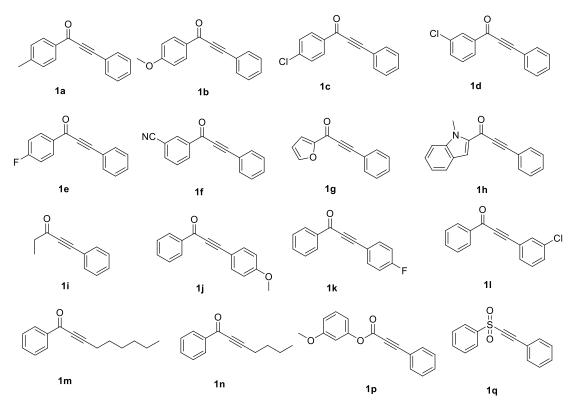
Supplementary Information

Synthesis Of 1,4-Dithiins And 1,4-Diselenins From Alkynes And Elemental Sulfur/Selenium Under Transition-Metal-Free Conditions With High Regioselectivity

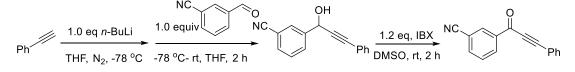
Lu Cheng,[†] Mengdan Wang,[†] Yingge Gu,[†] Peng He,[†] Zongkang Wang,[†] Ziyi Zhuang,[†] Lingkai Kong,^{*}[‡] Yanzhong Li^{*}[†] [†]School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China [‡]School of Chemistry and Chemical Engineering, Linyi University, Shuangling Road, Linyi, Shandong, 276000, China

Fax: (+86) 021-54340096, E-mail: yzli@chem.ecnu.edu.cn

Table of contents

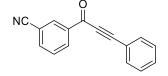

1. General information	2 -
2. Synthesis of alkynones 1	3 -
3. Experimental Section	4 -
3.1 General procedure for the synthesis of 1,4-dithiins 3 and 3'	4 -
3.2 General procedure for the synthesis of 1,4-diselenin 4 and 4'	5 -
3.3 Characterization data of products	6 -
3.4 Further transformations of 3a	17 -
3.5 Gram-scale experiment	20 -
4. References	21 -
5. Copies of NMR spectra	22 -
6. X-Ray Crystal Structure of 3h (CCDC: 2201657)	50 -

1. General information


Unless otherwise stated, all experiments were carried out under the atmosphere of nitrogen gas. Visualization of spots on TLC plate was accomplished with UV light (254 nm). All commercial reagents were used without further purification. Reactions were monitored by thin layer chromatography. Purification of reaction products was carried out by flash chromatography on silica gel (200~300 mesh). NMR spectra were recorded on Bruker AV-500 or Brucker AV-600 NMR spectrometer. ¹H NMR spectra was recorded with tetramethylsilane ($\delta = 0.00$ ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ ($\delta = 77.00$ ppm) as internal reference. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, m = multiplet. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FTICR (for MALDI) analyzer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers.

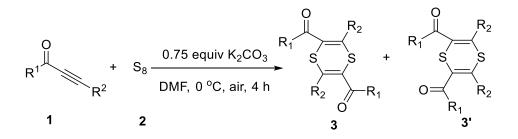
2. Synthesis of alkynones 1

All the substrates **1** are known compounds and have been prepared according to methods reported in the previous literature.


1a, **1b**, **1c**, **1e**, **1j**, **1k**¹; **1h**²; **1d**, **1g**³, **1i**⁴, **1l**⁵, **1m**⁶, **1n**⁷, **1p**⁸, **1q**⁹ Synthesis of **1f**

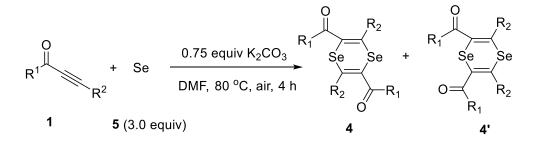
To a solution of alkyne (12 mmol) in anhydrous THF (30 mL), *n*-BuLi (2.5M, 10 mmol, 4 mL) was added at -78 °C. The resulting mixture was stirred at -78 °C for 1 h, then the aldehyde (10 mmol) was added and the reaction temperature was raised to room temperature till aldehyde disappeared by TLC analysis. The resulting mixture was quenched with a saturated solution of NH₄Cl and extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 5:1 as the eluent afforded the

substituted alkynol.

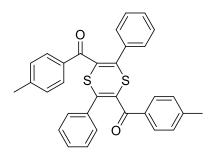

To a solution of substituted alkynol (10 mmol) in DMSO (20 mL) in round-bottom flask, IBX (12 mmol, 3.36 g) was added at room temperature. The reaction was stirred in air until the full conversion of substituted alkynol monitored by thin-layer chromatography. The resulting mixture was quenched with water (20 mL) and filtered. Then the filtrate was extracted with ethyl acetate (20 mL \times 3). The organic layers was combined, washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1 as white solid in 65% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.44-8.42 (m, 1H), 7.92-7.90 (m, 1H), 7.73-7.66 (m, 3H), 7.56-7.51 (m, 1H), 7.48-7.44 (m, 2H). ¹³**C NMR** (125 MHz, CDCl₃) δ 175.59, 137.53, 136.77, 133.25, 133.19, 133.10, 131.36, 129.69, 128.81, 119.36, 117.78, 113.23, 95.02, 86.12. m.p. 126 - 128 °C. **HRMS** (ESI) calcd for C₁₆H₁₀NO [M + H] ⁺: 232.0757, found: 232.0761.

