepared according to general procedure 1 to afford **1a-32** (318 mg, 72% yield) as a red oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.82 (dd, J = 4.1, 1.5 Hz, 1H), 8.73-8.67 (m, 2H), 8.58 (dd, J = 4.8, 1.6 Hz, 1H), 7.91 (dt, J = 7.8, 2.0 Hz, 1H), 7.51 (dd, J = 7.8, 5.1 Hz, 1H), 7.46-7.38 (m, 2H), 7.33 (d, J = 8.6 Hz, 1H), 5.76 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.6, 150.4, 149.0, 148.3, 142.1, 137.2, 135.9, 132.6, 131.8, 124.3, 120.0, 118.3, 117.4, 116.3. HRMS (m/z): calcd for C₁₄H₁₁N₃ [M+H]⁺: 222.1026, Found: 222.1020.

5-(pyridin-3-yl)isoquinolin-6-amine (1a-33)

Prepared according to general procedure 1 to afford **1a-33** (344 mg, 78% yield) as a gray solid, (m.p. 231-233 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.56 (s, 1H), 7.97 (s, 1H), 7.58 (d, *J* = 9.1 Hz, 1H), 7.26-7.14 (m, 3H), 6.84 (t, *J* = 7.3 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.55 (s, 1H), 3.78 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 151.7, 151.2, 149.5, 145.9, 143.1, 138.7, 137.0, 131.3, 129.8, 124.3, 123.1, 119.1, 116.5. HRMS (m/z): calcd for C₁₄H₁₁N₃ [M+H]⁺: 222.1026, Found: 222,1035.

4-(pyridin-3-yl)isoquinolin-3-amine (1a-34)

Prepared according to general procedure 1 to afford **1a-34** (322 mg, 73% yield) as a yellow solid, (m.p. 118-120 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.82 (s, 1H), 8.64-8.54 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.67 (dt, J = 7.8, 1.9 Hz, 1H), 7.39 (dd, J = 7.8, 4.9 Hz, 1H), 7.34 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.20-7.13 (m, 1H), 7.10 (d, J = 8.6 Hz, 1H), 4.37 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 152.1, 152.1, 151.6, 149.2, 138.5, 137.3, 131.8, 130.9, 128.1, 124.1, 123.7, 122.9, 122.2, 107.2. HRMS (m/z): calcd for C₁₄H₁₁N₃ [M+H]⁺: 222.1026, Found: 222.1025.

2-(6-methylpyridin-3-yl)aniline (1b-1)^[2]

Prepared according to general procedure 1 to afford **1b-1** (272 mg, 74% yield) as a grey solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H), 7.63 (dd, J = 8.0, 2.3 Hz, 1H), 7.19-7.15 (m, 1H), 7.11 (td, J = 7.7, 1.6 Hz, 1H), 7.02 (dd, J = 7.6, 1.6 Hz, 1H), 6.77 (td, J = 7.4, 1.1 Hz, 1H), 6.70 (dd, J = 8.1, 1.1 Hz, 1H), 3.59 (s, 2H), 2.54 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 157.1, 149.1, 143.8, 137.0, 132.2, 130.5, 129.1, 123.8, 123.2, 118.9, 115.8, 24.1. HRMS (m/z): calcd for C₁₂H₁₂N₂ [M+H]⁺:185.1073, Found: 185.1068.

2-(4-methylpyridin-3-yl)aniline (1b-2)^[8]

Prepared according to general procedure 1 to afford **1b-2** (346 mg, 94% yield) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.46-8.31 (m, 2H), 7.15 (ddd, J = 9.2, 6.4, 2.5 Hz, 2H), 6.94 (d, J = 6.9 Hz, 1H), 6.80-6.70 (m, 2H), 3.69 (s, 2H), 2.17 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.3, 148.6, 146.7, 144.3, 135.0, 130.2, 129.2, 125.2, 122.9, 118.1, 115.2, 19.2. HRMS (m/z): calcd for C₁₂H₁₂N₂ [M+H]⁺:185.1073, Found: 185.1081.

2-(6-cyclopropylpyridin-3-yl)aniline (1b-3)

Prepared according to general procedure 1 to afford **1b-3** (403 mg, 80% yield) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.53 (s, 1H), 7.66 (dd, J = 8.1, 2.0 Hz, 1H), 7.21-7.17 (m, 2H), 7.08 (d, J = 7.5 Hz, 1H), 6.83 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 3.62 (s, 2H), 2.13-2.05 (m, 1H), 1.08-1.02 (m, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ 161.7, 149.3, 143.8, 136.5, 131.8, 130.5, 129.0, 124.0, 121.0, 118.8, 115.7, 17.0, 10.0. HRMS (m/z): calcd for C₁₄H₁₄N₂ [M+H]⁺: 211.1230, Found: 211.1242.

(5-(2-aminophenyl)pyridin-2-yl)methanol (1b-4)

Prepared according to general procedure 1 to afford **1b-4** (352 mg, 88% yield) as a yellow solid, (m.p. 100-101 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.59 (s, 1H), 7.82-7.76 (m, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 7.7 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 4.79 (s, 2H), 3.96 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 157.8, 148.6, 143.8, 137.5, 134.0, 130.6, 129.4, 123.4, 120.5, 119.0, 115.9, 64.1. HRMS (m/z): calcd for C₁₂H₁₂N₂O [M+H]⁺:201.1022, Found: 201.1018.

2-(6-methoxypyridin-3-yl)aniline (1b-5)

Prepared according to general procedure 1 to afford **1b-5** (280 mg, 70% yield) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.26 (s, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.83 (t, J = 7.5 Hz, 2H), 6.75 (d, J = 8.2

Hz, 1H), 3.98 (s, 3H), 3.68 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 163.3, 146.8, 144.0, 139.5, 130.6, 128.9, 128.2, 123.8, 118.8, 115.7, 110.8, 53.5. HRMS (m/z): calcd for C₁₂H₁₂N₂O [M+H]⁺:201.1022, Found: 201.1028.

2-(6-ethoxypyridin-3-yl)aniline (1b-6)

Prepared according to general procedure 1 to afford **1b-6** (385 mg, 90% yield) as a yellow solid, (m.p. 49-50 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.25 (dd, J = 2.5, 0.8 Hz, 1H), 7.66 (dd, J = 8.5, 2.5 Hz, 1H), 7.18-7.12 (m, 1H), 7.08 (dd, J = 7.6, 1.6 Hz, 1H), 6.84-6.76 (m, 2H), 6.72 (d, J = 7.8 Hz, 1H), 4.42 (q, J = 7.0 Hz, 2H), 3.75 (s, 2H), 1.44 (t, J = 7.1 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 163.0, 146.8, 144.2, 139.5, 130.6, 128.8, 128.1, 123.9, 118.7, 115.7, 110.9, 61.8, 14.8. HRMS (m/z): calcd for C₁₃H₁₄N₂O [M+H]⁺:215.1179, Found: 215.1189.

2-(6-isopropoxypyridin-3-yl)aniline (1b-7)

Prepared according to general procedure 1 to afford **1b-7** (342 mg, 75% yield) as a red oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.23 (d, J = 2.5 Hz, 1H), 7.67 (dd, J = 8.5, 2.5 Hz, 1H), 7.20-7.13 (m, 1H), 7.10 (dd, J = 7.5, 1.6 Hz, 1H), 6.83 (td, J = 7.4, 1.2 Hz, 1H), 6.77 (d, J = 8.2 Hz, 2H), 5.36 (hept, J = 6.2 Hz, 1H), 3.61 (s, 2H), 1.40 (d, J = 6.2 Hz, 6H). ¹³C-NMR (100 MHz, CDCl₃): δ 162.7, 146.8, 144.0, 139.5, 130.6, 128.8, 127.7, 124.0, 118.8, 115.6, 111.4, 68.1, 22.2. HRMS (m/z): calcd for C₁₄H₁₆N₂O [M+H]⁺: 229.1335, Found: 229.1330.

2-(6-fluoropyridin-3-yl)aniline (1b-8)^[5]

Prepared according to general procedure 1 to afford **1b-8** (275 mg, 73% yield) as a gray solid, (m.p. 85-87 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.30 (s, 1H), 7.91 (t, J = 8.0 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.8 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 6.85 (tdd, J = 7.5, 2.1, 1.1 Hz, 1H), 6.79 (d, J = 7.9 Hz, 1H), 3.64 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 164.0, 161.6, 147.7 (d, J = 14.4 Hz), 143.8, 141.9 (d, J = 7.9 Hz), 133.0 (d, J = 4.7 Hz), 130.5, 129.5, 119.0, 116.0, 109.5 (d, J = 35.1 Hz). HRMS (m/z): calcd for C₁₁H₉N₂F [M+H]⁺: 189.0823, Found: 189.0835.

2-(6-morpholinopyridin-3-yl)aniline (1b-9)

Prepared according to general procedure 1 to afford **1b-9** (433 mg, 85% yield) as a brown solid, (m.p. 120-122 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.29 (s, 1H), 7.64 (dd, J = 8.7, 2.4 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.74 (dd, J = 16.0, 8.3 Hz, 2H), 3.85 (t, J = 4.9 Hz, 4H), 3.67 (s, 2H), 3.54 (t, J = 4.9 Hz, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ 158.5, 147.8, 144.0, 138.4, 130.5, 128.6, 125.0, 124.3, 118.8, 115.6, 106.7, 66.8, 45.6. HRMS (m/z): calcd for C₁₅H₁₇N₃O [M+H]⁺: 256.1444, Found: 256.1454.

2-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)aniline (1b-10)

Prepared according to general procedure 1 to afford **1b-10** (429 mg, 80% yield) as a yellow solid, (m.p. 130-132 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.28 (d, J = 2.4 Hz, 1H), 7.62 (dd, J = 8.7, 2.5 Hz, 1H), 7.14 (t, J = 7.6 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 6.78-6.70 (m, 2H), 3.70 (s, 2H), 3.66 (t, J = 5.2 Hz, 4H), 2.61 (t, J = 5.0 Hz, 4H), 2.41 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 158.4, 147.9, 144.1,

138.2, 130.4, 128.4, 124.4, 124.4, 118.6, 115.5, 106.8, 54.9, 46.2, 45.1. HRMS (m/z): calcd for $C_{16}H_{20}N_4$ [M+H]⁺: 269.1761, Found: 269.1769.

2-(6-phenylpyridin-3-yl)aniline (1b-11)

Prepared according to general procedure 1 to afford **1b-11** (393 mg, 80% yield) as a pale brown solid, (m.p. 90-92 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.81 (d, J = 2.4 Hz, 1H), 8.05 (d, J = 7.1 Hz, 2H), 7.90 (dd, J = 8.2, 2.3 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.54-7.48 (m, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.25-7.16 (m, 2H), 6.89 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 3.69 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 156.0, 149.8, 143.9, 138.9, 137.3, 133.6, 131, 130.5, 129.3, 129.1, 128.8, 126.8, 123.6, 120.4, 119.0, 118.8, 115.9. HRMS (m/z): calcd for C₁₇H₁₄N₂ [M+H]⁺: 247.1230, Found: 247.1234.

2-(5-phenylpyridin-3-yl)aniline (1b-12)

Prepared according to general procedure 1 to afford **1b-12** (413 mg, 84% yield) as a yellow solid, (m.p. 152-154 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.76 (s, 1H), 8.62 (s, 1H), 7.95 (s, 1H), 7.57-7.51 (m, 2H), 7.41 (t, *J* = 7.4 Hz, 2H), 7.35 (dd, *J* = 7.1, 1.7 Hz, 1H), 7.14 (tt, *J* = 7.8, 1.7 Hz, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.80 (t, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 3.54 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 148.4, 146.7, 143.8, 137.4, 136.6, 135.3, 135.0, 130.6, 129.5, 129.1, 128.3, 127.2, 124.4, 124.0, 123.5, 119.0, 115.9. HRMS (m/z): calcd for C₁₇H₁₄N₂ [M+H]⁺: 247.1230, Found: 247.1128.

2-(4-phenylpyridin-3-yl)aniline (1b-13)

Prepared according to general procedure 1 to afford **1b-13** (403 mg, 82% yield) as a yellow solid, (m.p. 140-141 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.63 (d, J = 19.1 Hz, 2H), 7.40 (s, 1H), 7.25 (s, 5H), 7.09 (t, J = 7.6 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 6.71 (t, J = 7.2 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 3.37 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 151.8, 149.1, 148.6, 143.9, 138.2, 131.3, 129.1, 128.5, 128.3, 128.3, 123.1, 118.5, 115.5. HRMS (m/z): calcd for C₁₇H₁₄N₂ [M+H]⁺: 247.1230, Found: 247.1238.

2-(6-(thiophen-2-yl)pyridin-3-yl)aniline (1b-14)

Prepared according to general procedure 1 to afford **1b-14** (413 mg, 82% yield) as a gray solid, (m.p. 78-80 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.68 (s, 1H), 7.86-7.79 (m, 1H), 7.73 (d, *J* = 8.1 Hz, 1H), 7.65 (d, *J* = 3.4 Hz, 1H), 7.42 (d, *J* = 5.0 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 1H), 7.16-7.09 (m, 2H), 6.86 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 3.74 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 151.3, 149.7, 143.9, 137.2, 133.4, 131.0, 130.4, 129.3, 128.2, 127.7, 124.7, 123.5, 119.0, 118.6, 115.9. HRMS (m/z): calcd for C₁₅H₁₂N₂S [M+H]⁺: 253.0794, Found: 253.0805.

