Supporting Information

Photocatalytic Decarboxylative Selenocyanation of 2-Aryloxy and 2-

Aryl Carboxylic Acids with N-Selenocyanatophthalimide

Yong Gao, Ruirui Hua, Hongquan Yin, and Fu-Xue Chen*

School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China

E-mail: <u>fuxue.chen@bit.edu.cn</u>

Contents

1. General Information	
2. Preparation of Reagents, Catalysts and Carboxylic Acids	S2
3. General Procedure for the Synthesis of 3 and 5	S5
4. Gram Scale Reaction and Derivatization of Products	S14
5. Radical Trapping Experiment	S17
6. References	S18
7. Copies of ¹ H and ¹³ C NMR Spectra	S19

1. General Information

All chemicals were bought from commercial companies and used directly unless noted. The solvents were dried by standard methods when necessary. All reactions monitored by TLC. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker 400 or 700 instrument in CDCl₃. All the NMR spectra were referenced to residual CHCl₃ (7.26 ppm, ¹H; 77.16 ppm, ¹³C{¹H}). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, septet; coupling constant(s) are in Hz, integration). Data for ¹³C{¹H} NMR are reported in terms of chemical shift (δ , ppm). The high resolution mass spectrum (HRMS) were recorded on a Agilent (Q-TOF6520) unit with an ESI source. IR spectra were measured on a Shimadzu IRAffinnity-1s spectrometer. Melting points were measured on a binocular microscope XT4A melting point apparatus (uncorrected).

2. Preparation of Reagents, Catalysts and Carboxylic Acids

Reagents **2a–c** were prepared according to the literatures.^[1]

The photocatalysts [Mes-Acr-Me][ClO₄], [Mes-Acr-Ph][BF₄], fac-Ir(ppy)₃ and 4CzIPN were bought from commercial companies and used directly.

The photocatalysts PC1–4 were synthesized according to the literatures.^[2]

Procedure for the Synthesis of PC1–3. Boron trifluoride etherate (50 mmol, 2.5 equiv) was slowly added to a solution of aldehyde (20 mmol, 1.0 equiv) and ketone (40 mmol, 2.0 equiv) (if starting material are solids, they were dissolved in a small amount of toluene). The resulting mixture was refluxed for 2 h. After the completion of the reaction, it was cooled to room temperature and the formed diethyl ether was evaporated. The residue was dissolved in acetone and diethyl ether was added to precipitate the product. Filtration and purification was performed by multiple recrystallization from acetone.

PC1 was obtained as a yellow solid (2.37 g, 30% yield); mp: 228–230 °C (lit. 225–226 °C);^{[3a] 1}H NMR (400 MHz, DMSO-*d*₆) δ 9.17 (s, 2H), 8.60 (d, *J* = 7.5 Hz, 6H), 7.88 (t, *J* = 7.3 Hz, 3H), 7.82–7.78 (m, 6H).

Analysis results are in accordance with the literature.^[3b]

Procedure for the Synthesis of PC4. To a stirred solution of **PC1** (1.25 mmol, 1.0 equiv) in water (10 mL), an aqueous solution of disodium sulfide (5.0 mmol, 4.0 equiv) was added dropwise at room temperature. After being stirred for 1 h, the solution was added to an aqueous HBF₄ (0.25 M, 50 wt. %) and stirred for additional 1 h. The yellow precipitate was filtered and purified by multiple recrystallizations in acetone.

Carboxylic acids 1c-d, 1j-l were prepared according to the literature.^[4]

Procedure for the Synthesis of 1c–d, **1j–l.** To an oven-dried flask was charged with NaH (300 mg, 7.5 mmol, 2.5 equiv) and THF (7.0 mL). The flask was degassed and filled with argon, then cooled to 0 °C. A solution of the phenol (3.0 mmol, 1.0 equiv) in THF (3.0 mL) was added dropwise to the suspension of NaH and stirred at 0 °C for 45 min. Bromoethyl acetate (2.5 g, 15 mmol, 5.0 equiv) was added dropwise. The resulting mixture was warmed to room temperature and stirred for 12 h. After the completion of the reaction, the reaction was quenched with sat. NH₄Cl and extracted with ethyl acetate. The combined organic extracts were washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/EtOAc = 20:1, v/v).

A solution of potassium hydroxide (10 equiv) in water (30 mL) was added to the ester, and the mixture was heated to 110 °C for 6 h. After consumption of starting material determined by TLC, the reaction was cooled to room temperature and acidified with aqueous HCl (1 M) to pH = 1-2. The aqueous phased extracted with ethyl acetate. The combined organic extracts were washed with brine and dried over Na₂SO₄, filtered, and concentrated in vacuo to afford the desired carboxylic acid.