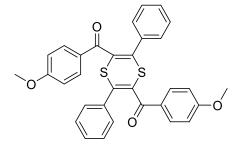
3. Experimental Section


3.1 General procedure for the synthesis of 1,4-dithiins 3 and 3'

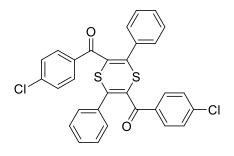
In an oven-dried Schlenk tube was charged with a stir bar, alkynones 1 (0.30 mmol, 1.0 equiv), elemental sulfur 2 (0.05 mmol, 12.8 mg), K₂CO₃ (0.225 mmol, 31.1 mg) and

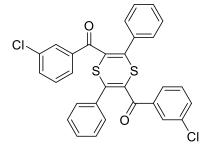

DMF (3.0 mL). The mixture was stirred at 0 °C for 4 hours. Upon completion of the reaction, the reaction mixture was quenched by water. The aqueous layer was extracted with ethyl acetate (10 mL \times 3). The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The products **3** and **3'** were isolated by column chromatography on silica gel (eluted with PE/EA, v:v) and the ratio of **3** and **3'** was analyzed by calculating peak areas in ¹H NMR spectra.

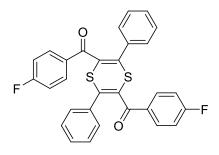
3.2 General procedure for the synthesis of 1,4-diselenin 4 and 4'

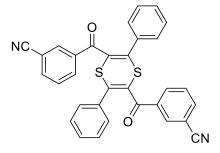


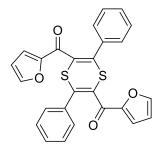
In an oven-dried Schlenk tube was charged with a stir bar, alkynones 1 (0.30 mmol, 1.0 equiv), elemental selenium 5 (0.90 mmol, 71.1 mg), K_2CO_3 (0.225 mmol, 31.1 mg) and DMF (3.0 mL). The mixture was stirred at 80 °C for 4 hours. Upon completion of the reaction, the reaction mixture was quenched by water. The aqueous layer was extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The products 4 and 4' were isolated by column chromatography on silica gel (eluted with PE/EA, v:v) and the ratio of 4 and 4' was analyzed by calculating the ratio of peak areas in ¹H NMR spectra.

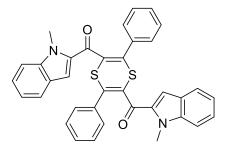

3.3 Characterization data of products

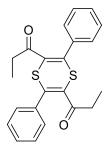

(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis(p-tolylmethanone) (3a) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 10:1, v/v) to provide the desired compound as a yellow solid (3a:3a' = 7:1, 71.2 mg, 94% total yield). m.p. 156 - 158 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.76 - 7.73 (m, 4H), 7.37 - 7.33 (m, 4H), 7.19 - 7.10 (m, 10H), 2.36 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 191.48, 146.56, 144.98, 135.08, 132.56, 130.94, 129.70, 129.64, 129.55, 129.44, 128.40, 21.75. HRMS (ESI) calcd for C₃₂H₂₄O₂S₂Na [M + Na] ⁺: 527.1110, found: 527.1108.

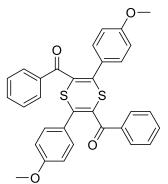

(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis((4-methoxyphenyl)methanone) (3b) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 10:1, v/v) to provide the desired compound as a yellow solid (3b:3b' = 5:1, 72.4 mg, 90% total yield). m.p. 189 - 191 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84 - 7.82 (m, 4H), 7.38 - 7.35 (m, 4H), 7.17 - 7.13 (m, 6H), 6.86 -6.84 (m, 4H), 3.83 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 190.50, 164.18, 146.10, 135.19, 132.03, 131.19, 129.59, 129.51, 128.41, 128.02, 114.02, 55.51. HRMS (ESI) calcd for C₃₂H₂₄O₄S₂Na [M + Na] ⁺: 559.1008, found: 529.1003.

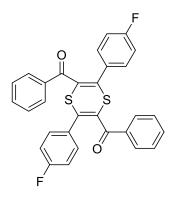

(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis((4-chlorophenyl)methanone) (3c) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 12:1, v/v) to provide the desired compound as a yellow solid (3c:3c' = 11:1, 73.5 mg, 90% total yield). m.p. 128 - 130 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.76 -7.72 (m, 4H), 7.35 - 7.29 (m, 8H), 7.23 - 7.13 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 190.43, 148.11, 140.44, 134.80, 133.53, 130.78, 130.12, 130.05, 129.64, 129.10, 128.64. HRMS (ESI) calcd for C₃₀H₁₈Cl₂O₂S₂Na [M + Na] ⁺: 567.0018, found: 567.0013.

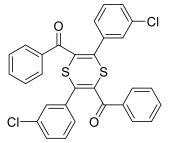

(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis((3-chlorophenyl)methanone) (3d) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 12:1, v/v) to provide the desired compound as a yellow solid (3d:3d' = 7:1, 70.0 mg, 82% total yield). m.p. 138 - 140 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.78 - 7.77 (m, 2H), 7.66 - 7.63 (m, 2H), 7.45 - 7.42 (m, 2H), 7.34 - 7.27 (m, 6H), 7.22 - 7.14 (m, 6H) ¹³C NMR (125 MHz, CDCl₃) δ 190.28, 148.72, 136.73, 134.94, 134.79, 133.64, 130.12, 130.02, 129.77, 129.64, 129.34, 128.62, 127.46. HRMS (ESI) calcd for C₃₀H₁₈Cl₂O₂S₂Na [M + Na] ⁺: 567.0018, found: 567.0012.


(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis((4-fluorophenyl)methanone) (3e) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 12:1, v/v) to provide the desired compound as a yellow solid (3d:3d' = 12:1, 70.7 mg, 92% total yield). m.p. 136 - 138 °C. ¹³C NMR (125 MHz, CDCl₃) δ 7.85 -7.82 (m, 4H), 7.34 - 7.31 (m, 4H), 7.22 - 7.13 (m, 6H), 7.06 - 7.01 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 190.14, 166.05 (d, *J* = 255.0 Hz), 147.80, 134.88, 132.16 (d, *J* = 10.0 Hz), 131.56 (d, *J* = 2.50 Hz), 130.35, 129.94, 129.61, 128.57, 115.99 (d, *J* = 21.25 Hz). **HRMS** (ESI) calcd for C₃₀H₁₈F₂O₂S₂Na [M + Na] ⁺: 535.0609, found: 535.0601.