2-([2,2'-bipyridin]-5-yl)aniline (1b-15)^[9]

Prepared according to general procedure 1 to afford **1b-15** (430 mg, 87% yield) as a brown solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.67 (s, 1H), 8.57 (d, J = 4.8 Hz, 1H), 8.32 (dd, J = 13.9, 8.1 Hz, 2H), 7.81 (dd, J = 8.2, 2.2 Hz, 1H), 7.69 (t, J = 7.8 Hz, 1H), 7.18 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 7.06 (dd, J = 16.6, 7.7 Hz, 2H), 6.74 (t, J = 7.5 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 3.61 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 155.8, 154.7,

149.4, 149.2, 143.9, 137.4, 137.0, 135.3, 130.5, 129.4, 123.7, 123.5, 121.0, 120.9, 118.9, 115.9. HRMS (m/z): calcd for C₁₆H₁₃N₃ [M+H]⁺: 248.1182, Found: 248.1183.

1-(5-(2-aminophenyl)pyridin-3-yl)ethan-1-one (1b-16)

Prepared according to general procedure 1 to afford **1b-16** (335 mg, 79% yield) as a brown solid, (m.p. 244-245 °C). ¹H-NMR (400 MHz, CDCl₃): δ 9.04 (d, J = 2.1 Hz, 1H), 8.83 (d, J = 2.2 Hz, 1H), 8.29 (td, J = 2.2, 0.6 Hz, 1H), 7.20-7.13 (m, 1H), 7.05 (dd, J = 7.6, 1.6 Hz, 1H), 6.81 (t, J = 7.3 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 3.71 (s, 2H), 2.61 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 196.7, 153.7, 148.2, 143.8, 135.8, 135.5, 132.1, 130.5, 129.8, 122.5, 119.0, 116.1, 26.8. HRMS (m/z): calcd for C₁₃H₁₂N₂O [M+H]⁺: 213,1022, Found: 213.1018.

(5-(2-aminophenyl)pyridin-3-yl)(pyrrolidin-1-yl)methanone (1b-17)

Prepared according to general procedure 1 to afford **1b-17** (432 mg, 81% yield) as a brown solid, (m.p. 135-137 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.72 (s, 2H), 7.93 (s, 1H), 7.14-7.06 (m, 1H), 7.03 (d, J = 7.5 Hz, 1H), 6.80-6.67 (m, 2H), 3.75 (s, 2H), 3.59 (t, J = 6.8 Hz, 2H), 3.43 (t, J = 6.5 Hz, 2H), 1.88 (dq, J = 19.1, 6.8 Hz, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ 166.9, 150.7, 146.4, 144.0, 135.1, 133.0, 130.5, 129.6, 122.6, 118.8, 116.0, 49.5, 46.4, 26.4, 24.4. HRMS (m/z): calcd for C₁₆H₁₇N₃O [M+H]⁺: 268.1444, Found: 268.1438.

Preparation of 2-(6-(trifluoromethyl)pyridin-3-yl)aniline (1b-18)

Prepared according to general procedure 1 to afford **1b-18** (371 mg, 78% yield) as a brown solid, (m.p. 45-47 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.70 (s, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 1.6 Hz, 1H), 7.11 (tt, J = 7.7, 1.8 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.75 (t, J = 7.5 Hz, 1H), 6.68 (d, J = 7.9 Hz, 1H), 3.62 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.2, 146.6 (q, J = 34.5 Hz), 143.8, 138.4, 137.8, 130.5, 130.1, 123.0, 122.2, 120.4 (q, J = 2.7 Hz), 119.2, 116.2. HRMS (m/z): calcd for C₁₂H₉N₂F₃ [M+H]⁺: 239.0791, Found: 239,0798.

2-(quinolin-3-yl)aniline (1b-19)^[5]

Prepared according to general procedure 1 to afford **1b-19** (352 mg, 80% yield) as a gray solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.95 (s, 1H), 8.18 (s, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.69-7,63 (m, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.19-7.10 (m, 2H), 6.82 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 3.36 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 151.4, 147.0, 144.0, 135.5, 132.4, 130.8, 129.6, 129.4, 129.2, 127.9, 127.8, 127.0, 123.7, 119.1, 116.0. HRMS (m/z): calcd for C₁₅H₁₂N₂ [M+H]⁺: 221.1073, Found: 221.1082.

5-methyl-2-(quinolin-3-yl)aniline (1b-20)

Prepared according to general procedure 1 to afford **1b-20** (360 mg, 77% yield) as a gray solid, (m.p. 125-127 °C). ¹H-NMR (400 MHz, CDCl₃): δ 9.02 (s, 1H), 8.24 (s, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.60-7.54 (m, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 6.66 (s, 1H), 3.76 (s, 2H), 2.34 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 151.7, 147.0, 143.8, 139.5, 135.3, 132.5, 130.7, 129.4, 129.2, 128.0, 127.8, 126.9, 121.0, 120.1, 116.6, 21.3. HRMS (m/z): calcd for C₁₆H₁₄N₂ [M+H]⁺: 235.1230, Found: 235.1240.

2-(pyrimidin-5-yl)aniline (1b-21)^[10]

Prepared according to general procedure 1 to afford **1b-21** (280 mg, 82% yield) as a brown solid. ¹H-NMR (400 MHz, CDCl₃): δ 9.12 (s, 1H), 8.80 (d, J = 2.2 Hz, 2H), 7.20 -7.14 (m, 1H), 7.02 (dt, J = 7.5, 1.8 Hz, 1H), 6.83-6.73 (m, 1H), 6.74 (dd, J = 8.1, 1.3 Hz, 1H), 3.68 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 157.4, 157.0, 143.8, 133.4, 130.5, 130.2, 119.9, 119.3, 116.2. HRMS (m/z): calcd for C₁₀H₉N₃ [M+H]⁺: 172.0869, Found: 172.0867.

2-(pyrazin-2-yl)aniline (1b-22)^[11]

Prepared according to general procedure 1 to afford **1b-22** (273 mg, 80% yield) as a yellowish-brown solid. ¹H-NMR (400 MHz, CDCl₃): δ 8.99 (s, 1H), 8.51 (s, 1H), 8.42 (d, *J* = 2.6 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.25-7.18 (m, 1H), 6.84-6.74 (m, 2H), 5.37 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 154.8, 147.2, 143.7, 141.8, 141.1, 131.0, 129.0, 118.5, 117.8, 117.4. HRMS (m/z): calcd for C₁₀H₉N₃ [M+H]⁺: 172.0869, Found: 172.0867.

2-(quinoxalin-2-yl)aniline (1b-23)^[12]

Prepared according to general procedure 1 to afford **1b-23** (353 mg, 80% yield) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃): δ 9.20 (s, 1H), 7.97 (dd, J = 7.9, 1.9 Hz, 1H), 7.90 (dd, J = 8.1, 1.6 Hz, 1H), 7.71 (dd, J = 8.0, 1.5 Hz, 1H), 7.65-7.56 (m, 2H), 7.14 (ddd, J = 8.4, 7.2, 1.5 Hz, 1H), 6.76-6.69 (m, 2H), 5.64 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 153.5, 148.1, 144.6, 140.4, 140.1, 131.3, 130.1, 129.3, 129.0, 129.0, 128.6, 118.1, 117.5, 117.5. HRMS (m/z): calcd for C₁₄H₁₁N₃ [M+H]⁺: 222.1026, Found: 222.1030.

2-(pyrazolo[1,5-*a*]pyridin-6-yl)aniline (1b-24)

Prepared according to general procedure 1 to afford **1b-24** (301 mg, 72% yield) as a brown oil. ¹H-NMR (400 MHz, CDCl₃): δ 8.55 (s, 1H), 7.96 (d, J = 2.3 Hz, 1H), 7.57 (d, J = 9.1 Hz, 1H), 7.25-7.13 (m, 3H), 6.83 (td, J = 7.4, 1.1 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 6.53 (d, J = 2.3 Hz, 1H), 3.69 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 144.2, 142.2, 139.1, 130.6, 129.3, 127.7, 125.5, 123.9, 123.0, 118.8, 118.0, 115.8, 96.9. HRMS (m/z): calcd for C₁₃H₁₁N₃ [M+H]⁺: 210.1026, Found: 210.1024.

2-(1,10-phenanthrolin-3-yl)aniline (1b-25)

Prepared according to general procedure 1 to afford **1b-25** (443 mg, 80% yield) as a red solid, (m.p. 160-162 °C). ¹H-NMR (400 MHz, CDCl₃): δ 9.14 (s, 1H), 9.07 (d, J = 3.6 Hz, 1H), 8.33 (d, J = 2.2 Hz, 1H), 8.28 (dd, J = 8.1, 1.7 Hz, 1H), 7.82 (s, 2H), 7.62 (dd, J = 8.1, 4.4 Hz, 1H), 7.19 (t, J = 7.3 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.82 (dd, J = 13.2, 8.4 Hz, 2H), 3.57 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 152.8, 149.4, 145.8, 144.2, 141.6, 136.5, 128.9, 128.6, 128.4, 128.2, 123.7, 123.2, 122.9, 122.4, 120.5, 120.3, 118.2, 111.8. HRMS (m/z): calcd for C₁₈H₁₃N₃ [M+H]⁺: 272.1182 , Found: 282.1191.

2.2 General procedure 2: for the synthesis of 5-bromo-2-(pyridin-3-yl)aniline derivatives **1a-11**, **1a-21**

$$H_{2} = H_{1,4-\text{dionane, 110 °C, 16 h}} = H_{1,4$$

A clean, oven-dried Schlenk tube with previously placed magnetic stir-bar was charged with 5-bromo-2-iodoaniline (594 mg, 1.0 equiv.), pyridin-3-ylboronic acid (295 mg, 1.2 equiv.), $Pd(PPh_3)_2Cl_2$ (70.2 mg, 5.0 mmol%) and K_3PO_4 (1.27 g, 3.0 equiv.). The reaction was evacuated and back filled with nitrogen and this sequence was repeated for three additional times. Under the positive flow of nitrogen, 1,4-dioxane (10 mL) was added to the reaction mixture. The reaction mixture was vigorously stirred at 110 °C for 16 h. Next, the reaction was allowed to cool at room temperature and the reaction mixture was extracted with ethyl acetate (3×50 mL) and brine solution (3×25 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and chromatographic separation with silica gel to give the desired product (**1a-11**).

5-bromo-2-(pyridin-3-yl)aniline (1a-11)

Prepared according to general procedure 2 to afford **1a-11** (373 mg, 75% yield) as a yellow solid, (m.p. 48-50 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.64 (d, J = 2.1 Hz, 1H), 8.57 (dd, J = 5.1, 1.7 Hz, 1H), 7.74 (dt, J = 7.9, 1.9 Hz, 1H), 7.35 (dd, J = 7.9, 4.8 Hz,

1H), 6.95-6.89 (m, 3H), 3.77 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.8, 148.7, 145.1, 136.5, 134.3, 131.8, 123.7, 123.0, 122.4, 121.7, 118.3. HRMS (m/z): calcd for C₁₁H₉N₂Br [M+H]⁺: 249.0022, Found: 249.0029.

4-bromo-2-(pyridin-3-yl)aniline (1a-21)

Prepared according to general procedure 2 to afford **1a-21** (348 mg, 70% yield) as a brown solid, (m.p. 72-73 °C). ¹H-NMR (400 MHz, CDCl₃): δ 8.61 (d, J = 2.3 Hz, 1H), 8.54 (dd, J = 4.9, 1.7 Hz, 1H), 7.71 (dt, J = 7.9, 2.0 Hz, 1H), 7.32 (dd, J = 7.9, 4.8 Hz, 1H), 7.21 (dd, J = 8.5, 2.4 Hz, 1H), 7.16 (d, J = 2.3 Hz, 1H), 6.61 (d, J = 8.5 Hz, 1H), 3.80 (s, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.7, 148.8, 143.0, 136.5, 134.0, 132.8, 131.9, 125.3, 123.7, 117.4, 110.2. HRMS (m/z): calcd for C₁₁H₉BrN₂ [M+H]⁺: 249.0922, Found: 249.0029.

3. Detailed Reaction Optimization

The mixture of 2-(pyridin-3-yl)aniline (68.0 mg, 0.4 mmol), base (2-10 equiv.) in dry solvent (X mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at temp.. Next, the reaction was allowed to cool at room temperature and the reaction mixture was extracted with ethyl acetate (3×50 mL) and brine solution (3×25 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and chromatographic separation with silica gel to give the substrate (**1a-1**) and product (**2a-1**).

 Table S1.
 Screening of base type^a

NH ₂ H 1a-1	base (4.0 equiv.) DMSO, 100 °C, 16 h, N₂	2a-1	+ H ₂
Entry	base (4.0 equiv.)	Yield (%) ^b	Conv. (%) ^{<i>b</i>}
1	^t BuONa	N.R.	0
2	^t BuOK	25	30
3	CH ₃ ONa	N.R.	0
4	CH ₃ OK	N.R.	0
5	C ₂ H ₅ ONa	N.R.	0
6	C ₂ H ₅ OK	N.R.	0
7	NaOH	N.R.	0
8	КОН	N.R.	0

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), **base** (4.0 equiv.), DMSO (4 mL), 100 °C, N₂ (1.0 atm), 16 h; ^{*b*} Isolated yield.

Table S2. Screening of base equivalent^a

Entry	^t BuOK (X equiv.)	Yield (%) ^b	Conv. (%) ^{<i>b</i>}
1	2.0	4	5
2	4.0	25	30
3	6.0	50	78
4	8.0	60	95
5	10.0	65	100

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), ^{*b*} BuOK (X equiv.), DMSO (4 mL), 100 °C, N_2 (1.0 atm), 16 h; ^{*b*} Isolated yield.