2-(4-(*tert***-Butyl)phenoxy)acetic acid (1c).**^[5] White solid; 324 mg, 52% yield; mp: 90– 91 °C (lit. 87–88 °C); ¹H NMR (400 MHz, CDCl₃) δ 11.10 (brs, 1H), 7.32 (d, J = 8.9 Hz, 2H), 6.86 (d, J = 8.9 Hz, 2H), 4.66 (s, 2H), 1.29 (s, 9H).

2-(Mesityloxy)acetic acid (1d).^[4] White solid; 230 mg, 40% yield; mp: 144–145 °C (lit. 148–151 °C); ¹H NMR (400 MHz, CDCl₃) δ 10.32 (brs, 1H), 6.83 (s, 2H), 4.45 (s, 2H), 2.26 (s, 6H), 2.24 (s, 3H).

2-(2-Iodophenoxy)acetic acid (1j).^[5] White solid; 672 mg, 81% yield; mp: 132–134 °C (lit. 124–126 °C); ¹H NMR (400 MHz, CDCl₃) δ 9.44 (brs, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 7.2 Hz, 1H), 6.82–6.77 (m, 2H), 4.73 (s, 2H).

2-([1,1'-Biphenyl]-4-yloxy)acetic acid (1k).^[4] White solid; 440 mg, 64% yield; mp: 191–192 °C (lit. 189–190 °C); ¹H NMR (400 MHz, DMSO- d_6) δ 13.03 (brs, 1H), 7.60 (t, *J* = 6.8 Hz, 4H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 7.01 (d, *J* = 8.4 Hz, 2H), 4.73 (s, 2H).

2-(4-(Trifluoromethyl)phenoxy)acetic acid (11).^[6] White solid; 565 mg, 86% yield; mp: 138–139 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 13.12 (brs, 1H), 7.65 (d, J = 8.3

Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 4.80 (s, 2H).

3. General Procedure for the Synthesis of 3 and 5

To a 25 mL Schlenk tube containing 1 or 4 (0.1 mmol, 1.0 equiv) was added PC1 (0.8 mg, 0.002 mmol, 2 mol %) and 1,2-dichloroethane (1.0 mL) under an argon atmosphere. Then, 2a (30.2 mg, 0.12 mmol, 1.2 equiv) was added. The reaction was irradiation with blue LED (435–445 nm, 5 W) for 5–24 h at room temperature. When the reaction was completed, the product was purified by column chromatography on silica gel with petroleum ether (PE)/ethyl acetate to afford the product 3 or 5.

1-Methyl-4-(selenocyanatomethoxy)benzene (3a). White solid; 19.6 mg, 86% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.30$; mp: 71–73 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 5.91 (s, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 133.7, 130.5, 116.6, 100.8 (SeCN), 70.6, 20.7; IR (KBr, cm⁻¹) 2920, 2151 (SeCN), 1589, 1506, 1449, 1300, 1234, 1196, 1177, 1059, 810; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₉H₁₀NOSe 227.9922, found 227.9929.

(Selenocyanatomethoxy)benzene (3b). White solid; 18.5 mg, 87% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.27$; mp: 71–72 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (t, J = 8.0 Hz, 2H), 7.16 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 8.0 Hz, 2H), 5.93 (s, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 155.3, 130.0, 124.0, 116.6, 100.8 (SeCN), 70.0; IR (KBr, cm⁻¹) 2926, 2156 (SeCN), 1589, 1487, 1456, 1302, 1234, 1192, 1169, 1051, 754; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₈H₁₁N₂OSe 231.0031, found 231.0031.

1-(*tert*-**Butyl**)-4-(selenocyanatomethoxy)benzene (3c). White solid; 20.5 mg, 76% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.34$; mp: 85–86 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 5.92 (s, 2H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 147.0, 126.8, 116.0, 100.9 (SeCN), 70.4, 34.4, 31.4; IR (KBr, cm⁻¹) 2965, 2151 (SeCN), 1609, 1512, 1462, 1368, 1308, 1236, 1209, 1184, 1059, 829; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₁₂H₁₉N₂OSe 287.0657, found 287.0663.