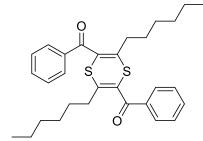

3,3'-(3,6-diphenyl-1,4-dithiine-2,5-dicarbonyl)dibenzonitrile (3f) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 8:1, v/v) to provide the desired compound as a red solid (**3f:3f'** = 3:1, 67.9 mg, 86% total yield). m.p. 146 - 148 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.03 - 8.01 (m, 2H), 7.95 - 7.91 (m, 2H), 7.73 - 7.70 (m, 2H), 7.52 - 7.48 (m, 2H), 7.32 - 7.29 (m, 4H), 7.23 - 7.15 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 189.29, 150.32, 136.32, 136.16, 134.57, 132.93, 132.84, 130.57, 129.78, 129.76, 128.82, 128.75, 117.51, 113.22. HRMS (ESI) calcd for C₃₂H₁₈N₂O₂S₂Na [M + Na] ⁺: 549.0702, found: 549.0696.


(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis(furan-2-ylmethanone) (3g) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 11:1, v/v) to provide the desired compound as a yellow solid (3g:3g' = 12:1, 65.1 mg, 95% total yield). m.p. 167 - 169 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.47 - 7.40 (m, 6H), 7.27 - 7.18 (m, 6H), 7.04 - 7.01 (m, 2H), 6.40 - 6.37 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 178.89, 150.96, 149.96, 147.68, 135.12, 129.87, 129.68, 128.83, 128.52, 120.56, 112.61. HRMS (ESI) calcd for C₂₆H₁₆O₄S₂Na [M + Na] ⁺: 479.0382, found: 479.0374.

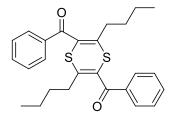

(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis((1-methyl-1H-indol-2-yl)methanone) (3h) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 7:1, v/v) to provide the desired compound as a yellow solid (3h:3h' = 9:1, 77.8 mg, 89% total yield). ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.61 (m, 2H), 7.48-7.45 (m, 4H), 7.40-77.34 (m, 4H), 7.19 (s, 2H), 7.16-7.11 (m, 8H), 4.08 (s, 6H). m.p. 178 - 180 °C. ¹³C NMR (125 MHz, CDCl₃) δ 184.08, 147.05, 140.95, 135.49, 133.85, 131.41, 129.56, 129.53, 128.46, 126.71, 125.86, 123.36, 120.99, 115.10, 110.40, 31.98. HRMS (ESI) calcd for C₃₆H₂₆N₂O₂S₂Na [M + Na] ⁺: 605.1328, found: 605.1321. **3h':** ¹H NMR (500 MHz, CDCl₃) δ 7.64-7.60 (m, 6H), 7.34-7.24 (m, 10H), 7.21 (s, 2H), 7.11-7.07 (m, 2H), 3.92 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 183.00, 146.80, 140.75, 135.71, 133.70, 130.42, 129.61, 129.45, 128.63, 126.53, 125.78, 123.31, 120.83, 114.91, 110.27, 31.81. m.p. 176 - 178 °C. **HRMS** (ESI) calcd for C₃₆H₂₇N₂O₂S₂ [M + H] ⁺: 583.1509, found: 583.1509.


1,1'-(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis(propan-1-one) (3i) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 15:1, v/v) to provide the desired compound as a yellow solid (**3i**:**3i**' = 10:1, 35.4 mg, 62% total yield). m.p. 143 - 145 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.43 - 7.38 (m, 10H), 2.29 - 2.24 (m, 4H), 0.98 - 0.94 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 200.28, 149.06, 135.64, 131.15, 130.22, 129.58, 128.81, 35.70, 8.51. HRMS (ESI) calcd for C₂₂H₂₀O₂S₂Na [M + Na] ⁺: 403.0797, found: 403.0788.

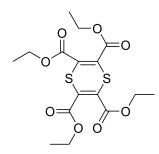
(3,6-bis(4-methoxyphenyl)-1,4-dithiine-2,5-diyl)bis(phenylmethanone) (3j) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 10:1, v/v) to provide the desired compound as a yellow solid (3j:3j' = 12:1, 74.1 mg, 92% total yield). m.p. 168 - 170 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.84 - 7.81 (m, 4H), 7.52 - 7.49 (m, 2H), 7.38 - 7.34 (m, 4H), 7.30 - 7.26 (m, 4H), 3.67 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 192.16, 160.73, 149.07, 135.34, 133.65, 131.32, 129.49, 128.61, 128.26, 127.38, 113.82, 55.19. HRMS (ESI) calcd for C₃₂H₂₄O₄S₂Na [M + Na] ⁺: 559.1008, found: 559.0999.

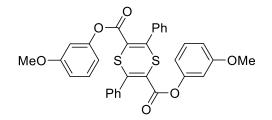


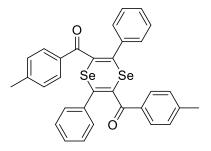
(3,6-bis(4-fluorophenyl)-1,4-dithiine-2,5-diyl)bis(phenylmethanone) (3k) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 10:1, v/v) to provide the desired compound as a yellow solid (3k:3k' = 6:1, 66.9 mg, 87% total yield). m.p. 180 - 182 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.83 - 7.80 (m, 4H), 7.56 - 7.51 (m, 2H), 7.41 - 7.37 (m, 4H), 7.34 - 7.30 (m, 4H), 6.84 - 6.80 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 191.58, 163.4 (d, *J* = 250.0 Hz) 146.70, 135.07, 134.07, 131.71 (d, *J* = 8.75 Hz), 131.00 (d, *J* = 3.75 Hz), 130.57, 129.47, 128.82, 115.67 (d, *J* = 22.5 Hz). HRMS (ESI) calcd for C₃₀H₁₈F₂O₂S₂Na [M + Na] ⁺: 535.0609, found: 535.0603.