 Table S3.
 Screening of solvent^a

Entry	solvent	Yield (%) ^b	Conv. (%) ^{<i>b</i>}
1	DMSO	65	100
2	DMF	0	100
3	1,4-dioxane	70	90
4	THF	61	90
5	toluene	96	100
6	MeOH	0	0

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), ^{*b*} BuOK (456.0 mg, 10.0 equiv.), solvent (4 mL), 100 °C, N₂ (1.0 atm), 16 h; ^{*b*} Isolated yield.

9,9a-dihydro-1*H*-pyrido[2,3-*b*]indole-1-carbaldehyde

The mixture of 2-(pyridin-3-yl)aniline (68.0 mg, 0.4 mmol), 'BuOK (456.0 mg, 10.0 equiv.) in dry DMF (4.0 mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at 100°C for 4 hours. Next, the reaction was allowed to cool at room temperature and the reaction mixture was extracted with ethyl acetate (3×50 mL) and brine solution (3×25 mL). The organic layer was collected and dried over anhydrous Na2SO4. The solvent was evaporated under reduced pressure and chromatographic separation with silica gel to give the product **2a-DMF** (85% yield) as a faint yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ 9.61 (d, *J* = 63.3 Hz, 1H), 8.68-8.49 (m, 2H), 8.22 (d, *J* = 56.9 Hz, 1H), 7.82 (dd, *J* = 24.4, 8.6 Hz, 2H), 7.51-7.27 (m, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ 162.9, 159.7, 149.6, 148.6, 137.1, 131.2, 130.4, 129.2, 126.1, 125.2, 123.2, 120.9. HRMS (m/z): calcd for C₁₂H₁₀N₂O [M+H]⁺: 198.0793, Found: 198,0798.

Table S4. Screening of base equivalent^a

Entry	'BuOK (X equiv.)	Yield (%) ^b	Conv. (%) ^{<i>b</i>}
1	2.0	4	5
2	4.0	31	35
3	6.0	55	60
4	8.0	79	85
5	9.0	92	95
6	10.0	96	100

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), ^{*b*} BuOK (X equiv.), toluene (4 mL), 100 °C, N₂(1.0 atm), 16 h; ^{*b*} Isolated yield.

 Table S5.
 Screening of temperature^a

H H 1a-1	^t BuOK (10.0 equiv.) toluene, temp., 16 h, N ₂	2a-1	+ H ₂
Entry	temperature (°C)	Yield (%) ^b	Conv. (%) ^{<i>b</i>}
1	25	0	0
2	40	2	5
3	60	16	20
4	70	25	30
5	80	40	50
6	90	80	85
7	100	96	100
8	110	90	100

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), ^{*b*} BuOK (456.0 mg, 10.0 equiv.), toluene (4 mL), N₂ (1.0 atm), 16 h; ^{*b*} Isolated yield.

Table S6. Screening of volume of solvent^a

Entry	Volume (ml)	Yield (%) ^{<i>b</i>}	Conv. (%) ^{<i>b</i>}
1	4	96	100
2	6	96	100
3	8	96	100
4	10	96	100

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), ^{*t*}BuOK (456.0 mg, 10.0 equiv.), toluene (X mL), 100 °C, N₂(1.0 atm), 16 h; ^{*b*} Isolated yield.

Entry	Atmosphere	Y ield (%) ^b	Conv. (%) ^s
1	Air ^c	50	100
2	N_2	96	100
3	$O_2 d$	trace	100

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), 'BuOK (456.0 mg, 10.0 equiv.), toluene (4 mL), 100 °C, N₂ (1.0 atm), 16 h; ^{*b*} Isolated yield; ^{*c*} Air; ^{*d*} O₂ (1.0 atm).

Table 50. Dereening of the relationship between base equivalent and this	Table S8.	Screening of	the relationship	p between base e	equivalent and	time ^{<i>c</i>}
---	-----------	--------------	------------------	------------------	----------------	--------------------------

	toluene, t °C, 16h, N ₂	N N N	÷	H ₂
1a-1		2a-1		

Entry	^t BuOK (X equiv.)	Time (h)	Yield (%) b	Conv. (%) ^{<i>b</i>}
1	2	72	55	60
2	4	72	90	95
3	6	72	96	100
4	8	72	96	100
5	2^{c}	144	96	100

^{*a*} Reaction conditions: **1a-1** (68.0 mg, 0.4 mmol), ^{*t*}BuOK (X equiv.), toluene (4 mL), 100 °C, N₂ (1.0 atm), 72 h; ^{*b*} Isolated yield; ^c ^{*t*}BuOK (2.0 equiv.), 144 h.

4. Intramolecular C(sp²)-H Amination of Azines

4.1 General procedure A: for the synthesis of C(sp²)-H amination of azines product **2a** and **2b**

A clean, oven-dried Schlenk tube with previously placed magnetic stir-bar was charged with 2-(pyridin-3-yl)aniline (34.0 mg, 0.2 mmol) and ^{*t*}BuOK (224 mg, 10 equiv.). The reaction was evacuated and back filled with nitrogen and this sequence was repeated for three additional times. Under the positive flow of nitrogen, dry toluene (2.0 mL) was added to the reaction mixture. The reaction mixture was vigorously stirred at 100 °C for 16 h. Next, the reaction was allowed to cool at room temperature and the reaction mixture was extracted with ethyl acetate (3×50 mL) and brine solution (3×25 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and chromatographic separation with silica gel to give the desired **2a-1** as a white solid.

9H-pyrido[2,3-b]indole (2a-1)^[13]

Prepared according to general procedure A to afford **2a-1** (32.2 mg, 96% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.82 (s, 1H), 8.47 (dt, J = 7.7, 1.6 Hz, 1H), 8.43 (dt, J = 4.8, 1.6 Hz, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.49-7.43 (m, 1H), 7.24 -7.16 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.4, 146.5, 139.3, 128.8, 127.0, 121.5, 120.8, 119.8, 115.6, 115.4, 111.7. HRMS (ESI) m/z calcd for C₁₁H₈N₂ [M+H]⁺: 169.0761, Found: 169.0770.

8-methyl-9*H*-pyrido[2,3-*b*]indole (2a-2)

Prepared according to general procedure A to afford **2a-2** (35.8 mg, 98% yield) as a white solid, (m.p. 234-236 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.79 (s, 1H), 8.50-8.39 (m, 2H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.18 (dd, *J* = 7.7, 4.9 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.6, 146.3, 138.5, 128.8, 127.5, 121.1, 120.4, 119.9, 118.9, 116.0, 115.4, 17.5. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂ [M+H]⁺: 183.0917, Found: 183.0920.

7-methyl-9*H*-pyrido[2,3-*b*]indole (2a-3)^[13]

Prepared according to general procedure A to afford **2a-3** (27.8 mg, 76% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.68 (s, 1H), 8.42-8.35 (m, 2H), 8.00 (d, J = 7.9 Hz, 1H), 7.31 (s, 1H), 7.15 (dd, J = 7.6, 4.9 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.4, 145.8, 139.7, 136.7, 128.2, 121.3, 121.3, 118.5, 115.8, 115.2, 111.6, 22.2. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂ [M+H]⁺: 183.0917, Found: 183.0920.

6-methyl-9*H*-pyrido[2,3-*b*]indole (2a-4)^[13]

Prepared according to general procedure A to afford **2a-4** (32.2 mg, 87% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.66 (s, 1H), 8.46-8.36 (m, 2H), 7.92

(s, 1H), 7.40 (d, J = 8.2 Hz, 1H), 7.26 (dd, J = 8.3, 1.6 Hz, 1H), 7.15 (dd, J = 7.7, 4.9 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.6, 146.3, 137.4, 128.6, 128.5, 128.3, 121.3, 120.9, 115.5, 115.1, 111.4, 21.5. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂ [M+H]⁺: 183.0917, Found: 183.0920.

5-methyl-9*H*-pyrido[2,3-*b*]indole (2a-5)^[13]

Prepared according to general procedure A to afford **2a-5** (32.1 mg, 87% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.82 (s, 1H), 8.42 (td, J = 6.1, 5.1, 2.7 Hz, 2H), 7.38-7.32 (m, 2H), 7.20 (ddd, J = 7.0, 4.9, 1.9 Hz, 1H), 7.01 (t, J = 2.7 Hz, 1H), 2.77 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.1, 145.7, 139.2, 133.7, 130.3, 126.9, 121.1, 119.4, 116.0, 115.3, 109.2, 20.5. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂ [M+H]⁺: 183.0917, Found: 183.0915.

6-isopropyl-9H-pyrido[2,3-b]indole (2a-6)

Prepared according to general procedure A to afford **2a-6** (29.4 mg, 70% yield) as a white solid, (m.p. 139-141 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.65 (s, 1H), 8.47 (d, *J* = 7.6 Hz, 1H), 8.38 (d, *J* = 4.7 Hz, 1H), 8.00 (s, 1H), 7.47-7.29 (m, 2H), 7.16 (dd, *J* = 7.6, 4.9 Hz, 1H), 3.03 (hept, *J* = 6.9 Hz, 1H), 1.29 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.6, 146.2, 140.0, 137.7, 128.5, 125.9, 120.8, 118.6, 115.7, 115.1, 111.4, 34.0, 25.0. HRMS (ESI) m/z calcd for C₁₄H₁₄N₂ [M+H]⁺: 211.1230, Found: 211.1234.

6-(*tert*-butyl)-9*H*-pyrido[2,3-*b*]indole (2a-7)

Prepared according to general procedure A to afford **2a-7** (34.0 mg, 76% yield) as a white solid, (m.p. 185-187 °C). ¹H NMR (400 MHz, DMSO- d_6): δ 11.67 (s, 1H), 8.51 (d, J = 7.7 Hz, 1H), 8.38 (d, J = 4.8 Hz, 1H), 8.16 (s, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.19-7.14 (m, 1H), 1.38 (s, 9H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.6, 146.1, 142.3, 137.3, 128.6, 124.9, 120.5, 117.5, 115.9, 115.1, 111.1, 34.9, 32.2. HRMS (ESI) m/z calcd for C₁₅H₁₆N₂ [M+H]⁺: 225.1386, Found: 225.1393.

8-methoxy-9H-pyrido[2,3-b]indole (2a-8)^[14]

Prepared according to general procedure A to afford **2a-8** (36.6 mg, 92% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.94 (s, 1H), 8.44 (dd, J = 13.0, 6.2 Hz, 2H), 7.73 (d, J = 7.8 Hz, 1H), 7.21-7.12 (m, 2H), 7.04 (d, J = 7.9 Hz, 1H), 3.97 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.2, 146.4, 146.2, 129.2, 128.9, 121.9, 120.4, 115.8, 115.4, 113.8, 107.8, 56.0. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂O [M+H]⁺: 199.0866, Found: 199.0866.

6-methoxy-9*H*-pyrido[2,3-*b*]indole (2a-9)^[13]

Prepared according to general procedure A to afford **2a-9** (35.0 mg, 88% yield) as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.64 (s, 1H), 8.47 (dd, J = 7.7, 1.6 Hz, 1H), 8.39 (dd, J = 4.9, 1.6 Hz, 1H), 7.75 (d, J = 2.5 Hz, 1H), 7.42 (d, J = 8.7 Hz, 1H), 7.15 (dd, J = 7.7, 4.8 Hz, 1H), 7.09 (dd, J = 8.8, 2.6 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 153.9, 152.7, 146.4, 133.8, 128.9, 121.2, 116.2, 115.7, 114.9, 112.4, 104.3, 56.0. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂O [M+H]⁺: 199.0866, Found: 199.0866.

5-methoxy-9*H*-pyrido[2,3-*b*]indole (2a-10)^[13]

Prepared according to general procedure A to afford **2a-10** (35.8 mg, 90% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.82 (s, 1H), 8.42-8.35 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H), 7.18 (dd, J = 7.6, 4.9 Hz, 1H), 7.12 (d, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 4.01 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 156.4, 151.6, 145.4, 140.5, 130.0, 128.1, 115.6, 114.8, 109.7, 104.6, 101.1, 55.8. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂O [M+H]⁺: 199.0866, Found: 199.0867.

7-(tert-butoxy)-9*H*-pyrido[2,3-*b*]indole (2a-11)

Prepared according to general procedure A to afford **2a-11** (43.0 mg, 90% yield) as a white solid, (m.p. 194-196 °C). ¹H NMR (400 MHz, DMSO- d_6): δ 11.62 (s, 1H), 8.39 (dd, J = 7.7, 1.6 Hz, 1H), 8.34 (dd, J = 4.9, 1.5 Hz, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.16 (dd, J = 7.7, 4.9 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 6.85 (dd, J = 8.5, 2.0 Hz, 1H), 1.35

(s, 9H). ¹³C NMR (100 MHz, DMSO- d_6): δ 154.8, 152.6, 145.5, 140.0, 128.0, 121.7, 117.1, 116.6, 115.7, 115.4, 106.3, 78.8, 29.1. HRMS (m/z): calcd for C₁₅H₁₆N₂O [M+H]⁺: 241.1335, Found: 241.1340.