1,3,5-Trimethyl-2-(selenocyanatomethoxy)benzene (3d). White solid; 18.0 mg, 71% yield; Eluent PE/EtOAc (10:1, v/v), TLC R_f = 0.40; mp: 37–38 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.86 (s, 2H), 5.80 (s, 2H), 2.30 (s, 6H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 135.0, 130.1, 129.8, 101.2 (SeCN), 74.5, 20.7, 17.0; IR (KBr, cm⁻¹) 2922, 2153 (SeCN), 1605, 1479, 1377, 1308, 1281, 1192, 1134, 1034, 854; HRMS (ESI) *m/z*: [M + NH₄]⁺ calcd for C₁₁H₁₇N₂OSe 273.0501, found 273.0496.

1-Methoxy-4-(selenocyanatomethoxy)benzene (3e). White solid; 20.0 mg, 82% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.16$; mp: 39–40 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 9.2 Hz, 2H), 6.90 (d, J = 9.2 Hz, 2H), 5.88 (s, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 149.1, 118.3, 115.0, 100.8 (SeCN), 72.0, 55.7; IR (KBr, cm⁻¹) 2934, 2153 (SeCN), 1761, 1593, 1504, 1464, 1443, 1244, 1186, 1053, 827; HRMS (ESI) *m/z*: [M + NH₄]⁺ calcd for C₉H₁₃N₂O₂Se 261.0137, found 261.0136.

1-Fluoro-4-(selenocyanatomethoxy)benzene (3f). White solid; 16.2 mg, 70% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.20$; mp: 69–70 °C; ¹H NMR (400 MHz,

CDCl₃) δ 7.10–7.05 (m, 2H), 7.02–6.98 (m, 2H), 5.88 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (d, J = 241.6 Hz), 151.3 (d, J = 2.5 Hz), 118.5 (d, J = 8.3 Hz), 116.6 (d, J = 23.4 Hz), 100.5 (SeCN), 71.0; IR (KBr, cm⁻¹) 2924, 2153 (SeCN), 1634, 1504, 1454, 1310, 1227, 1188, 1059, 829; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₈H₁₀FN₂OSe 248.9937, found 248.9937.

1-Chloro-4-(selenocyanatomethoxy)benzene (3g). White solid; 18.4 mg, 74% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.18$; mp: 106–107 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 9.0 Hz, 2H), 6.96 (d, J = 9.0 Hz, 2H), 5.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 130.0, 129.3, 118.1, 100.3 (SeCN), 69.8; IR (KBr, cm⁻¹) 2924, 2151 (SeCN), 1585, 1489, 1447, 1377, 1306, 1246, 1198, 1055, 824; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₈H₁₀ClN₂OSe 264.9641, found 264.9636.

1-Bromo-4-(selenocyanatomethoxy)benzene (3h). White solid; 19.5 mg, 67% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.18$; mp: 116–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 5.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 133.0, 118.4, 116.7, 100.3 (SeCN), 69.6; IR (KBr, cm⁻¹) 2924, 2151 (SeCN), 1732, 1485, 1292, 1194, 1049, 820; HRMS (ESI) *m/z*: [M + NH₄]⁺ calcd for C₈H₁₀BrN₂OSe 308.9136, found 308.9132.

1-Bromo-3-(selenocyanatomethoxy)benzene (3i). White solid; 21.8 mg, 75% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.22$; mp: 102–103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.28 (m, 2H), 7.21 (t, J = 1.8 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 5.92 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 131.1, 127.2, 123.2, 120.2, 115.2, 100.3 (SeCN), 69.3; IR (KBr, cm⁻¹) 2924, 2154 (SeCN), 1576, 1472, 1429, 1296, 1227, 1196, 1053, 874, 775; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₈H₁₀BrN₂OSe 308.9136, found 308.9134.

1-Iodo-2-(selenocyanatomethoxy)benzene (3j). Yellow oil; 27.8 mg, 82% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.20$; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 7.8, 1.4 Hz, 1H), 7.39 (t, J = 8.5 Hz, 1H), 7.01 (d, J = 9.2 Hz, 1H), 6.92 (t, J = 8.2Hz, 1H), 5.96 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 140.4, 129.7, 126.0, 115.9, 100.6 (SeCN), 88.3, 70.7; IR (KBr, cm⁻¹) 2926, 2153 (SeCN), 1732, 1574, 1468, 1443, 1302, 1240, 1196, 1121, 1051, 1018, 748; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₈H₁₀IN₂OSe 356.8998, found 356.8994.