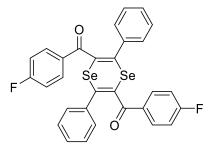


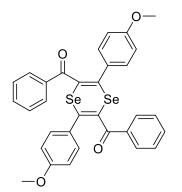
(3,6-bis(3-chlorophenyl)-1,4-dithiine-2,5-diyl)bis(phenylmethanone)(31)Following the general procedure, the crude product was purified by columnchromatography (PE/EA = 13:1, v/v) to provide the desired compound as a yellow solid(31:31' = 6:1, 76.9 mg, 94% total yield). m.p. 124 - 126 °C. ¹H NMR (600 MHz, CDCl₃)7.83-7.80 (m, 4H), 7.57-7.53 (m, 2H), 7.43-7.40 (m, 4H), 7.33-7.31 (m, 2H), 7.22-7.19(m, 2H), 7.16-7.13 (m, 2H), 7.08-7.05 (m 2H). ¹³C NMR (150 MHz, CDCl₃) δ 191.18,145.49, 136.53, 135.03, 134.45, 134.17, 131.96, 129.86, 129.70, 129.49, 129.42,

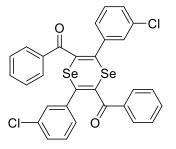

128.86, 127.93. **HRMS** (ESI) calcd for C₃₀H₁₈Cl₂O₂S₂Na [M + Na] ⁺: 567.0018, found: 567.0017.

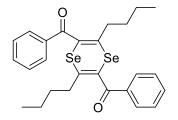

(3,6-dihexyl-1,4-dithiine-2,5-diyl)bis(phenylmethanone) (3m) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 20:1, v/v) to provide the desired compound as a yellow oil (55.4 mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 7.89 - 7.86 (m, 4H), 7.65 - 7.61 (m, 2H), 7.53 - 7.49 (m, 4H), 2.43 -2.39 (m, 4H), 1,52 - 1.48 (m, 4H), 1.20 - 1.11 (m, 12H), 0.81 - 0.77 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 191.57, 147.80, 135.97, 133.93, 130.71, 129.52, 128.72, 34.99, 31.26, 28.91, 28.63, 22.35, 13.92. HRMS (ESI) calcd for C₃₀H₃₆O₂S₂Na [M + Na] ⁺: 515.2049, found: 515.2045.


(3,6-dibutyl-1,4-dithiine-2,5-diyl)bis(phenylmethanone) (3n) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 20:1, v/v) to provide the desired compound as a yellow oil (43.9 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 7.88 - 7.85 (m, 4H), 7.65 - 7.61 (m, 2H), 7.53 - 7.48 (m, 4H), 2.55 - 2.51 (m, 4H), 1.53 - 1.46 (m, 4H), 1.24 - 1.18 (m, 4H), 0.79 - 0.75 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 193.06, 147.99, 135.91, 133.97, 131.39, 129.38, 128.78, 36.75, 31.93, 22.11, 13.64. HRMS (ESI) calcd for C₂₆H₂₈O₂S₂Na [M + Na] ⁺: 459.1423, found: 459.1418.

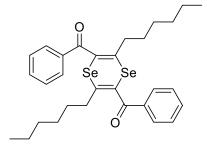

tetraethyl 1,4-dithiine-2,3,5,6-tetracarboxylate (30) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 25:1, v/v) to provide the desired compound as a yellow solid (24.9 mg, 41%). m.p. 114 - 116 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.86 - 7.82 (m, 4H), 7.35 - 7.32 (m, 4H), 7.21 - 7.13 (m, 6H), 7.05 - 7.01 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 190.08, 167.01, 164.97, 147.78, 134.82, 132.16, 132.08, 131.50, 131.48, 130.27, 129.90, 129.56, 128.53, 116.04, 115.86. HRMS (ESI) calcd for C₁₆H₂₀O₈S₂Na [M + Na] ⁺: 427.0492, found: 427.0485.


bis(3-methoxyphenyl) 3,6-diphenyl-1,4-dithiine-2,5-dicarboxylate (3p) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 10:1, v/v) to provide the desired compound as a yellow solid (**3p:3p'** = 6:1, 64.2 mg, 75% total yield). m.p. 128 - 130 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.59-7.56 (m, 4H), 7.45-7.41 (m, 6H), 7.26-7.18 (m, 2H), 6.75-6.72 (m, 2H), 6.54-6.51 (m, 2H), 6.41-6.39 (m, 2H), 3.74 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 161.29, 160.33, 155.25, 151.15, 135.82, 130.18, 129.71, 129.53, 128.58, 120.42, 113.15, 111.97, 106.89, 55.42. HRMS (ESI) calcd for C₃₂H₂₄O₆S₂Na [M + Na] ⁺: 591.0907, found: 591.0913.

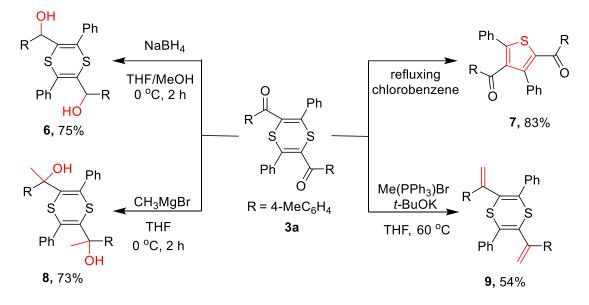

(3,6-diphenyl-1,4-diselenine-2,5-diyl)bis(p-tolylmethanone) (4a) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 9:1, v/v) to provide the desired compound as a yellow solid (4a:4a' = 10:1, 82.6 mg, 92% total yield). m.p. 158 - 160 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.73 - 7.71 (m, 4H), 7.37 - 7.34 (m, 4H), 7.17 - 7.10 (m, 10H), 2.36 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 193.09, 147.02, 144.81, 136.92, 132.43, 131.90, 129.85, 129.61, 129.38, 129.24, 128.32, 21.74. HRMS (ESI) calcd for C₃₂H₂₄O₂Se₂Na [M + Na] ⁺: 622.9999, found: 622.9994.