6-benzyl-9*H*-pyrido[2,3-*b*]indole (2a-12)

Prepared according to general procedure A to afford **2a-12** (43.0 mg, 83% yield) as a faint yellow solid, (m.p. 191-193 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.72 (s, 1H), 8.47-8.37 (m, 2H), 8.02 (s, 1H), 7.44 (d, *J* = 8.2 Hz, 1H), 7.36-7.23 (m, 5H), 7.20-7.10 (m, 2H), 4.08 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.6, 146.4, 142.6, 137.8, 132.8, 129.0, 128.8, 128.7, 128.1, 126.2, 121.3, 121.0, 115.5, 115.2, 111.6, 41.7. HRMS (ESI) m/z calcd for C₁₈H₁₄N₂ [M+H]⁺: 259.1230, Found: 259.1232.

7-(trifluoromethoxy)-9H-pyrido[2,3-b]indole (2a-13)

Prepared according to general procedure A to afford **2a-13** (29.3 mg, 58% yield) as a white solid, (m.p. 187-189 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.07 (s, 1H), 8.55 (dd, *J* = 7.8, 1.6 Hz, 1H), 8.46 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.27 (d, *J* = 8.5 Hz, 1H), 7.42 (s, 1H), 7.25 (dd, *J* = 7.7, 4.8 Hz, 1H), 7.20 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 152.9, 147.4(q, *J* = 1.9 Hz), 139.5, 129.3, 123.1, 122.0, 119.9, 119.4, 116.0, 114.9, 113.0, 104.2. HRMS (m/z): calcd for C₁₂H₇F₃N₂O [M+H]⁺: 253.0583, Found: 253.0584.

6-(trifluoromethoxy)-9*H*-pyrido[2,3-*b*]indole (2a-14)^[15]

Prepared according to general procedure A to afford **2a-14** (26.1 mg, 51% yield) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.08 (s, 1H), 8.56 (d, *J* = 7.7 Hz, 1H), 8.46 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.28 (d, *J* = 8.5 Hz, 1H), 7.42 (s, 1H), 7.25 (dd, *J* = 7.7, 4.8 Hz, 1H), 7.20 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.9, 147.4 (q, *J* = 2.0 Hz), 147.0, 139.4, 129.4, 123.2, 122.0, 119.9, 116.0, 114.9, 113.1, 104.2. HRMS (m/z): calcd for C₁₂H₇F₃N₂O [M+H]⁺: 253.0583, Found: 253.0581.

8-fluoro-9H-pyrido[2,3-b]indole (2a-15)^[16]

Prepared according to general procedure A to afford **2a-15** (28.8 mg, 77% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 12.33 (s, 1H), 8.55 (d, J = 7.8 Hz, 1H), 8.48 (d, J = 4.2 Hz, 1H), 8.00 (d, J = 7.7 Hz, 1H), 7.32 (dd, J = 11.4, 8.3 Hz, 1H), 7.25 (dd, J = 7.7, 4.8 Hz, 1H), 7.20 (td, J = 7.9, 4.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.5, 148.9 (d, J=22.4 Hz), 147.4, 129.6, 126.9 (d, J = 13.1 Hz), 124.4 (d, J = 5.7 Hz), 120.2 (d, J = 5.9 Hz), 117.7 (d, J = 3.5 Hz), 116.0, 115.5 (d, J = 3.0 Hz), 112.2 (d, J = 16.2 Hz). HRMS (ESI) m/z calcd for C₁₁H₇FN₂ [M+H]⁺: 187.0666, Found: 187.0667.

7-fluoro-9H-pyrido[2,3-b]indole (2a-16)^[13]

Prepared according to general procedure A to afford **2a-16** (28.4 mg, 76% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.92 (s, 1H), 8.47 (dd, J = 7.7, 1.6 Hz, 1H), 8.39 (dd, J = 4.8, 1.7 Hz, 1H), 8.17 (dd, J = 8.6, 5.6 Hz, 1H), 7.25 (dd, J = 9.9, 2.3 Hz, 1H), 7.21 (dd, J = 7.7, 4.9 Hz, 1H), 7.10-7.02 (m, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 163.1, 160.7, 152.8 (d, J = 2.0 Hz), 146.1, 140.0 (d, J = 13.0 Hz), 128.6, 123.2 (d, J = 11.0 Hz), 117.5 (d, J = 20.0 Hz) 115.6 (d, J = 47.0 Hz), 107.9 (d, J = 24.0 Hz), 98.2 (d, J = 26.0 Hz). HRMS (ESI) m/z calcd for C₁₁H₇FN₂ [M+H]⁺: 187.0666, Found: 187.0661.

6-fluoro-9*H*-pyrido[2,3-*b*]indole (2a-17)^[16]

Prepared according to general procedure A to afford **2a-17** (33.0 mg, 88% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.85 (s, 1H), 8.50 (dd, J = 7.7, 1.6 Hz, 1H), 8.44 (dd, J = 4.8, 1.6 Hz, 1H), 8.01 (dd, J = 9.3, 2.6 Hz, 1H), 7.50 (dd, J = 8.8, 4.5 Hz, 1H), 7.30 (td, J = 9.2, 2.6 Hz, 1H), 7.19 (dd, J = 7.7, 4.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 158.3, 156.0, 153.0, 147.2, 135.6, 129.4, 121.3 (d, J = 10.0 Hz), 115.4 (d, J = 4.0 Hz), 115.3, 114.7 (d, J = 25.0 Hz), 112.7 (d, J = 9.0 Hz), 107.2 (d, J = 24.0 Hz). HRMS (ESI) m/z calcd for C₁₁H₇FN₂ [M+H]⁺: 187.0666, Found: 187.0664.

5-fluoro-9H-pyrido[2,3-b]indole (2a-18)^[15]

Prepared according to general procedure A to afford **2a-18** (28.4 mg, 76% yield) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.17 (s, 1H), 8.46 (dd, *J* = 4.9, 1.6 Hz, 1H), 8.36 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.44 (td, *J* = 8.0, 5.5 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.22 (dd, *J* = 7.7, 4.9 Hz, 1H), 7.00 (dd, *J* = 10.3, 7.9 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.6, 157.1, 151.8, 146.9, 141.4 (d, *J* = 9.0 Hz), 130.3 (d, *J* = 2.7 Hz), 128.0 (d, *J* = 8.4 Hz), 116.1, 112.7 (d, *J* = 1.7 Hz), 108.1 (d, *J* = 3.4 Hz), 105.4 (d, *J* = 18.1 Hz). HRMS (ESI) m/z calcd for C₁₁H₇FN₂ [M+H]⁺: 187.0666, Found: 187.0665.

6-chloro-9H-pyrido[2,3-b]indole (2a-19)^[15]

Prepared according to general procedure A to afford **2a-19** (28.8 mg, 71% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.96 (s, 1H), 8.55 (d, J = 7.8 Hz, 1H), 8.45 (d, J = 5.0 Hz, 1H), 8.28 (s, 1H), 7.54-7.43 (m, 2H), 7.22 (ddd, J = 7.7, 4.9, 1.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 152.7, 147.4, 137.6, 129.6, 126.8, 124.2, 122.1, 121.2, 115.8, 114.9, 113.2. HRMS (ESI) m/z calcd for C₁₁H₇ClN₂ [M+H]⁺: 203.0371, Found: 203.0368.

5-chloro-9*H*-pyrido[2,3-*b*]indole (2a-20)

Prepared according to general procedure A to afford **2a-20** (28.7 mg, 71% yield) as a white solid, (m.p. 238-240 °C). ¹H NMR (400 MHz, DMSO- d_6): δ 12.18 (s, 1H), 8.67 (d, J = 7.5 Hz, 1H), 8.50 (dd, J = 4.8, 1.7 Hz, 1H), 7.53-7.43 (m, 2H), 7.27 (dt, J = 7.9, 2.5 Hz, 2H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.1, 147.3, 140.4, 130.4, 128.2,

127.8, 120.2, 118.0, 115.9, 114.3, 110.7. HRMS (ESI) m/z calcd for C₁₁H₇ClN₂ [M+H]⁺: 203.0371, Found: 203.0368.

6-bromo-9*H*-pyrido[2,3-*b*]indole (2a-21)

Prepared according to general procedure A to afford **2a-21** (34.9 mg, 70% yield) as a white solid, (m.p. 210-212 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.96 (s, 1H), 8.55 (d, *J* = 7.7 Hz, 1H), 8.47-8.43 (m, 1H), 8.42 (d, *J* = 2.0 Hz, 1H), 7.57 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.47 (d, *J* = 8.6 Hz, 1H), 7.22 (dd, *J* = 7.8, 4.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.4, 147.4, 137.9, 129.6, 129.4, 124.2, 122.8, 115.8, 114.7, 113.7, 111.9. HRMS (ESI) m/z calcd for C₁₁H₇BrN₂ [M+H]⁺: 246.9865, Found: 246.9872.

6-phenyl-9*H*-pyrido[2,3-*b*]indole (2a-22)

Prepared according to general procedure A to afford **2a-22** (21.1 mg, 43% yield) as a yellow solid, (m.p. 239-241 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.82 (s, 1H), 8.51-8.40 (m, 2H), 7.92 (dd, *J* = 4.3, 2.4 Hz, 1H), 7.54 (dd, *J* = 8.6, 4.1 Hz, 1H), 7.38-7.30 (m, 2H), 7.24-7.13 (m, 2H), 7.09-7,03 (m, 1H), 6.99-6.90 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.2, 152.9, 149.4, 147.0, 136.0, 131.0, 129.4, 122.7, 121.7, 120.2, 117.4, 115.5, 115.3, 112.9, 112.8. HRMS (ESI) m/z calcd for C₁₇H₁₂N₂ [M+H]⁺: 245.1073, Found: 245.1081.

8-(pyridin-2-yl)-9H-pyrido[2,3-b]indole (2a-23)

Prepared according to general procedure A to afford **2a-23** (44.6 mg, 90% yield) as a white solid, (m.p. 226-228 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.94 (s, 1H), 8.89 (d, *J* = 1.5 Hz, 1H), 8.64 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.55 (dd, *J* = 7.7, 1.6 Hz, 1H), 8.44 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 8.12-8.08 (m, 1H), 7.55 (ddd, *J* = 7.9, 4.8, 0.8 Hz, 1H), 7.48 (dd, *J* = 7.4, 1.2 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.23 (dd, *J* = 7.7, 4.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.0, 149.6, 148.8, 146.9, 136.8, 136.7, 134.4, 129.0, 127.6, 124.3, 122.4, 121.9, 121.4, 120.5, 115.8, 115.7. HRMS (ESI) m/z calcd for C₁₆H₁₁N₃ [M+H]⁺: 246.1025, Found: 246.1023.

5,6-difluoro-9*H*-pyrido[2,3-*b*]indole (2a-24)

Prepared according to general procedure A to afford **2a-24** (26.6 mg, 72% yield) as a white solid, (m.p. 235-237 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.18 (s, 1H), 8.51 (d, *J* = 4.9 Hz, 1H), 8.42 (d, *J* = 7.8 Hz, 1H), 7.52 (q, *J* = 8.7 Hz, 1H), 7.33-7.25 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.4, 147.7, 146.3 (d, *J* = 14.9 Hz), 144.7, 143.8 (d, *J* = 14.8 Hz), 142.5 (d, *J* = 9.4 Hz), 136.7 (d, *J* = 8 Hz), 130.7 (d, *J* = 2.6 Hz), 116.3 (d, *J* = 18.4 Hz), 116.10, 107.8 (dd, *J* = 40.0, 31.1 Hz). HRMS (ESI) m/z calcd for C₁₁H₆F₂N₂ [M+H]⁺: 205.0572, Found: 205.0565.

2,2-difluoro-5*H*-[1,3]dioxolo[4,5-*f*]pyrido[2,3-*b*]indole (2a-25)

Prepared according to general procedure A to afford **2a-25** (20.1 mg, 40% yield) as a white solid, (m.p. 241-243 °C). ¹H NMR (400 MHz, DMSO- d_6): δ 12.06 (s, 1H), 8.58-8.31 (m, 2H), 8.20 (s, 1H), 7.48 (s, 1H), 7.21 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.2, 146.3, 142.5, 137.8, 135.2 134.2, 131.7, 128.8, 115.7, 115.5, 102.8, 94.3. HRMS (ESI) m/z calcd for C₁₂H₆F₂N₂O₂ [M+H]⁺: 249.0470, Found: 249.0468.

8-(*tert*-butoxy)-6-fluoro-9*H*-pyrido[2,3-*b*]indole (2a-26)

Prepared according to general procedure A to afford **2a-26** (30.9 mg, 60% yield) as a white solid, (m.p. 145-147 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.84 (s, 1H), 8.47 (dd, *J* = 14.2, 6.2 Hz, 2H), 7.75 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.19 (dd, *J* = 7.3, 4.9 Hz, 1H), 7.01 (dd, *J* = 11.1, 2.0 Hz, 1H), 1.43 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 157.8, 155.5, 152.8, 147.3, 141.6 (d, *J* = 11.5 Hz), 131.2, 129.5, 121.6 (d, *J* = 11.9 Hz), 115.3, 109.1 (d, *J* = 25.7 Hz), 102.0 (d, *J* = 23.8 Hz), 81.5, 28.7. HRMS (ESI) m/z calcd for C₁₅H₁₅FN₂O [M+H]⁺: 259.1241, Found: 259.1246.