4-(Selenocyanatomethoxy)-1,1'-biphenyl (3k). White solid; 12.0 mg, 42% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.20$; mp: 129–131 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.7 Hz, 2H), 7.56 (d, J = 7.3 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.08 (d, J = 8.8 Hz, 2H), 5.96 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 140.1, 137.2, 128.9, 128.7, 127.3, 126.9, 116.8, 100.6 (SeCN), 69.9; IR (KBr, cm⁻¹) 2924, 2147 (SeCN), 1717, 1516, 1485, 1447, 1310, 1233, 1206, 1175, 1063, 833; 760, 696; HRMS (ESI) *m/z*: [M + NH₄]⁺ calcd for C₁₄H₁₅N₂OSe 307.0344, found 307.0345.

1-(Selenocyanatomethoxy)-4-(trifluoromethyl)benzene (3l). White solid; 17.0 mg, 60% yield; Eluent PE/EtOAc (5:1, v/v), TLC $R_f = 0.30$; mp: 74–75 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 5.94 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 127.5 (q, J = 3.7 Hz), 126.1 (d, J = 32.8 Hz), 123.9 (d, J = 270.0 Hz), 116.4, 100.1 (SeCN), 68.4; IR (KBr, cm⁻¹) 2926, 2160 (SeCN), 1616, 1593, 1516, 1450, 1418, 1342, 1250, 1215, 1163, 1123, 1072, 1045, 839; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₉H₁₀F₃N₂OSe 298.9905, found 298.9905.

2-(Selenocyanatomethoxy)naphthalene (3m). White solid; 22.0 mg, 84% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.22$; mp: 96–98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.79 (m, 3H), 7.50 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 2.4 Hz, 1H), 7.21 (dd, J = 8.9, 2.5 Hz, 1H), 6.02 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 133.9, 130.4, 130.3, 127.8, 127.3, 127.0, 125.2, 118.6, 110.2, 100.8 (SeCN), 69.4; IR (KBr, cm⁻¹) 2961, 2153 (SeCN), 1630, 1595, 1510, 1468, 1283, 1234, 1209, 1161, 1123, 1057, 810, 748; HRMS (ESI) m/z: [M + NH₄]⁺ calcd for C₁₂H₁₃N₂OSe 281.0188, found 281.0182.

2-Selenocyanato-2,3-dihydrobenzo[b][1,4]dioxine (3n). White solid; 21.3 mg, 88% yield; Eluent PE/EtOAc (10:1, v/v), TLC R_f = 0.22; mp: 67–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.02–6.93 (m, 4H), 6.59 (t, J = 1.7 Hz, 1H), 4.50 (d, J = 1.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 139.5, 124.0, 123.1, 118.6, 117.8, 100.3 (SeCN), 80.4, 67.5; IR (KBr, cm⁻¹) 2924, 2153 (SeCN), 1599, 1491, 1464, 1258, 1165, 1111, 1086, 1061, 897, 853, 748; HRMS (ESI) *m/z*: [M + NH₄]⁺ calcd for C₉H₁₁N₂O₂Se 258.9980, found 258.9982.

Phenyl(selenocyanatomethyl)sulfane (3o). Yellow oil; 14.5 mg, 63% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.29$; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 2.3 Hz, 1H), 7.49 (d, J = 1.6 Hz, 1H), 7.42–7.37 (m, 3H), 4.54 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 132.4, 131.9, 129.6, 128.8, 101.5 (SeCN), 35.1; IR (KBr, cm⁻¹) 2924, 2149 (SeCN), 1682, 1506, 1456, 1362, 1339, 1171, 741, 689; HRMS (ESI) *m/z*: [M + NH₄]⁺ calcd for C₈H₁₁N₂SSe 246.9803, found 246.9805.

(Selenocyanatomethyl)benzene (5a). White solid; 15.4 mg, 78% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.22$; mp: 70–71 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.32 (m, 5H), 4.31 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.4, 129.2, 129.0, 128.7, 101.8 (SeCN), 32.8; IR (KBr, cm⁻¹) 2924, 2145 (SeCN), 1491, 1454, 1423, 1217, 1192, 1069, 758, 694; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₈H₇NNaSe 219.9641, found 219.9646.

1-Methyl-4-(selenocyanatomethyl)benzene (5b). White solid; 17.0 mg, 80% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.27$; mp: 55–56 °C; ¹H NMR (400 MHz,

CDCl₃) δ 7.26 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 4.30 (s, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 132.3, 129.8, 128.9, 102.0 (SeCN), 32.9, 21.2; IR (KBr, cm⁻¹) 2922, 2149 (SeCN), 1508, 1456, 1431, 1190, 1101, 820; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₉H₉NNaSe 233.9792, found 233.9796.