(3,6-diphenyl-1,4-diselenine-2,5-diyl)bis((4-fluorophenyl)methanone) (4b) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 12:1, v/v) to provide the desired compound as a yellow solid (4b:4b' = 7:1, 74.6 mg, 82% total yield). m.p. 136 - 138 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.83 - 7.79 (m, 4H), 7.35 - 7.32 (m, 4H), 7.20 - 7.11 (m, 6H), 7.04 -6.99 (m, 4H). ¹³C NMR (125 MHz, CDCl₃) δ 191.78, 165.99 (d, *J* = 255.0 Hz), 148.27, 136.72, 132.05 (d, *J* = 8.75 Hz), 131.38 (d, *J* = 3.75 Hz), 131.26, 129.79, 129.63, 128.51, 115.92 (d, *J* = 22.5 Hz). HRMS (ESI) calcd for C₃₀H₁₈F₂O₂Se₂Na [M + Na] ⁺: 630.9498, found: 630.9492.

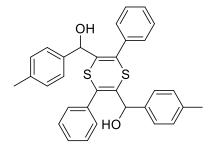
(3,6-bis(4-methoxyphenyl)-1,4-diselenine-2,5-diyl)bis(phenylmethanone) (4c) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 8:1, v/v) to provide the desired compound as a yellow solid (4c:4c' = 9:1, 73.8 mg, 78% total yield). m.p. 170 - 172 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.82-7.79 (m, 4H), 7.49-7.46 (m, 2H), 7.37-7.33 (m, 4H), 7.30-7.27 (m, 4H), 6.63-6.60 (m, 4H), 3.66 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 193.78, 160.40, 149.11, 135.06, 133.57, 131.46, 129.52, 129.40, 129.27, 128.56, 113.73, 55.18. HRMS (ESI) calcd for C₃₂H₂₄O₄Se₂Na [M + Na] ⁺: 654.9897, found: 654.9891.



(3,6-bis(3-chlorophenyl)-1,4-diselenine-2,5-diyl)bis(phenylmethanone) (4d) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 8:1, v/v) to provide the desired compound as a yellow solid (4d:4d' = 3:1, 72.9 mg, 76% total yield). m.p. 156 - 158 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.81 - 7.78 (m, 4H), 7.55 - 7.51 (m, 2H), 7.42 - 7.38 (m, 4H), 7.34 - 7.32 (m, 2H), 7.23 - 7.20 (m, 2H), 7.06 - 7.02 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 192.72, 145.93, 138.27, 134.78, 134.25, 134.03, 132.87, 129.60, 129.59, 129.49, 129.24, 128.76, 127.99. HRMS (ESI) calcd for C₃₀H₁₈Cl₂O₂Se₂Na [M + Na] ⁺: 662.8907, found: 662.8899.

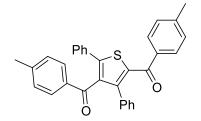

(3,6-dibutyl-1,4-diselenine-2,5-diyl)bis(phenylmethanone) (4f) Following the general procedure, the crude product was purified by column chromatography (PE/EA

= 15:1, v/v) to provide the desired compound as a yellow oil (39.0 mg, 49%). ¹H NMR (500 MHz, CDCl₃) δ 7.88 - 7.85 (m, 4H), 7.65 - 7.61 (m, 2H), 7.53 - 7.48 (m, 4H), 2.55 - 2.51 (m, 4H), 1.53 - 1.46 (m, 4H), 1.24 - 1.18 (m, 4H), 0.79 - 0.75 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 193.06, 147.99, 135.91, 133.97, 131.39, 129.38, 128.78, 36.75, 31.93, 22.11, 13.64. **HRMS** (ESI) calcd for C₂₆H₂₈O₂Se₂Na [M + Na] ⁺: 555.0312, found: 555.0317.



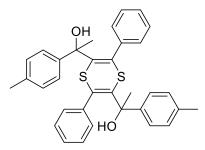
(3,6-dihexyl-1,4-diselenine-2,5-diyl)bis(phenylmethanone) (4g) Following the general procedure, the crude product was purified by column chromatography (PE/EA = 15:1, v/v) to provide the desired compound as a yellow oil (59.8 mg, 68%). ¹H NMR (500 MHz, CDCl₃) δ 7.89 - 7.86 (m, 4H), 7.63 - 7.61 (m, 2H), 7.52 - 7.48 (m, 4H), 2.55 - 2.51 (m, 4H), 1.52 - 1.48 (m, 4H), 1.20 - 1.10 (m, 12H), 0.81 - 0.77 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 193.01, 148.00, 135.91, 133.94, 131.37, 129.37, 128.75, 36.97, 31.25, 29.77, 28.59, 22.33, 13.92. HRMS (ESI) calcd for C₃₀H₃₆O₂Se₂Na [M + Na] ⁺: 611.0938, found: 611.0936.