7-(*tert*-butoxy)-6,8-difluoro-9*H*-pyrido[2,3-*b*]indole (2a-27)

Prepared according to general procedure A to afford **2a-27** (35.3 mg, 64% yield) as a white solid, (m.p. 200-202 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.28 (s, 1H), 8.52-8.43 (m, 2H), 7.96 (d, *J* = 10.2 Hz, 1H), 7.23 (dd, *J* = 7.8, 4.8 Hz, 1H), 1.37 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.5 (d, *J* = 2.5 Hz), 153.0, 151.1 (d, *J* = 2.6 Hz), 147.2, 145.2 (d, *J* = 5.4 Hz), 142.8 (d, *J* = 5.3 Hz), 129.5, 124.4 (d, *J* = 12.5 Hz), 115.9,

103.6 (dd, J = 29.5, 3.7 Hz), 103.5, 83.5, 28.5. HRMS (ESI) m/z calcd for C₁₅H₁₄F₂N₂O [M+H]⁺: 277.1147, Found: 277.1151.

9H-pyrrolo[2,3-b:5,4-b']dipyridine (2a-28)^[13]

Prepared according to general procedure A to afford **2a-28** (12.9 mg, 38% yield) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.38 (s, 1H), 8.56 (dd, *J* = 7.8, 1.6 Hz, 2H), 8.48 (dd, *J* = 4.9, 1.6 Hz, 2H), 7.28 (dd, *J* = 7.7, 4.9 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.7, 147.4, 129.9, 116.3, 114.0. HRMS (ESI) m/z calcd for C₁₀H₇N₃ [M+H]⁺: 170.0713, Found: 170.0714.

5H-pyrrolo[2,3-b:4,5-b']dipyridine (2a-29)^[13]

Prepared according to general procedure A to afford **2a-29** (15.3 mg, 45% yield) as a faint yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.38 (s, 1H), 8.56 (dd, *J* = 7.8, 1.6 Hz, 2H), 8.48 (dd, *J* = 4.9, 1.6 Hz, 2H), 7.28 (dd, *J* = 7.7, 4.9 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.5, 148.6, 142.6, 139.5, 132.9, 129.1, 121.7, 119.0, 116.3, 114.7. HRMS (ESI) m/z calcd for C₁₀H₇N₃ [M+H]⁺: 170.0713, Found: 170.0713.

11*H*-benzo[*g*]pyrido[2,3-*b*]indole (2a-30)^[17]

Prepared according to general procedure A to afford **2a-30** (39.4 mg, 90% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 12.79 (s, 1H), 8.63 (d, J = 8.2 Hz, 1H),

8.56 (d, J = 7.7 Hz, 1H), 8.48 (dd, J = 4.8, 1.6 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.3 Hz, 1H), 7.72-7.62 (m, 2H), 7.58 (ddd, J = 8.3, 6.9, 1.4 Hz, 1H), 7.27 (ddd, J = 7.7, 4.7, 1.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 151.6, 145.7, 135.1, 132.6, 129.0, 128.4, 126.2, 126.2, 122.8, 121.6, 120.4, 120.2, 116.3, 116.0, 115.7. HRMS (ESI) m/z calcd for C₁₅H₁₀N₂ [M+H]⁺: 219.0917, Found: 219.0914.

7H-benzo[e]pyrido[2,3-b]indole (2a-31)^[13]

Prepared according to general procedure A to afford **2a-31** (38.1 mg, 87% yield) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.79 (s, 1H), 8.63 (d, *J* = 8.2 Hz, 1H), 8.56 (d, *J* = 7.7 Hz, 1H), 8.48 (dd, *J* = 4.8, 1.6 Hz, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.72-7.62 (m, 2H), 7.58 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 7.27 (ddd, *J* = 7.7, 4.7, 1.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.6, 145.7, 135.1, 132.6, 129.0, 128.4, 126.2, 126.2, 122.8, 121.6, 120.4, 120.2, 116.3, 116.0, 115.7. HRMS (ESI) m/z calcd for C₁₅H₁₀N₂ [M+H]⁺: 219.0916, Found: 219.0919.

11*H*-pyrido[3',2':4,5]pyrrolo[2,3-*f*]quinoline (2a-32)

Prepared according to general procedure A to afford **2a-32** (30.8 mg, 70% yield) as a white solid, (m.p. >320 °C). ¹H NMR (400 MHz, DMSO- d_6): δ 12.98 (s, 1H), 9.02 (ddd, J = 8.4, 1.7, 0.8 Hz, 1H), 8.95 (dd, J = 4.3, 1.7 Hz, 1H), 8.64 (dd, J = 7.7, 1.6 Hz, 1H), 8.53-8.47 (m, 2H), 7.82 (d, J = 8.8 Hz, 1H), 7.67 (dd, J = 8.3, 4.3 Hz, 1H), 7.33 (dd, J = 7.8, 4.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 151.8, 150.0, 147.8, 146.2, 134.5,

130.9, 128.9, 123.7, 121.5, 121.3, 116.8, 116.4, 115.9, 115.8. HRMS (ESI) m/z calcd for C₁₄H₉N₃ [M+H]⁺: 220.0869, Found: 220.0868.

7H-pyrido[3',2':4,5]pyrrolo[3,2-f]isoquinoline (2a-33)

Prepared according to general procedure A to afford **2a-33** (34.2 mg, 78% yield) as a white solid, (m.p. >320 °C). ¹H NMR (400 MHz, DMSO-*d6*): δ 12.60 (s, 1H), 9.37 (s, 1H), 9.01 (d, J = 7.9 Hz, 1H), 8.66 (d, J = 5.7 Hz, 1H), 8.56 (dd, J = 18.5, 5.3 Hz, 2H), 8.16 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.40 (dd, J = 7.8, 4.7 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.9, 151.1, 145.9, 144.8, 139.6, 132.5, 130.2, 127.7, 124.3, 116.9, 116.8, 115.8, 115.2, 111.4. HRMS (ESI) m/z calcd for C₁₄H₉N₃ [M+H]⁺: 220.0869, Found: 220.0871.

7H-pyrido[3',2':4,5]pyrrolo[2,3-c]isoquinoline (2a-34)

Prepared according to general procedure A to afford **2a-34** (30.8 mg, 70% yield) as a faint yellow solid, (m.p. >320 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.82 (s, 1H), 9.27 (s, 1H), 8.96 (dd, *J* = 7.9, 1.5 Hz, 1H), 8.71 (dd, *J* = 8.4, 1.1 Hz, 1H), 8.53 (dd, *J* = 4.8, 1.5 Hz, 1H), 8.28 (d, *J* = 7.6 Hz, 1H), 7.93 (t, *J* = 7.6 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.38 (dd, *J* = 7.9, 4.8 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.0, 149.8, 147.8, 145.9, 132.3, 132.0, 130.6, 130.0, 124.8, 124.6, 122.9, 116.7, 114.5, 104.2. HRMS (ESI) m/z calcd for C₁₄H₉N₃ [M+H]⁺: 220.0869, Found: 220.0875.

2-methyl-9*H*-pyrido[2,3-*b*]indole (2b-1)^[13]

Prepared according to general procedure A to afford **2b-1** (18.3 mg, 50% yield) as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.64 (s, 1H), 8.35 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 7.2 Hz, 1H), 7.47 (dt, J = 8.1, 1.0 Hz, 1H), 7.40 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.18 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 2.58 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 155.3, 152.2, 138.9, 129.0, 126.3, 121.1, 121.0, 119.6, 115.0, 113.0, 111.6, 24.8. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂ [M+H]⁺: 183.0917, Found: 183.0921.

4-methyl-9*H*-pyrido[2,3-*b*]indole (2b-2)^[18]

Prepared according to general procedure A to afford **2b-2** (30.4 mg, 83% yield) as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.83 (s, 1H), 8.28 (dd, J = 5.0, 1.6 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 6.99 (d, J = 4.0 Hz, 1H), 2.77 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.2, 146.2, 142.1, 139.0, 126.4, 123.1, 121.2, 119.8, 117.2, 114.4, 111.5, 20.0. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂ [M+H]⁺: 183.0917, Found: 183.0918.

2-cyclopropyl-9H-pyrido[2,3-b]indole (2b-3)

Prepared according to general procedure A to afford **2b-3** (30.0 mg, 72% yield) as a white solid, (m.p. 173-175 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.63 (s, 1H), 8.29 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 7.4 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.39-7.34 (m, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 7.9 Hz, 1H), 2.19 (tt, *J* = 7.9, 5.0 Hz, 1H), 0.99 (tt, *J* = 8.1, 2.7 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.0, 152.6, 138.9, 128.7, 126.1, 121.1, 120.9, 119.6, 113.7, 113.1, 111.4, 17.6, 10.5. HRMS (ESI) m/z calcd for C₁₄H₁₂N₂ [M+H]⁺: 209.1073, Found: 209.1074.

(9H-pyrido[2,3-b]indol-2-yl)methanol (2b-4)

Prepared according to general procedure A to afford **2b-4** (16.6 mg, 42% yield) as a yellow solid, (m.p. 236-238 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.64 (s, 1H), 8.46 (d, *J* = 7.9 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 1H), 7.42 (ddd, *J* = 8.2, 7.0, 1.2 Hz, 1H), 7.33 (d, *J* = 7.9 Hz, 1H), 7.20 (ddd, *J* = 8.0, 7.1, 1.1 Hz, 1H), 5.42 (t, *J* = 5.9 Hz, 1H), 4.68 (d, *J* = 5.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.4, 151.8, 139.2, 129.1, 126.6, 121.3, 120.9, 119.7, 114.2, 112.2, 111.6, 65.2. HRMS (ESI) m/z calcd for C₁₂H₁₀N₂O [M+H]⁺: 199.0866, Found: 199.0865.

2-methoxy-9*H*-pyrido[2,3-*b*]indole (2b-5)

Prepared according to general procedure A to afford **2b-5** (25.0 mg, 63% yield) as a faint yellow solid, (m.p. 156-158 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.75 (s, 1H), 8.35 (d, *J* = 8.3 Hz, 1H), 7.99 (d, *J* = 7.7 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.35-7.29 (m, 1H), 7.16 (t, *J* = 7.4 Hz, 1H), 6.62 (dd, *J* = 8.3, 0.9 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.0, 150.7, 138.1, 132.0, 124.9, 121.5, 120.1, 119.8, 111.5,

108.9, 102.4, 53.7. HRMS (ESI) m/z calcd for $C_{12}H_{10}N_2O [M+H]^+$: 199.0866, Found: 199.0868.

2-ethoxy-9H-pyrido[2,3-b]indole (2b-6)^[18]

Prepared according to general procedure A to afford **2b-6** (26.8 mg, 63% yield) as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6) δ 11.71 (s, 1H), 8.33 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 6.59 (d, J = 8.3 Hz, 1H), 4.39 (q, J = 7.0 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 162.6, 150.7, 138.1, 131.9, 124.8, 121.5, 120.1, 119.8, 111.4, 108.8, 102.6, 61.7, 15.0. HRMS (ESI) m/z calcd for C₁₃H₁₂N₂O [M+H]⁺: 213.1022, Found: 213.1027.

2-isopropoxy-9*H*-pyrido[2,3-*b*]indole (2b-7)

Prepared according to general procedure A to afford **2b-7** (25.0 mg, 55% yield) as a yellow solid, (m.p. 92-94 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.71 (s, 1H), 8.33 (dd, *J* = 8.3, 4.0 Hz, 1H), 7.98 (dd, *J* = 7.8, 4.1 Hz, 1H), 7.40 (dd, *J* = 8.0, 4.1 Hz, 1H), 7.34-7.26 (m, 1H), 7.20-7.10 (m, 1H), 6.54 (dd, *J* = 8.3, 3.9 Hz, 1H), 5.38-5.27 (m, 1H), 1.35 (dd, *J* = 6.2, 3.9 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 162.1, 150.7, 138.0, 132.0, 124.8, 121.5, 120.1, 119.8, 111.4, 108.62, 103.2, 67.8, 22.4. HRMS (ESI) m/z calcd for C₁₄H₁₄N₂O [M+H]⁺: 227.1178, Found: 227.1179.

2-(tert-butoxy)-9H-pyrido[2,3-b]indole (2b-8)

Prepared according to general procedure A to afford **2b-8** (16.8 mg, 35% yield) as a yellow solid, (m.p. 133-135 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.60 (s, 1H), 8.29 (d, *J* = 8.3 Hz, 1H), 7.97 (d, *J* = 7.9 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.34-7.27 (m, 1H), 7.18-7.11 (m, 1H), 6.49 (d, *J* = 8.4 Hz, 1H), 1.62 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.1, 154.8, 142.8, 136.3, 129.5, 126.1, 124.8, 124.4, 116.0, 113.1, 109.8, 84.2, 33.6. HRMS (ESI) m/z calcd for C₁₅H₁₆N₂O [M+H]⁺: 241.1335, Found: 241.1334.

4-(9*H*-pyrido[2,3-*b*]indol-2-yl)morpholine (2b-9)

Prepared according to general procedure A to afford **2b-9** (22.8 mg, 45% yield) as a faint yellow solid, (m.p. 175-177 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.33 (s, 1H), 8.21 (d, *J* = 8.6 Hz, 1H), 7.89 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.69 (d, *J* = 8.6 Hz, 1H), 3.78-3.71 (m, 4H), 3.56-3.51 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 158.5, 151.8, 138.1, 130.7, 124.2, 121.9, 119.6, 119.5, 111.1, 106.8, 100.1, 70.2, 66.5, 46.1. HRMS (ESI) m/z calcd for C₁₅H₁₅N₃O [M+H]⁺: 254.1288, Found: 254.1289.