1-Methoxy-4-(selenocyanatomethyl)benzene (5c). White solid; 19.0 mg, 84% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.16$; mp: 56–57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.6 Hz, 2H), 4.31 (s, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 130.4, 127.2, 114.6, 102.1 (SeCN), 55.3, 32.9; IR (KBr, cm⁻¹) 2934, 2147 (SeCN), 1609, 1510, 1456, 1423, 1302, 1250, 1175, 1099, 1032, 831; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₉H₉NNaOSe 249.9742, found 249.9746.

1-Fluoro-4-(selenocyanatomethyl)benzene (5d). White solid; 15.2 mg, 71% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.15$; mp: 63–64 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 8.6, 5.2 Hz, 2H), 7.06 (t, J = 8.6 Hz, 2H), 4.28 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.8 (d, J = 247.2 Hz), 131.4 (d, J = 3.3 Hz), 130.8 (d, J = 8.4 Hz), 116.2 (d, J = 21.8 Hz), 101.6 (SeCN), 31.9; IR (KBr, cm⁻¹) 2924, 2151 (SeCN), 1595, 1508, 1221, 1188, 1157, 1090, 835; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₈H₆FNNaOSe 237.9547, found 237.9556.

1-Chloro-4-(selenocyanatomethyl)benzene (5e). White solid; 17.6 mg, 76% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.18$; mp: 56–57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 4.25 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 134.7, 134.1, 130.3, 129.4, 101.4 (SeCN), 31.9; IR (KBr, cm⁻¹) 2926, 2149 (SeCN), 1595, 1489, 1406, 1219, 1190, 1094, 1015, 831; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₈H₇CINSe 231.9432, found 231.9440.

1-Methyl-2-(selenocyanatomethyl)benzene (5f). White solid; 15.9 mg, 75% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.27$; mp: 47–48 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 7.1 Hz, 1H), 7.25–7.19 (m, 3H), 4.37 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 132.9, 131.1, 130.2, 129.2, 126.8, 101.8 (SeCN), 31.3, 19.2; IR (KBr, cm⁻¹) 2924, 2147 (SeCN), 1684, 1653, 1491, 1456, 1379, 1204, 1180, 1088, 1032, 762, 719; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₉H₉NNaSe 233.9792, found 233.9791.

1-Chloro-2-(selenocyanatomethyl)benzene (5g). Colorless oil; 16.2 mg, 70% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.27$; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.40 (m, 2H), 7.32–7.29 (m, 2H), 4.34 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 133.7, 130.9, 130.2, 130.1, 127.5, 101.6 (SeCN), 30.6; IR (KBr, cm⁻¹) 2924, 2149 (SeCN), 1717, 1653, 1558, 1506, 1456, 1418, 1339, 1204, 1032, 758; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₈H₆ClNNaSe 253.9246, found 253.9247.

2-Bromo-1-methoxy-4-(selenocyanatomethyl)benzene (5h). White solid; 23.9 mg, 78% yield; Eluent PE/EtOAc (10:1, v/v), TLC $R_f = 0.16$; mp: 61–62 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 2.2 Hz, 1H), 7.29 (dd, J = 8.4, 2.2 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 4.24 (s, 2H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 133.8, 129.3, 128.8, 112.2, 112.1, 101.6 (SeCN), 56.3, 31.8; IR (KBr, cm⁻¹) 2924, 2147 (SeCN), 1717, 1599, 1495, 1456, 1260, 1051, 1016, 810; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₉H₈BrNNaOSe 327.8847, found 327.8852.

2-(Selenocyanatomethyl)naphthalene (5i). White solid; 20.0 mg, 81% yield; Eluent PE/EtOAc (20:1, v/v), TLC R_f = 0.16; mp: 120–121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 12.4, 7.3 Hz, 4H), 7.53–7.50 (m, 2H), 7.46 (dd, J = 8.4, 1.8 Hz, 1H), 4.47 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 133.2, 133.1, 132.7, 129.2, 128.2, 128.0, 127.8, 126.8, 126.8, 126.3, 101.9 (SeCN), 33.4; IR (KBr, cm⁻¹) 2932, 2145 (SeCN), 1684, 1653, 1558, 1541, 1506, 1456, 1425, 1362, 1198, 827, 750; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₂H₉NNaSe 269.9792, found 269.9791.