3.4 Further transformations of 3a

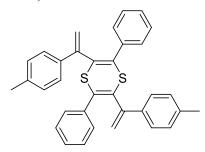

Procedure for preparation of 6^{10} : To an oven-dried 10 mL Schlenk tube charged with a PTFE-coated magnetic stirring bar, **3a** (0.2 mmol, 1.0 equiv., 100.9 mg) are diluted in dry THF and methanol (THF: MeOH=1:1, v: v) at 0 °C. NaBH₄ (0.6 mmol, 3.0 equiv., 22.7 mg) was added to the reaction vessel, and the reaction was stirred for 2 h at 0 °C under N₂ atmosphere. Upon the completion of reaction monitored by TLC, and the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate (3x10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: EA = 7: 1, v: v) as white solid. (76.0 mg, 75%)

¹H NMR (500 MHz, CDCl₃) δ 7.27 - 7.25 (m, 10H), 7.17 - 7.10 (m, 8H), 5.66 - 5.63 (m, 2H), 2.50 - 2.48 (m, 2H), 2.35 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 140.09,

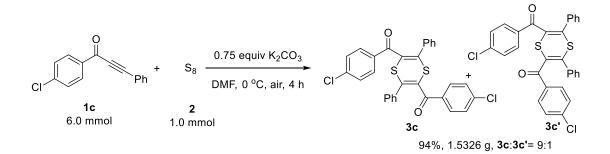
138.80, 138.52, 137.46, 136.82, 129.33, 129.08, 128.58, 128.43, 125.95, 72.39, 21.07. m.p. 105 - 107 °C. **HRMS** (ESI) calcd for C₃₂H₂₈O₂S₂Na [M + Na] ⁺: 531.1423, found: 531.1428.


Procedure for preparation of 7^{11} : To a 10 mL sealed tube charged with a PTFE-coated magnetic stirring bar and **3a** (0.2 mmol, 1.0 equiv., 100.9 mg) The reaction was carried out in refluxing chlorobenzene (2 mL) for 1 h. Upon the completion of reaction monitored by TLC, and the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate (3x10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO₄, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: EA = 6: 1, v: v) as yellow solid. (78.5 mg, 83%)

¹**H NMR** (500 MHz, CDCl₃) δ 7.57-7.47 (m, 6H), 7.30-7.25 (m, 3H), 7.10-7.07 (m, 2H), 7.01-6.95 (m, 7H), 2.26 (s, 3H), 2.24 (s, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 194.39, 189.49, 146.92, 145.41, 144.37, 143.20, 138.74, 137.51, 134.67, 134.58, 134.21, 132.29, 129.78, 129.75, 129.71, 129.00, 128.97, 128.78, 128.65, 128.50, 127.70, 127.60, 21.57, 21.49. m.p. 177 - 179 °C. **HRMS** (ESI) calcd for C₃₂H₂₄O₂SNa [M + Na] ⁺: 495.1389, found: 495.1382.


Procedure for preparation of 8^{12} : To an oven-dried 10 mL Schlenk tube charged with a PTFE-coated magnetic stirring bar, **3a** (0.2 mmol, 1.0 equiv., 100.9 mg) are diluted in dry THF (2 mL) at 0 °C. methylmagnesium bromide solution (3.0 M in THF, 0.27 mL, 0.8 mmol) was added to the reaction vessel, and the reaction was stirred for 2 h at 0 °C under N₂ atmosphere. Upon the completion of reaction monitored by TLC, and the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate (3x10 mL). The combined organic layers were washed with brine (10 mL), dried

over MgSO₄, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: EA = 7: 1, v: v) as white solid. (78.4 mg, 73%)


¹H NMR (500 MHz, CDCl₃) δ 7.26-7.17 (m, 10 H), 7.13-7.11 (m, 4H), 6.96-6.93 (m, 4H), 2.55 (s, 2H), 2.36 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 145.41, 143.64, 138.49, 137.45, 137.08, 128.83, 128.14, 127.91, 125.35, 78.36, 30.13, 21.03. m.p. 78 - 80 °C.
HRMS (ESI) calcd for C₃₄H₃₂O₂S₂Na [M + Na] ⁺: 559.1736, found: 559.1731.

Procedure for preparation of 9^{13} : To an oven-dried 10 mL Schlenk tube charged with a PTFE-coated magnetic stirring bar, Ph₃PMeBr (4.0 equiv., 142.9 mg, 0.4 mmol) was added. Under nitrogen atmosphere, 2 mL of tetrahydrofuran and of *t*-BuOK (4.0 equiv., 44.9 mg, 0.4 mmol) were added at 0 °C. After 1 h, **3a** (1.0 equiv., 0.1 mmol, 50.5 mg) was added at 80 °C for 4 h. Upon the completion of reaction monitored by TLC, and the reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate (3x10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO4, and concentrated under reduced pressure, the pure product was isolated by column chromatography on silica gel (PE: EA = 10: 1, v: v) as white solid. (29.0 mg, 58%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.36-7.34 (m, 4H), 7.32-7.29 (m, 4H), 7.15-7.12 (m, 10H), 5.58 (m, 2H), 5.14 (s, 2H), 2.35 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 145.22, 140.13, 138.11, 137.22, 135.52, 134.60, 129.27, 129.17, 127.92, 127.85, 126.44, 116.65, 21.19. m.p. 118 - 120 °C. **HRMS** (ESI) calcd for C₃₄H₂₉S₂ [M + H] ⁺: 501.1705, found: 501.1709.

3.5 Gram-scale experiment

In a schlenk tube **1a** (6.0 mmol, 1.4441 g), **2** (1.0 mmol, 256.5 mg), K₂CO₃ (4.5 mmol, 621.9 mg) and DMF (60.0 mL) were stirred at 0 °C. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (20 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 12:1) afforded desired compound as a yellow solid (**3c:3c'** = 9:1, 1.5326 g, 94% total yield)

4. References

[1] Yuan, Y.; Tan, H.; Kong, L.; Zheng, Z.; Xu, M.; Huang, J.; Li, Y. Transition-metal-free C–C σ -bond activation of α -aryl ketones and subsequent Zn-catalyzed intramolecular cyclization: synthesis of tetrasubstituted furans. *Org. Biomol. Chem.* **2019**, *17*, 2725-2733.

[2] Wang, M.; Kong, L.; Wang, Y.; Song, B.; Sun, Y., Tang, R.; Li, Y.; Sequential C–C σ -Bond Cleavage/(sp2) C–O Bond Formation via C–H Functionalization toward Pyranoindolones Fused with Medium-Sized Ring. *Org. Lett.* **2018**, *20*, 6130-6134.