2-(4-methylpiperazin-1-yl)-9*H*-pyrido[2,3-*b*]indole (2b-10)

Prepared according to general procedure A to afford **2b-10** (40.4 mg, 76% yield) as a faint yellow solid, (m.p. 188-190 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.49 (s, 1H), 8.45 (dd, J = 7.7, 1.6 Hz, 1H), 8.36 (dd, J = 4.8, 1.6 Hz, 1H), 7.70 (d, J = 2.3 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.19 (dd, J = 8.8, 2.4 Hz, 1H), 7.13 (dd, J = 7.7, 4.8 Hz, 1H), 3.15 (t, J = 4.9 Hz, 4H), 2.54 (t, J = 4.9 Hz, 4H), 2.26 (s, 3H). ¹³C NMR (100 MHz, 2.26 NMR)

DMSO- d_6): δ 152.7, 146.1, 145.9, 133.8, 128.6, 121.2, 118.8, 115.9, 114.8, 112.0, 108.2, 55.3, 50.7, 46.1. HRMS (ESI) m/z calcd for C₁₆H₁₈N₄ [M+H]⁺: 267.1604, Found: 267.1601.

2-phenyl-9*H*-pyrido[2,3-*b*]indole (2b-11)^[19]

Prepared according to general procedure A to afford **2b-11** (32.3 mg, 66% yield) as a faint yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.89 (s, 1H), 8.53 (d, *J* = 8.1 Hz, 1H), 8.16 (dd, *J* = 12.5, 7.4 Hz, 3H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.55-7.39 (m, 5H), 7.25-7.20 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.4, 152.5, 139.9, 139.8, 129.6, 129.2, 129.0, 127.1, 127.0, 121.5, 120.8, 112.0, 114.7, 112.4, 111.7. HRMS (ESI) m/z calcd for C₁₇H₁₂N [M+H]⁺: 245.1073, Found: 245.1075.

3-phenyl-9*H*-pyrido[2,3-*b*]indole (2b-12)^[13]

Prepared according to general procedure A to afford **2b-12** (41.6 mg, 85% yield) as a faint yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.89 (s, 1H), 8.82 (d, J = 2.2 Hz, 1H), 8.75 (d, J = 2.2 Hz, 1H), 8.25 (d, J = 7.8 Hz, 1H), 7.80 (d, J = 7.2 Hz, 2H), 7.57-7.45 (m, 4H), 7.37 (t, J = 7.3 Hz, 1H), 7.25 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 151.9, 145.2, 139.9, 139.1, 129.5, 128.1, 127.4, 127.3, 127.2, 127.0, 121.9, 121.0, 112.0, 115.8, 111.8. HRMS (ESI) m/z calcd for C₁₇H₁₂N [M+H]⁺: 245.1073, Found: 245.1076.

4-phenyl-9*H*-pyrido[2,3-*b*]indole (2b-13)^[20]

Prepared according to general procedure A to afford **2b-13** (45.5 mg, 93% yield) as a faint yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.03 (s, 1H), 8.45 (d, *J* = 5.0 Hz, 1H), 7.70-7.64 (m, 2H), 7.64-7.47 (m, 5H), 7.44-7.37 (m, 1H), 7.09 (d, *J* = 4.9 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.7, 146.5, 144.7, 139.4, 138.9, 129.3, 129.2, 128.9, 127.0, 122.3, 120.2, 119.6, 116.3, 112.5, 111.8. HRMS (ESI) m/z calcd for C₁₇H₁₂N [M+H]⁺: 245.1073, Found: 245.1075.

2-(thiophen-2-yl)-9*H*-pyrido[2,3-*b*]indole (2b-14)

Prepared according to general procedure A to afford **2b-14** (47.5 mg, 90% yield) as a white solid, (m.p. 174-176 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.92 (s, 1H), 8.46 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 7.80 (d, *J* = 3.5 Hz, 1H), 7.72 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 5.0 Hz, 1H), 7.47-7.38 (m, 2H), 7.21-7.12 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.1, 149.1, 146.0, 139.6, 129.6, 128.8, 128.2, 126.9, 125.4, 121.4, 121.0, 120.1, 114.6, 111.7, 111.1. HRMS (ESI) m/z calcd for C₁₅H₁₀N₂S [M+H]⁺: 251.0637, Found: 251.0639.

2-(pyridin-2-yl)-9H-pyrido[2,3-b]indole (2b-15)

Prepared according to general procedure A to afford **2b-15** (45.6 mg, 93% yield) as a white solid, (m.p. 108-110 °C). ¹H NMR (400 MHz, DMSO- d_6): δ 11.99 (s, 1H), 8.70 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 8.60 (d, J = 8.1 Hz, 1H), 8.49 (dt, J = 8.0, 1.1 Hz, 1H), 8.34 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.95 (td, J = 7.7, 1.8 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.47 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.41 (ddd, J = 7.5, 4.8, 1.2 Hz,

1H), 7.23 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 160.4, 158.6, 154.5, 154.2, 151.0, 142.5, 142.4, 141.0, 135.4, 134.2, 129.2, 125.7, 127.1, 125.5, 122.1, 120.8. HRMS (ESI) m/z calcd for C₁₆H₁₁N₃ [M+H]⁺: 246.1026, Found: 246.1029.

1-(9H-pyrido[2,3-b]indol-3-yl)ethan-1-one (2b-16)

Prepared according to general procedure A to afford **2b-16** (14.7 mg, 35% yield) as a white solid, (m.p. 178-180 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.26 (s, 1H), 9.07 (dd, *J* = 15.1, 1.8 Hz, 2H), 8.30 (d, *J* = 7.8 Hz, 1H), 7.57-7.49 (m, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 2.69 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 197.0, 154.2, 148.3, 140.0, 129.2, 127.8, 125.3, 122.2, 121.2, 120.9, 115.3, 112.2, 27.3. HRMS (ESI) m/z calcd for C_{13H10}N₂ [M+H]⁺: 211.0866, Found: 211.0869.

(9H-pyrido[2,3-b]indol-3-yl)(pyrrolidin-1-yl)methanone (2b-17)

Prepared according to general procedure A to afford **2b-17** (24.4 mg, 46% yield) as a yellow solid, (m.p. 185-187 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.03 (s, 1H), 8.73 (d, *J* = 2.0 Hz, 1H), 8.61 (d, *J* = 2.1 Hz, 1H), 8.24 (d, *J* = 7.8 Hz, 1H), 7.55-7.45 (m, 2H), 7.25 (t, *J* = 7.4 Hz, 1H), 3.60-3.49 (m, 4H), 1.86 (td, *J* = 12.5, 6.6 Hz, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 167.8, 152.6, 146.0, 139.8, 128.2, 127.5, 124.7, 122.0, 120.9, 120.3, 114.7, 111.9, 49.7, 46.7, 26.5, 24.5. HRMS (ESI) m/z calcd for C₁₆H₁₅N₃O [M+H]⁺: 266.1288, Found: 266.1283.

2-(trifluoromethyl)-9H-pyrido[2,3-b]indole (2b-18)

Prepared according to general procedure A to afford **2b-18** (35.0 mg, 74% yield) as a white solid, (m.p. 200-201 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.29 (s, 1H), 8.77 (d, *J* = 7.9 Hz, 1H), 8.29 (d, *J* = 7.8 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 3.6 Hz, 2H), 7.34-7.27 (m, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 151.4, 142.5 (q, *J* = 33.0 Hz), 140.6, 130.2, 128.7, 124.2, 122.6, 120.7, 119.9, 118.9, 112.1, 111.6 (q, *J* = 3.0 Hz). HRMS (ESI) m/z calcd for C₁₂H₇F₃N₂ [M+H]⁺: 237.0634, Found: 237.0631.

6*H*-indolo[2,3-*b*]quinoline (2b-19)^[13]

Prepared according to general procedure A to afford **2b-19** (37.6 mg, 86% yield) as a white solid. ¹H NMR (400 MHz, DMSO- d_6): δ 11.72 (s, 1H), 9.05 (s, 1H), 8.26 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 7.9 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.72 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.56-7.42 (m, 3H), 7.27 (t, J = 7.3 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 153.3, 146.7, 141.9, 129.1, 129.1, 128.6, 128.0, 127.4, 124.1, 123.2, 122.3, 120.7, 120.1, 118.3, 111.4. HRMS (ESI) m/z calcd for C₁₅H₁₀N₂ [M+H]⁺: 219.0917, Found: 219.0917.

8-methyl-6*H*-indolo[2,3-*b*]quinoline (2b-20)

Prepared according to general procedure A to afford **2b-20** (35.8 mg, 77% yield) as a white solid, (m.p. 226-228 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.61 (s, 1H), 8.95 (s, 1H), 8.14-8.05 (m, 2H), 7.97 (d, *J* = 8.5 Hz, 1H), 7.70 (ddd, *J* = 8.4, 6.8, 1.5 Hz, 1H), 7.47 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 1H), 7.30 (s, 1H), 7.12-7.06 (m, 1H), 2.51 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.6, 146.5, 142.3, 138.6, 129.0, 128.8, 127.4, 127.2, 124.2, 123.1, 122.0, 121.4, 118.5, 118.3, 111.5, 22.3. HRMS (ESI) m/z calcd for C₁₆H₁₂N₂ [M+H]⁺: 233.1073, Found: 233.1071.

9H-pyrimido[4,5-b]indole (2b-21)^[21]

Prepared according to general procedure A to afford **2b-21** (25.5 mg, 75% yield) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.31 (s, 1H), 9.44 (s, 1H), 8.93 (s, 1H), 8.23 (d, *J* = 7.8 Hz, 1H), 7.64-7.47 (m, 2H), 7.32 (t, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 155.5, 154.9, 149.0, 138.8, 128.1, 122.1, 121.4, 119.2, 114.3, 112.3. HRMS (ESI) m/z calcd for C₁₀H₇N₃ [M+H]⁺: 170.0713, Found: 170.0714.

5H-pyrazino[2,3-b]indole (2b-22)^[22]

Prepared according to general procedure A to afford **2b-22** (28.5 mg, 84% yield) as a faint yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.15 (s, 1H), 8.46 (dd, *J* = 21.2, 2.6 Hz, 2H), 8.23 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 3.6 Hz, 2H), 7.32 (dt, *J* = 8.1, 4.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 145.9, 140.7, 140.3, 136.9, 135.6, 129.4, 121.4, 120.9, 119.7, 112.5. HRMS (ESI) m/z calcd for C₁₀H₇N₃ [M+H]⁺: 170.0713, Found: 170.0713.

6H-indolo[2,3-b]quinoxaline (2b-23)^[6]

Prepared according to general procedure A to afford **2b-23** (38.2 mg, 87% yield) as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 12.07 (s, 1H), 8.30 (dd, J = 39.8, 7.8 Hz, 2H), 8.07 (d, J = 8.1 Hz, 1H), 7.83-7.48 (m, 4H), 7.36 (t, J = 7.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 146.2, 144.4, 140.6, 140.2, 139.0, 131.7, 129.5, 129.2, 127.9, 126.4, 122.7, 121.1, 119.4, 112.4. HRMS (ESI) m/z calcd for C₁₄H₉N₃ [M+H]⁺: 220.0869, Found: 220.0871.

10*H*-pyrazolo[1',5':1,6]pyrido[2,3-*b*]indole (2b-24)

Prepared according to general procedure A to afford **2b-24** (16.6 mg, 40% yield) as a yellow solid, (m.p. 200-202 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.84 (s, 1H), 8.13 (t, *J* = 2.0 Hz, 1H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.99 (dd, *J* = 9.0, 1.7 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.42 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 6.75 (s, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 142.1, 140.2, 136.0, 135.3, 124.0, 123.2, 120.9, 119.8, 119.5, 112.5, 108.4, 104.6, 98.2. HRMS (ESI) m/z calcd for C₁₃H₉N₃ [M+H]⁺: 208.0869, Found: 208.0873.

12*H*-indolo[2,3-*b*][1,10]phenanthroline (2b-25)^[16]

Prepared according to general procedure A to afford **2b-25** (23.6 mg, 44% yield) as a yellow solid. ¹H NMR (400 MHz, DMSO- d_6): δ 12.14 (s, 1H), 9.17 (s, 1H), 9.07 (d, J = 2.6 Hz, 1H), 8.47 (d, J = 7.6 Hz, 1H), 8.33 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 8.8 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.73 (dd, J = 8.0, 4.3 Hz, 1H), 7.62-7.53 (m, 2H), 7.31 (ddd, J = 8.0, 5.8, 2.4 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 152.8, 149.4, 145.8, 144.2, 141.5, 136.5, 128.9, 128.6, 128.4, 128.2, 123.7, 123.2, 122.9, 122.4, 120.5, 120.3, 118.1, 111.8. HRMS (ESI) m/z calcd for C₁₈H₁₁N₃ [M+H]⁺: 270.1025, Found: 270.1027.

5. Synthesis of Important Molecules and Scale-up Experiment

5.1 Synthesis of Norneocryptolepine (2b-19):

The mixture of 2-(quinolin-3-yl)aniline (110.0 mg, 0.5 mmol), 'BuOK (661.0 mg, 10 equiv.) in dry solvent (5 mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at 100 °C for 16 hours. After completion (judged by TLC), toluene was removed under reduced pressure and chromatographic separation with silica gel (10% ethyl acetate in DCM as eluent) to give 95.0 mg (86%) of the desired product (**2b-19**) as a white solid.

¹H NMR (400 MHz, DMSO-*d*₆): δ 11.72 (s, 1H), 9.05 (s, 1H), 8.26 (d, J = 7.7 Hz, 1H), 8.11 (d, J = 7.9 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.72 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.56-7.42 (m, 3H), 7.27 (t, J = 7.3 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.3, 146.7, 141.9, 129.1, 129.1, 128.6, 128.0, 127.4, 124.1, 123.2, 122.3, 120.7, 120.1, 118.3, 111.4. HRMS (ESI) m/z calcd for C₁₅H₁₀N₂ [M+H]⁺: 219.0917, Found: 219.0917.