(2-Methyl-1-selenocyanatopropyl)benzene (5j). Yellow oil; 18.0 mg, 75% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.48$; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 6.8 Hz, 2H), 7.31 (t, *J* = 5.9 Hz, 3H), 4.38 (d, *J* = 9.5 Hz, 1H), 2.52–2.43 (m, 1H), 1.22 (d, *J* = 6.6 Hz, 3H), 0.92 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.5, 129.0, 128.5, 127.8, 102.5 (SeCN), 60.4, 34.1, 22.3, 20.8; IR (KBr, cm⁻¹) 2963, 2930, 2147 (SeCN), 1730, 1682, 1597, 1491, 1454, 1389, 1163, 1113, 766, 698; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₁H₁₄NSe 240.0286, found 240.0294.

(1-Selenocyanatopropyl)benzene (5k). Yellow oil; 16.0 mg, 71% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.36$; ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.31 (m, 5H), 4.56 (dd, J = 8.8, 6.8 Hz, 1H), 2.39–2.27 (m, 2H), 0.99 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 129.2, 128.8, 127.6, 102.5 (SeCN), 52.9, 29.8, 13.0; IR (KBr, cm⁻¹) 2967, 2926, 2853, 2147 (SeCN), 1647, 1495, 1454, 1379, 1279, 1157, 1096, 758, 696; HRMS (ESI) *m/z*: [M + NH₄]⁺ calcd for C₁₀H₁₅N₂Se 243.0395, found 243.0392.

3-(Selenocyanatomethyl)thiophene (5l). White solid; 11.5 mg, 57% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.17$; mp: 66–67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (dd, J = 4.8, 3.0 Hz, 1H), 7.33 (s, 1H), 7.11 (d, J = 4.9 Hz, 1H), 4.35 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.4, 127.6, 127.3, 124.9, 101.9 (SeCN), 26.9; IR (KBr, cm⁻¹) 2924, 2154 (SeCN), 1867, 1717, 1684, 1653, 1558, 1506, 1456, 1236, 1200, 1080, 874; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₆H₅NNaSSe 225.9206, found 225.9212.

1-Isobutyl-4-(1-selenocyanatoethyl)benzene (5m). Colorless oil; 19.3 mg, 72% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.40$; ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.1 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 4.94 (q, J = 7.0 Hz, 1H), 2.47 (d, J = 7.2 Hz, 2H), 2.06 (d, J = 7.0 Hz, 3H), 1.86 (septet, J = 6.8 Hz, 1H), 0.90 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 136.5, 129.8, 126.9, 102.8 (SeCN), 45.7, 45.1, 30.1, 22.9, 22.4; IR (KBr, cm⁻¹) 2955, 2926, 2868, 2147 (SeCN), 1732, 1510, 1456, 1381, 1202, 1165, 1059, 1020, 847, 800; HRMS (ESI) m/z: [M + Na]⁺ calcd for C_{13H17}NNaSe 290.0418, found 290.0420.

2-Methoxy-6-(1-selenocyanatoethyl)naphthalene (5n). White solid; 20.0 mg, 69% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.19$; mp: 102–104 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.73 (dd, J = 8.7, 4.7 Hz, 2H), 7.45 (dd, J = 8.5, 1.7 Hz, 1H), 7.17 (dd, J = 8.9, 2.5 Hz, 1H), 7.12 (d, J = 2.2 Hz, 1H), 5.08 (q, J = 7.0 Hz, 1H), 3.92 (s, 3H), 2.14 (d, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 134.6, 134.3, 129.6, 128.6, 127.9, 126.1, 125.3, 119.7, 105.8, 102.7 (SeCN), 55.4, 46.3, 22.9; IR (KBr, cm⁻¹) 2926, 2141 (SeCN), 1628, 1605, 1504, 1483, 1437, 1389, 1373, 1263, 1221, 1177, 1028, 856; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₄H₁₃NNaOSe 314.0055, found 314.0057.

2-Fluoro-4-(1-selenocyanatoethyl)-1,1'-biphenyl (50). White solid; 16.3 mg, 53% yield; Eluent PE/EtOAc (20:1, v/v), TLC $R_f = 0.20$; mp: 70–71 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.4 Hz, 2H), 7.45 (t, J = 7.5 Hz, 3H), 7.39 (d, J = 7.0 Hz, 1H), 7.25–7.19 (m, 2H), 4.90 (q, J = 6.9 Hz, 1H), 2.06 (d, J = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7 (d, J = 248.4 Hz), 140.9 (d, J = 7.6 Hz), 134.9, 131.4 (d, J = 4.0 Hz), 129.7 (d. J = 13.5 Hz), 128.9 (d, J = 2.9 Hz), 128.6, 128.1, 123.2 (d, J = 3.3 Hz), 114.9 (d, J = 24.1 Hz), 102.0 (SeCN), 44.4, 22.6; IR (KBr, cm⁻¹) 3059, 2970, 2926, 2149 (SeCN), 1686, 1582, 1560, 1485, 1416, 1277, 1186, 1069, 1011, 872, 768; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₅H₁₂FNNaSe 328.0011, found 328.0013.