[3] Kotipalli R.; Nagireddy A.; Reddy M. S. Palladium-catalyzed cyclizative cross coupling of ynone oximes with 2-haloaryl N-acrylamides for isoxazolyl indoline bisheterocycles. *Org. Biomol. Chem.*, **2022**,*20*, 2609-2614.

[4] Chan, K. H.; Leong, W. K.; Jaouen, G.; Leclerq, L.; Top, S.; Vessières, A., Organometallic cluster analogues of tamoxifen: Synthesis and biochemical assay. *J. Organomet. Chem.* **2006**, *691*, 9-19.

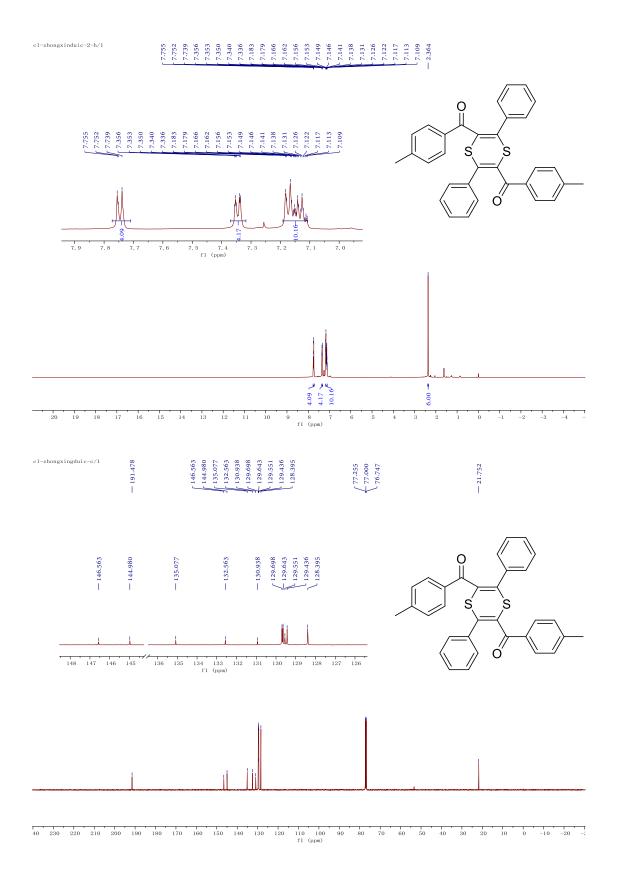
[5] Wang, M.; Yin, L.; Cheng, L.; Yang, Y.; Li, Y., Straightforward Stereoselective Synthesis of Seven-Membered Oxa-Bridged Rings through In Situ Generated Cycloheptenol Derivatives, *J. Org. Chem.*, **2021**, *86*, 12956-12963.

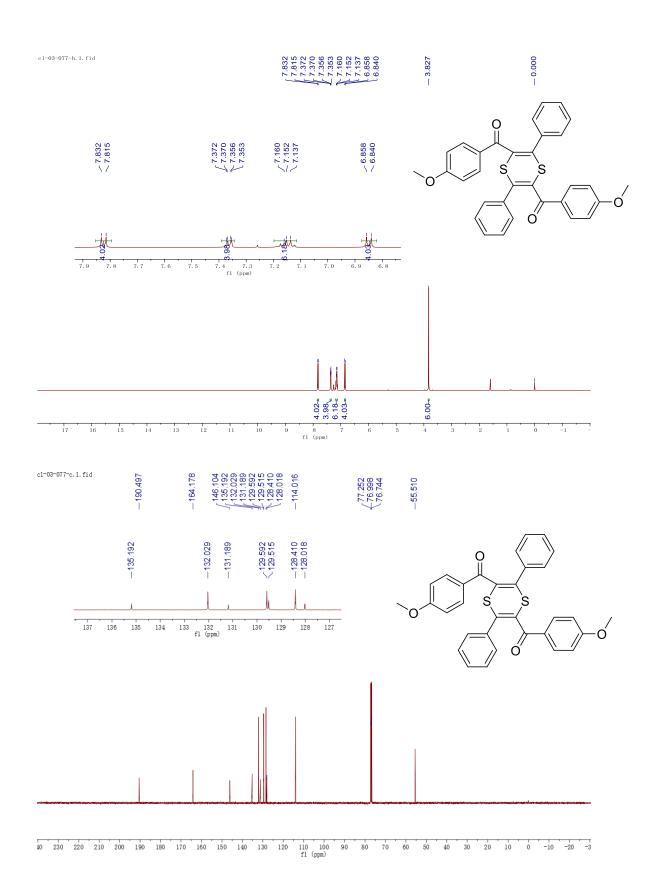
[6] Zhou, F.; Li, C.; Li, M.; Jin, Y.; Jiang, H.; Zhang, Y.; Wu, W., Synthesis of 2-isoxazolyl-2,3-dihydrobenzofurans via palladium-catalyzed cascade cyclization of alkenyl ethers, *Chem. Commun.*, **2021**,*57*, 4799-4802

[7] Karabiyikoglu S.; Kelgokmen Y.; Zora M., Facile synthesis of iodopyridines from N-propargylic β -enaminones via iodine-mediated electrophilic cyclization, *Tetrahedron* **2015**, *71*, 4324-4333.