5.2 Synthesis of Neocryptolepine (3a):

The mixture of 2-(quinolin-3-yl)aniline (110.0 mg, 0.5 mmol), ^{*t*}BuOK (661.0 mg, 10 equiv.) in dry solvent (5 mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at 100 °C for 16 hours. After completion (judged by TLC), toluene was removed under reduced pressure to afford the crude α -carboline product. To this crude product, THF (4.0 mL) and MeI (94.0 μ L, 3.0 equiv.) was added and the microreactor was capped with a teflon pressure cap and placed into a pre-heated aluminum block at 80 °C^[23]. The reaction mixture was stirred for 12 h. After completion (judged by TLC), THF was removed under reduced pressure and chromatographic separation with silica gel (10% ethyl acetate in DCM as eluent) to give 80.7 mg (69%) of the desired product (**3a**) as red solid.

¹H-NMR (400 MHz, CDCl₃): δ 9.38 (s, 1H), 8.32-8.19 (m, 3H), 8.02 (t, *J* = 7.8 Hz, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 7.67-7.57 (m, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 4.39 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 155.5, 150.6, 141.2, 138.4, 137.6, 135.7, 134.8, 129.7, 128.73, 127.2, 127.2, 127.0, 126.5, 121.3, 119.4, 40.5. HRMS (ESI) m/z calcd for C₁₆H₁₂N₂ [M+H]⁺: 233.1073, Found: 233.1081

5.3 Synthesis of 1-(9-(3,4,5-trimethoxybenzyl)-9*H*-pyrido[2,3-*b*]indol-6-yl)ethan-1-one (3b):

The mixture of 2-(pyridin-3-yl)aniline (84.0 mg, 0.5 mmol), 'BuOK (661.0 mg, 10 equiv.) in dry solvent (5 mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at 100 °C for 16 hours. After completion (judged by TLC), the mixture was extracted with ethyl acetate (3×40 mL) and brine solution (3×20 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford the crude α -carboline product. To this crude product, AlCl₃ (288.0 mg, 4.5 equiv.) and acetyl chloride (75.0 mg, 2.0 equiv.) at 25°C were added to stirred solution of α -carboline in dried CH₂Cl₂ (10 mL)^[24]. The mixture was refluxed for 4 hours and poured into iced water and extracted with ethyl acetate (40 mL). The organic layer was washed with waster, dried over MgSO₄, evaporated and chromatographic separation with silica gel (30% ethyl acetate in hexane as eluent) gave 77 mg (76%) of the desired compound as white solid. Then, the acetylation product, KOH (40.8 mg, 2.0 equiv.) and 5-(bromomethyl)-1,2,3trimethoxytoluene (104.5 mg, 1.1 equiv.) was added in THF (2.0 mL). The reaction mixture was stirred for 30 min at 70 °C^[25]. After completion (judged by TLC), THF was removed under reduced pressure and chromatographic separation with silica gel (30% ethyl acetate in hexane as eluent) gave 128.0 mg (65%) of the desired compound 1-(9-(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b]indol-6-yl)ethan-1-one (3b) as white solid.

¹H NMR (400 MHz, DMSO): δ 8.89 (d, *J* = 1.9 Hz, 1H), 8.79 (d, *J* = 7.1 Hz, 1H), 8.45 (d, *J* = 6.2 Hz, 1H), 8.07 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.70 (d, *J* = 8.6 Hz, 1H), 7.15-7.10 (m, 1H), 6.97 (s, 2H), 5.83 (s, 2H), 3.71 (s, 6H), 3.61 (s, 3H), 2.65 (s, 3H). 13C-NMR (100 MHz, CDCl₃): δ 197.3, 157.0, 154.9, 153.4, 137.9, 135.7, 132.0, 131.8, 128.2, 127.8, 126.4, 123.6, 123.1, 117.5, 109.3, 106.7, 60.4, 56.3, 55.4, 27.0. HRMS (ESI) m/z calcd for C_{23H22N2O4} [M+H]⁺: 391.1652, Found: 391.1658

5.4 Synthesis of 2-(6*H*-indolo[2,3-*b*]quinoxalin-6-yl)-N,N-dimethylethan-1-amine (3c):

The mixture of 2-(quinoxalin-2-yl)aniline (110.5 mg, 0.5 mmol), 'BuOK (661.0 mg, 10 equiv.) in dry solvent (5 mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at 100 °C for 16 hours. After completion (judged by TLC), the mixture was extracted with ethyl acetate (3×40 mL) and brine solution (3×20 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to afford the crude product. To this crude product, 2-chloro-N,N-dimethylethan-1-amine (59.2 mg, 1.1 equiv.) were added to stirred solution of α -carboline in acetone (10 mL). The mixture was refluxed for 24 hours and poured into iced water and extracted with ethyl acetate (40 mL)^[26]. The organic layer was washed with waster, dried over MgSO₄, evaporated and chromatographic separation with silica gel (30% ethyl acetate in hexane as eluent) gave 95.7 mg (66%) of the desired compound 2-(6H-indolo[2,3-b]quinoxalin-6-yl)-N,N-dimethylethan-1-amine (**3c**) as a yellow solid.

¹H NMR (400 MHz, DMSO) δ 8.33 (dd, J = 7.7, 1.0 Hz, 1H), 8.26-8.19 (m, 1H), 8.06 (dt, J = 8.4, 0.9 Hz, 1H), 7.80-7.66 (m, 4H), 7.40-7.33 (m, 1H), 4.52 (t, J = 6.6 Hz, 2H), 2.71 (t, J = 6.5 Hz, 2H), 2.18 (d, J = 0.8 Hz, 6H).

¹³C-NMR (100 MHz, CDCl₃) δ 145.4, 144.6, 140.3, 139.8, 139.0, 131.7, 129.5, 129.3, 128.0, 126.4, 122.6, 121.3, 119.0, 110.9, 57.2, 45.8.

HRMS (ESI) m/z calcd for C₁₈H₁₈N₄ [M+H]⁺: 291.1604, Found: 291.1613

5.5 Scale-up experiment:

The mixture of 2-(pyridin-3-yl)aniline (1.26 g, 7.5 mmol), 'BuOK (8.55 g, 10 equiv.) was added in a 100 mL round-bottom flask. The flask was evacuated and back filled with nitrogen and this sequence was repeated three additional times. Under the positive flow of nitrogen, toluene (25 ml) was added to the reaction mixture. The reaction was heated at 100 °C for 16 hours. The mixture was extracted with ethyl acetate ($3 \times 200 \text{ mL}$) and brine solution ($3 \times 100 \text{ mL}$). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and chromatographic separation with silica gel (33% ethyl acetate in hexane as eluent) to give of the product **2a-1** (1.0 g, 80%) as a white solid.

6. Mechanistic Studies

x toluene, 100 °C, Ĥ 1 2a-1 Entry Yield Х 1 F 61% 2 CI 58% 3 Br 63% 4 60% I

1. Replace 2-H of pyridine with F, Cl, Br, I

The mixture of 2-substitution pyridine of substrate (0.2 mmol), ^{*t*}BuOK (224.0 mg, 10 equiv.) in dry toluene (2 mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at 100 °C for 16h. The mixture was extracted with ethyl acetate (3×20 mL) and brine solution (3×10 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and chromatographic separation with silica gel (30% ethyl acetate in hexane as eluent) to give 20.5 mg (61%), 19.5 mg (58%), 21.2 mg (63%), 20.2 mg (60%) of the product respectively.

2. Real Time ¹H NMR Analysis:

The mixture of 2-(pyridin-3-yl)aniline (**1a-1**)(34.0 mg, 0.2 mmol), ^{*t*}BuOK (224.0 mg, 10 equiv.) in dry solvent (2 mL) was sealed in a 25 mL Schlenk tube in glovebox. The tube was removed from the glovebox and heated at 100 °C. Then, Ethyl acetate (5 ml)

was added to quench the reaction when reaction times were one-hour, three-hour, sixhour, nine-hour, twelve-hour, respectively. The mixture was extracted thrice with ethyl acetate (3×20 mL) and brine solution (3×25 mL). The organic layer was collected and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure. The residue was measured by ¹H NMR spectroscopy using 1,3,5-trimethoxytoluene as an internal standard (**Figure S2**). The residue chromatographic separation with silica gel gave the isolated intermediate **4** (**Figure S3**).

¹H NMR (400 MHz, DMSO- d_6): δ 9.42 (s, 1H), 8.55 (d, J = 4.5 Hz, 2H), 7.76 (d, J = 7.8 Hz, 1H), 7.48-7.42 (m, 2H), 7.42-7,29 (m, 3H), 1.86 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6): 13C NMR (101 MHz, dmso): δ 169.0, 149.5, 148.6, 136.4, 135.7, 135.3, 134.1, 130.7, 128.9, 127.8, 126.6, 123.8, 23.3. HRMS (ESI) m/z calcd for C₁₃H₁₁N₂O [M+H]⁺: 213.0128, Found: 213.1035.

Figure S1. Real time ¹H NMR studies.

Figure S2. Spectrum of isolated intermediate.

7. X-Ray Ellipsoid Plots of 2a-31, 2a-34 and 2b-21

Single crystal structure of 2a-31:

Table S9. Crystal data of compound 2a-31 at room temperature

Compounds	7H-benzo[e]pyrido[2,3-b]indole
CCDC Name	CCDC 2224160
Chemical Formula	$C_{15}H_{10}N_2$
Formula Weight	218.25
Temperature(K)	296
Crystal System	Monoclinic
Space Group	P 21/n
<i>a</i> (Å)	5.0243(19)
<i>b</i> (Å)	15.100(6)
<i>c</i> (Å)	14.285(6)
α (°)	90.00
β (°)	93.425(7)
γ (°)	90.00
Volume[Å] ³	1081.8(7)
Ζ	4
$D_{\rm calc}$ (g/cm ³)	1.340
<i>F</i> (000)	456.0
GOF, S	1.182
R_1 , wR_2 (obsd data)	0.1310, 0.2497
R_1 , wR_2 (all data)	0.1217, 0.2255

Single crystal structure of 2a-34:

Table S10. Crystal data of compound 2a-34 at room temperature

Compounds	7H-pyrido[3',2':4,5]pyrrolo[2,3-c]isoquinoline
CCDC Name	CCDC 2224157
Chemical Formula	C14H9N3
Formula Weight	219.24
Temperature(K)	296
Crystal System	Monoclinic
Space Group	P 21/c
<i>a</i> (Å)	9.977(3)
<i>b</i> (Å)	5.2487(13)
<i>c</i> (Å)	20.047(5)
α (°)	90.00
β (°)	96.257(4)
γ (°)	90.00
Volume[Å] ³	1043.6(5)
Z	4
$D_{\rm calc}$ (g/cm ³)	1.395
F(000)	456.0
GOF, S	1.126
R_1 , wR_2 (obsd data)	0.0511, 0.1581
R_1 , wR_2 (all data)	0.1577, 0.2359

Single crystal structure of 2b-21:

Table S11. Crystal data of compound 2b-21 at room temperature

Compounds	9H-pyrimido[4,5-b]indole
CCDC Name	CCDC 2224156
Chemical Formula	$C_{10}H_7N_3$
Formula Weight	160.19
Temperature(K)	296
Crystal System	Monoclinic
Space Group	C2/c
a (Å)	18.096(6)
<i>b</i> (Å)	5.6801(19)
<i>c</i> (Å)	16.380(6)
α (°)	90.00
eta (°)	103.239(5)
γ (°)	90.00
Volume[Å] ³	1638.9(10)
Z	8
$D_{\rm calc}$ (g/cm ³)	1.371
<i>F</i> (000)	704.0
GOF, S	1.118
R_1 , wR_2 (obsd data)	0.0506, 0.1267
R_1 , wR_2 (all data)	0.1501, 0.1821

8. NMR Spectra of Substrates and Products

-3.346

72

947 219 267	452 197 913	477 460 381 885 945
49. 48.	36. 33.	23. 23. 17.
572		

MeÓ ΝH₂ ¹³C NMR (100 MHz, CDCl₃)

-55.663

1					

-55.805

¹³C NMR (100 MHz, CDCI₃)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

---0.000

822 386	060 488 541 431 622 466 871 770 606	635 419 442 196
164. 162.	150. 145. 145. 145. 134. 131. 131. 123.	105. 105. 102.
57	SYV SIKI	VV

215	232	237	243	253	260	282
13.	13.	13.	13.	13.	13.	13.
-1	-1	-1	+-1			5

-0.001

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

-3.749

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

0 4 0 0 8 7 0 9 7 7 7 7 1 9 1 1 2 0 8 7 0 4 0	
2012 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
6.7.7.7.7.7.7.7.7.6.6.6	
8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

-3.723

-0.000

NH₂

-3.714

-3.364

810 795 437	061	925 225	070	702	566	915	902	838	841	240	220	062	041	410	254	053	016	994	957
50. 49.	47.	46.	45.	ŧ 4	42.	37.	37.	27.	23.	17.	17.	17.	17.	13.	13.	10.	10.	<u> </u>	06.
		-	5	5	7	7	7	7	7,	7	7	2	7	5	2	5	Ξ	Ξ	5

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

015 629 558 175	588	840 520 526 902 577
56. 53. 49.	36.	23.3 16.1 15.9 15.0
てててブ	7	

30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200
											f1	(ppm)											