Phenyl(3-(1-selenocyanatoethyl)phenyl)methanone (5p). White solid; 10.0 mg, 32% yield; Eluent PE/EtOAc (10:1, v/v), TLC R_f = 0.18; mp: 96–98 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.81 (m, 3H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.65–7.60 (m, 2H), 7.51 (t, *J* = 7.5 Hz, 3H), 4.94 (q, *J* = 7.0 Hz, 1H), 2.06 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 140.4, 138.5, 137.1, 132.8, 130.9, 130.5, 130.1, 129.1, 128.5, 128.5, 101.9 (SeCN), 44.7, 22.5; IR (KBr, cm⁻¹) 2926, 2147 (SeCN), 1653, 1558, 1506, 1456, 1317, 1285, 1206, 1179, 721; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₁₄NOSe 316.0235, found 316.0239.

2-(Selenocyanatomethyl)dibenzo[b,e]oxepin-11(6*H***)-one (5q). White solid; 17.0 mg, 52% yield; Eluent PE/EtOAc (5:1, v/v), TLC R_f = 0.3; mp: 150–151 °C; ¹H NMR (400 MHz, CDCl₃) \delta 8.22 (d, J = 2.4 Hz, 1H), 7.90 (d, J = 6.7 Hz, 1H), 7.58 (td, J = 7.4, 1.2 Hz, 1H), 7.52–7.47 (m, 2H), 7.38 (d, J = 7.2 Hz, 1H), 7.08 (d, J = 8.5 Hz, 1H), 5.21 (s, 2H), 4.33 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) \delta 190.4, 161.4, 140.2, 135.7, 135.3, 133.0, 132.6, 129.6, 129.4, 129.2, 128.0, 125.5, 121.9, 101.6 (SeCN), 73.7, 32.0; IR (KBr, cm⁻¹) 2936, 2149 (SeCN), 1717, 1647, 1558, 1506, 1489, 1456, 1300, 1221, 1013, 831; HRMS (ESI)** *m/z***: [M + H]⁺ calcd for C₁₆H₁₂NO₂Se 330.0028, found 330.0030.**

4. Gram Scale Reaction and Derivatization of Products

Gram scale reaction. To a 100 mL oven-dried flask containing **1m** (1.01 g, 5.0 mmol) was added **PC1** (39.6 mg, 0.1 mmol, 2 mol %) and 1,2-dichloroethane (50 mL) under an argon atmosphere. Then, reagent **2a** (1.51 g, 6.0 mmol, 1.2 equiv) was added. The reaction was irradiation with blue LED (435–445 nm, 5 W) for 60 h at room temperature. When the reaction was completed, the solution was concentrated in vacuo and the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1, v/v) to afford the product **3m** (1.05 g, 80% yield).

Procedure for the synthesis of 6. To a 25 mL Schlenk tube containing **3m** (52.6 mg, 0.2 mmol, 1.0 equiv) in DMF (1.0 mL) was added CsF (30.4 mg, 0.2 mmol, 1.0 equiv) under an argon atmosphere. Subsequently, (trifluoromethyl)trimethylsilane (56.8 mg, 0.4 mmol, 2.0 equiv) was added to the solution. The reaction was stirred for 24 h at room temperature. When the reaction was completed, the mixture was extracted with dichloromethane, the combined organic phased were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate.

Procedure for the synthesis of 7. To a 25 mL Schlenk tube charged with CuI (7.6 mg, 0.04 mmol, 0.2 equiv) and Cs_2CO_3 (65.2 mg, 0.2 mmol, 1.0 equiv) in acetonitrile (1.0 mL) under an argon atmosphere at room temperature was added **3m** (52.6 mg, 0.2 mmol, 1.0 equiv). Then, (4-chlorophenyl)acetylene (40.8 mg, 0.3 mmol, 1.5 equiv) was added. The reaction was stirred for 3 h. The solution was concentrated in vacuo to get the crude product, which was purified by flash chromatography on silica gel with petroleum ether/ethyl acetate.