-3.758

94 86 83 63 76	39 44 55 55	96 60 33 33 33 33	86 69 03 85 85 85 85 85 85 85 85 85 85 85 85 85
9.2.8.7.4	ω 4 ω 1 ω 6	1.12.6.3	. L Q V 4 W
5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	8 2 1 1 2 8	000000000000000000000000000000000000000	0000000

 $^{19}\mathsf{F}\ \mathsf{NMR}\ (301\ \mathsf{MHz},\ \mathsf{CDCI}_3)$

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

-4.707

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

830 826 819 816 816 816 717 717	701 692 692 686 686 686	588 576 572 572 572 572 572 925 925 915 915 905 905	2515 2515 2515 2508 2508 2508 2495 2495 2417 2417 2417 2533 2338 2338 2338 2338 2338 2338 2338
<u> </u>	<u> </u>	8 8 8 8 7 7 7 7 7	· · · · · · · · · · · · · · · · · · ·

 $\dot{N}H_2$ ¹H NMR (400 MHz, *d*₆-DMSO)

-2.500

 $\dot{N}H_2$

¹³C NMR (100 MHz, *d*₆-DMSO)

---0.000

|--|

¹H NMR (400 MHz, CDCl₃)

-3.956

157.795	148.645 143.787 137.464 137.464 134.030 130.546 129.398 129.398 129.398 129.487 118.976 115.906
_	
	ノノント ノンン

,OΗ N NH₂

-64.108

¹³C NMR (101 MHz, CDCI₃)

298 929 889	2500 222250 222250 222250 222250 222550 225500 222550 222550 2225500 225500000000
8 1 1 2 8	$\label{eq:constraint} \begin{split} & \dot{} \\ & \dot{\dot{}} \\ & \dot{\dot{}} \\ & \dot{\dot{}} \\ & \dot{} \\$

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

r 9	L Q N H L A O O O N H L N H L A O O N H L N H L A O O O O O O O O O O O O O O O O O O
1 2	4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
r 0	6 9 9 9 9 9 9 7 7 7 8 9 7 7 7 9 9 7 7 7 7
ઝં ઝં	8000000
17	

Ph MH_2

¹H NMR, 400MHz(CDCl₃)

Ph ΝH₂

¹³C NMR, 101MHz(CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

-0.000

-0.000

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, DMSO-*d*₆)

¹H NMR (400 MHz, DMSO- d_6)

-20.522

¹³C NMR (100 MHz, DMSO-*d*₆)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

. ()0 f1 (ppm)

876 715 411	826 868 169 709 894 894 275
53. 52.	33. 28. 16. 114. 114. 04.
527	

-55.961

¹³C NMR (100 MHz, DMSO-*d*₆)

000	040 1 2 2 2
8 7 1 2	4 1 0 1 0 8 0
646	000000
10 10 4 00	
	2222222

-78.748

-29.132

¹³C NMR (100 MHz, DMSO-*d*₆)

152.915 147.419 147.401 147.014 147.014 139.464	$\int \frac{129.327}{123.127} \int \frac{123.127}{119.923} \int \frac{119.923}{114.925} \int \frac{114.925}{113.020}$	-104.185

¹³C NMR (100 MHz, DMSO- d_6)

F₃CO

¹³C NMR (100 MHz, DMSO-*d*₆)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

¹H NMR (400 MHz, DMSO- d_6)

-12.174

¹³C NMR (100 MHz, DMSO-*d*₆)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

(2.449 17.414	7.896 9.419 9.419 7.2.749 5.827 4.726 3.668 1.858
5 4	00000000000
ĪĪ	

¹³C NMR (100 MHz, DMSO-*d*₆)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (301 MHz, DMSO-*d*₆)

1		
	L	

---49.132

¹⁹F NMR (301 MHz, DMSO-*d*₆)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

2 2 2 2 2 2 8	6 4 9 5 5 6 8 6 4
2267462	64 2 2 2 3 3 2 7 6 7 7 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
H1.22.57	0.2.89.5.11
31000000000000000000000000000000000000	
$\langle \rangle \rangle$	\vee \vee \vee \vee

-81.476

¹³C NMR (100 MHz, DMSO-*d*₆)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-121.953 -121.975 -121.982 -122.005

¹⁹F NMR (301 MHz, DMSO-*d*₆)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

-28.541

¹³C NMR (100 MHz, DMSO-*d*₆)

¹⁹F NMR (301 MHz, DMSO- d_6)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

-151.709-147.403

¹³C NMR (100 MHz, DMSO-*d*₆)

¹H NMR (400 MHz, DMSO- d_6)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

151.998 149.813 147.760 145.926	132.276 132.053 130.616 130.002 124.806 124.548 122.875 116.739 114.498	104.245
		Ē

¹³C NMR (100 MHz, DMSO- d_6)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

216 213 058 997	361 143 237 237 839 839 166 398 398
52. 46. 38.	226.23. 221.2119.8
7777	

-19.955

¹³C NMR (100 MHz, DMSO- d_6)

120 110 100 f1 (ppm) 0 -10 200 190 180 170 160 150 140

-159.410	-151.809	-139.236 /129.131 /129.131 /120.565 /120.565 /121.263 /121.263 /121.263 /121.263 /121.263 /111.157

,ОН H

¹³C NMR (100 MHz, DMSO-*d*₆)

-65.194

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹H NMR (400 MHz, DMSO- d_6)

-2.500

-1.617

¹H NMR (400 MHz, DMSO- d_6)

-11.493

-55.325 -50.682 -46.140

¹³C NMR (101 MHz, DMSO-*d*₆)

-2.500

¹H NMR (400 MHz, DMSO- d_6)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹H NMR (400 MHz, DMSO- d_6)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

6

1.99⊥

¹³H NMR (100 MHz, DMSO-*d*₆)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-197.046

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO-*d*₆)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹⁹F NMR (301 MHz, DMSO-*d*₆)

	<u></u>	~

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

-11.609

¹H NMR (400 MHz, DMSO-*d*₆)

¹³C NMR (100 MHz, DMSO- d_6)

$\infty \propto \infty$	6	5 I 0 0 0 4
95 95	84	111111111111111111111111111111111111111
8 4 5	×.	8 0 1 0 4 0
5 5 4	3	111000
777	7	
	1	

¹H NMR (400 MHz, DMSO-*d*₆)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 ()0 f1 (ppm)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (100 MHz, DMSO- d_6)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 f1 (ppm)

¹³C NMR (400 MHz, DMSO-*d*₆)

¹H NMR (400 MHz, DMSO-*d*₆)

-12.138

.798 .369 .746 .164	.531 .515 .885 .885	992. .401 .186 .675	.197 .858 .415 530	.281 .145 .771
152 149 145 144	141 136 128	128 128 128 123	123	120 118 111

¹³C NMR (400 MHz DMSO- d_6)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

.0 13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1 fl (ppm)

¹³C NMR (100 MHz, DMSO- d_6)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

9. References

[1] Jin, Z.; Chu, L.; Chen, Y. Q.; Yu, J. Q. Pd-Catalyzed remote *meta*-C-H functionalization of phenylacetic acids using a pyridine template. *Org. Lett.* **2018**, *20*, 425-428.

[2] Pumphrey, A. L.; Dong, H.; Driver, T. G. Rh^{II}₂-catalyzed synthesis of α -, β -, or δ -carbolines from aryl azides. *Angew. Chem. Int. Ed.* **2012**, *51*, 5920-5923.

[3] Reyes, R. L.; Sato, M.; Lwai, T.; Suzuki, K. Asymmetric remote C-H borylation of aliphatic amides and esters with a modular iridium catalyst. *Science* **2020**, *369*, 970-974.

[4] Dong, H. J.; Latka, R. T.; G., D. T. Ruthenium-catalyzed γ-carbolinium ion formation from aryl azides; synthesis of dimebolin. *Org. Lett.* **2011**, *13*, 2726-2729.

[5] Bag, S.; Jana, S.; Pradhan, S.; Bhowmick, S.; Goswami, N.; Sinha, S. K.; Maiti, D. Imine as a linchpin approach for *meta*-C-H functionalization. *Nat. Commun.* **2021**, *12*, 1393-1400.

[6] Edayadulla, N.; Lee, Y. R. Cerium oxide nanoparticle-catalyzed three-component protocol for the synthesis of highly substituted novel quinoxalin-2-amine derivatives and 3,4-dihydroquinoxalin-2-amines in water. *RSC Adv.* **2014**, 11459-11468.

[7] Zhu, H.; Ying, S.; Zhou, B.; Liang, X.; He, Q.; Song, P.; Hu, X.; Shi, K.; Xiong, M.; Jin, H.; Pan, Y. Discovery of novel 2-aryl-3-sulfonamidopyridines (HoAns) as microtubule polymerization inhibitors with potent antitumor activities. *Eur. J. Med. Chem.* **2021**, *211*, 113-117.

[8] Kearney, A. M.; Vanderwal, C. D. Synthesis of nitrogen heterocycles by the ring opening of pyridinium salts. *Angew. Chem., Int. Ed.* **2006**, *45*, 7803-7806.

[9] Kuninobu, Y.; Ida, H.; Nishi, M.; Kanai, M. A *meta*-selective C-H borylation directed by a secondary interaction between ligand and substrate. *Nat. Chem.* **2015**, *7*, 712-717.

[10] Li, G.-S.; Yan, Y.-F.; Zhang, P.-F.; Xu, X.-H.; Jin, Z. Palladium-catalyzed meta-selective C-H functionalization by noncovalent H-bonding interaction. *ACS Catal.* **2021**, *11*, 10460-10466.

[11] Chatterjee, T.; Choi, M. G.; Kim, J.; Chang, S. K.; Cho, E. J. Visible-light-induced regioselective synthesis of polyheteroaromatic compounds. *Chem. Commun.* **2016**, *52*, 4203-4206.

[12] Engqvist, R.; Stensland, B.; Bergman, J. Reduction of indolo[2,3-b]quinoxalines. Tetrahedron 2005, 61, 4495-4500.

[13] Das, S. K.; Roy, S.; Khatua, H.; Chattopadhyay, B. Ir-Catalyzed Intramolecular transannulation/C(sp²)-H amination of 1,2,3,4-tetrazoles by electrocyclization. *J. Am. Chem. Soc.* **2018**, *140*, 8429-8433.

[14] He, L. L. Synthesis of α-Carboline. Organic Syntheses 2016, 93, 272-285.

[15] Sathiyalingam, S.; Roesner, S. Synthesis of α - and β -Carbolines by a metalation/negishi cross-coupling/S_NAr reaction sequence. *Adv. Synth. Catal.* **2022**, *364*, 1769-1774.

[16] Parvatkar, P. T.; Parameswaran, P. S.; Tilve, S. G. An expeditious I₂-catalyzed entry into 6*H*-indolo[2,3-*b*]quinoline system of cryptotackieine. *J. Org. Chem.* **2009**, *74*, 8369-8372.

[17] Kaczmarek, L.; Baliciki, R.; Pawel, N. N.; Wanda, P. C.; Mordarski, M. Synthesis and antineoplastic properties of some benzo-iso-α-carboline. *Arch. Pharm.* **1987**, *321*, 463-467.

[18] Laha, J. K.; Barolo, S. M.; Rossi, R. A.; Cuny, G. D. Synthesis of carbolines by photostimulated cyclization of anilinohalopyridines. *J. Org. Chem.* **2011**, *76*, 6421-6525.

[19] Wang, P. F.; Chen, C.; Chen, H.; Han, L. S.; Liu, L.; Sun, H. B.; Wen, X. A.; Xu, Q. L. Concise synthesis of spiro[indoline-3,2'-pyrrolidine] and 1-azacarbazole derivatives via copper-catalyzed cyclization of indoles. *Adv. Synth. Catal.* **2017**, *359*, 2339-2344.

[20] Yang, T. H.; Kavala, V.; Kuo, C. H.; Yao, C. F. Synthesis of Pyrido[2,3-b]indoles via Brønsted-Acid-Promoted Decarboxylative Annulation

of 3-Bromopropenals and Ethyl 2-Amino-1H-indole-3-carboxylates. Asian J. Org. Chem. 2020, 9, 1053-1058.

[21] Qu, Z.; Wang, P.; Chen, X.; Deng, G.-J.; Huang, H. Visible-light-driven cadogan reaction. Chin. Chem. Lett. 2021, 32, 2582-2586.

[22] Mannes, P. Z.; Onyango, E. O.; Gribble, G. W. Synthesis of a masked 2,3-diaminoindole. J. Org. Chem. 2016, 81, 12478-12481.

[23] Parvatkar, P. T.; Tilve, S. G. An efficient synthesis of indoloquinoline alkaloid-neocryptolepine (cryptotackieine). *Tetrahedron Lett.* **2011**, *52*, 6594-6596.

[24] Tsai, J.-Y.; Lin, Y.-C.; Hsu, M.-H.; Kuo, S.-C.; Huang, L.-J. Synthesis and cytotoxicity of 1,6,8,9-substituted α-carboline derivatives. *Kaohsiung J. Med. Sci.* **2010**, *26*, 593-602.

[25] Huang, H. C.; Liu, W. T.; Hua, K. S.; Hung, H. C.; Tsai, J. Y.; Kuo, S. C.; Huang, L. J.; Gean, P. W. α-Carboline derivative TJY-16 inhibits tumor growth by inducing G2/M cell cycle arrest in glioma cells. *J. Biomed. Sci.* **2016**, *23*, 10.

[26] Wilhelmsson, L. M.; Kingi, N.; Bergman, J. Interactions of antiviral indolo[2,3-*b*]quinoxaline derivatives with DNA. *J. Med. Chem.* **2008**, *51*, 7744-7750.