((Naphthalen-2-yloxy)methyl)(trifluoromethyl)selane (6). Colorless oil; 38.5 mg, 63% yield; Eluent PE/EtOAc (50:1, v/v), TLC $R_f = 0.27$; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.6 Hz, 2H), 7.76 (d, J = 8.2 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.40 (t, J = 7.5 Hz, 1H), 7.18–7.14 (m, 2H), 5.91 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 134.0, 130.1, 130.0, 127.8, 127.1, 126.8, 124.7, 122.5 (q, J = 329.6 Hz), 119.0, 109.4, 64.9 (q, J = 2.2 Hz); IR (KBr, cm⁻¹) 2928, 1632, 1601, 1510, 1468, 1294, 1252, 1209, 1126, 1098, 1036, 835, 739; HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₂H₉F₃NaOSe 328.9663, found 328.9656.

((4-Chlorophenyl)ethynyl)((naphthalen-2-yloxy)methyl)selane (7). White solid; 61.0 mg, 82% yield; Eluent PE/EtOAc (50:1, v/v), TLC $R_f = 0.18$; mp: 88–90 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.7 Hz, 2H), 7.73 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 7.0 Hz, 1H), 7.39 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 2.3 Hz, 1H), 7.30 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.5 Hz, 2H), 7.23 (dd, J = 9.0, 2.5 Hz, 1H), 5.86 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 134.4, 134.1, 132.9, 129.9, 128.6, 127.7, 127.2, 126.7, 124.6, 121.7, 119.1, 109.9, 100.1, 70.8, 69.6; IR (KBr, cm⁻¹) 3057, 2947, 1632, 1508, 1487, 1466, 1287, 1206, 1167, 1119, 1084, 1028, 826; HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₉H₁₃CINaOSe 394.9712, found 394.9718.

5. Radical Trapping Experiment

A 25 mL Schlenk tube equipped with a stirring bar was charged with **1a** (16.6 mg, 0.1 mmol, 1.0 equiv), **2a** (30.2 mg, 0.12 mmol, 1.2 equiv), **PC1** (0.8 mg, 0.002 mmol, 2 mol %) and 1,2-dichloroethane (1.0 mL) under an argon atmosphere. Then, TEMPO (23.4 mg, 0.15 mmol, 1.5 equiv) or BHT (33.0 mg, 0.15 mmol, 1.5 equiv) was added. The reaction was irradiation with blue LED (435–445 nm, 5 W) at room temperature. After 24 h, no product **3a** was detected, while the TEMPO-adduct **8** and BHT-adduct **9** were detected in the reaction mixture by ESI-HRMS analysis.

8: HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₇H₂₈NO₂ 278.2115, found 278.2122.

9: HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₆H₂₄NOSe 326.1018, found 326.1035.

6. References

- [1] (a) Xiao, J.-A.; Cheng, X.-L.; Meng, R.-F.; Qin, X.-S.; Peng, H.; Ren, J.-W.; Xie, Z.-Z.; Cui, J.-G.; Huang, Y.-M. *Synthesis* 2021, *53*, 954–960; (b) Wu, D.; Qiu, J.; Li, C.; Yuan, L.; Yin, H.; Chen, F.-X. *J. Org. Chem.* 2020, *85*, 934–941; (c) Zhu, D.; Ye, A.-H.; Chen, Z.-M. *Synthesis* 2021, *53*, 3744–3750.
- [2] (a) Habert, L.; Cariou, K. Angew. Chem., Int. Ed. 2021, 60, 171–175; (b) Bao, L.;
 Cheng, J.-T.; Wang, Z.-X.; Chen, X.-Y. Org. Chem. Front. 2022, 9, 973–978.
- [3] (a) Dovey, W. C.; Robinson, R. J. Chem. Soc. 1935, 1389–1390; (b) Sambiagio, C.;
 Ferrari, M.; Beurden, K.; Ca', N.; Schijndel, J.; Noël, T. Org. Lett. 2021, 23, 2042–2047.
- [4] Grollier, K.; De Zordo-Banliat, A.; Bourdreux, F.; Pegot, B.; Dagousset, G.; Magnier, E.; Billard, T. *Chem. Eur. J.* 2021, *27*, 6028–6033.
- [5] He, X.; Yu, Z.; Jiang, S.; Zhang, P.; Shang, Z.; Lou, Y.; Wu, J. Bioorg. Med. Chem. Lett. 2015, 25, 5601–5603.
- [6] Ozcan, S.; Kazi, A.; Marsilio, F.; Fang, B.; Guida, W. C.; Koomen, J.; Lawrence, H.
 R. Sebti, S. M. J. Med. Chem. 2013, 56, 3783–3805.

7. Copies of ¹H and ¹³C NMR Spectra

S30

S34

S38