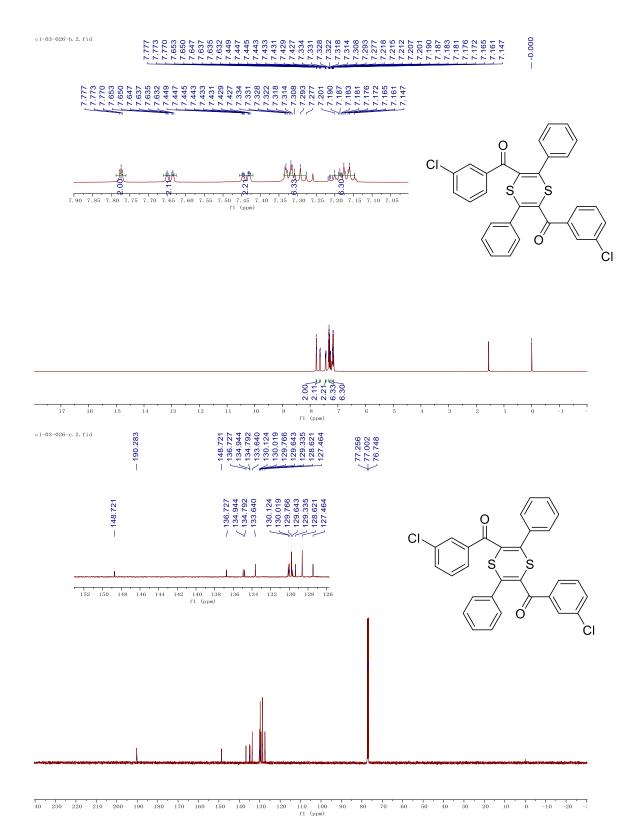
[8] Li, H.; Liu, S.; Huang, Y.; Xu, X.; F. Qing, Tandem Trifluoromethylthiolation/Aryl Migration of Aryl Alkynoates to Trifluoromethylthiolated Alkenes, *Chem. Commun.*, **2017**, *53*, 10136-10139.

[9] Jatuporn M.; Praewpan K.; Chayaporn P.; Manat P.; Vichai R.; Darunee S.; Chutima K., Iodine-catalyzed Sulfonylation of Arylacetylenic Acids and Arylacetylenes with Sodium Sulfinates: Synthesis of Arylacetylenic Sulfones, *J. Org. Chem.*, **2016**, 81, 2744–2752.

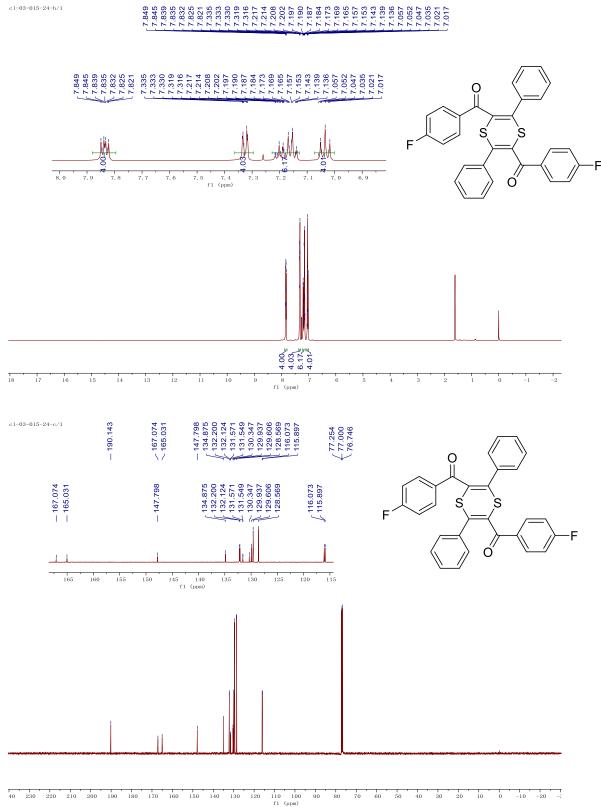

[10] Zhou, X. B.; Zhang, G. Y.; Huang, R. B.; Huang, H. M., Palladium-Catalyzed Allyl–Allyl Reductive Coupling of Allylamines or Allylic Alcohols with H₂ as Sole Reductant, *Org. Lett.*, **2021**, *23*, 365-369.

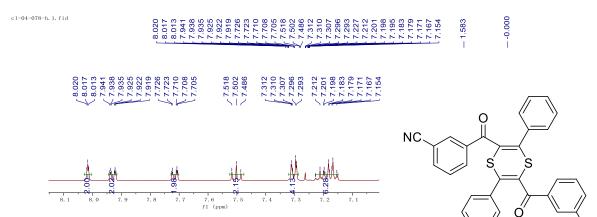

[11] Nakayama, J.; Yomoda, R.; Hoshino, M., Reactions of Elemental Sulfur and Selenium with some Acetylenic compounds Formation of Thiophenes and Selenophenes, *Heterocycles*, **1987**, *26*, 2215-2222.

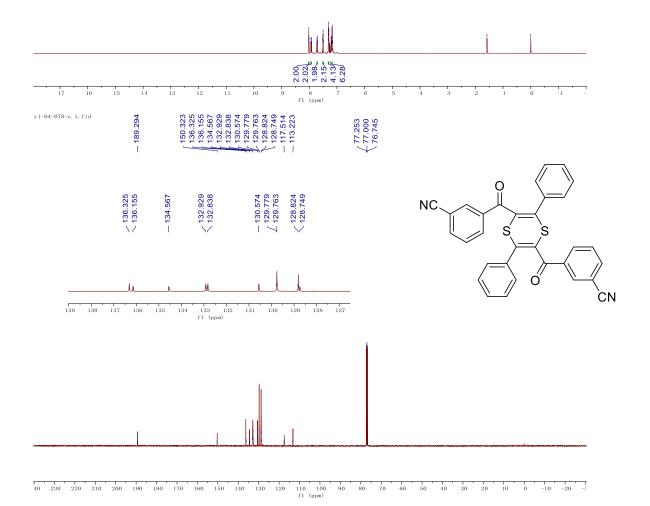

[12] Hatano, M.; Suzuki, S.; Ishihara, K., Highly Efficient Alkylation to Ketones and Aldimines with Grignard Reagents Catalyzed by Zinc(II) Chloride, *J. Am. Chem. Soc.* **2006**, *128*, 9998–9999

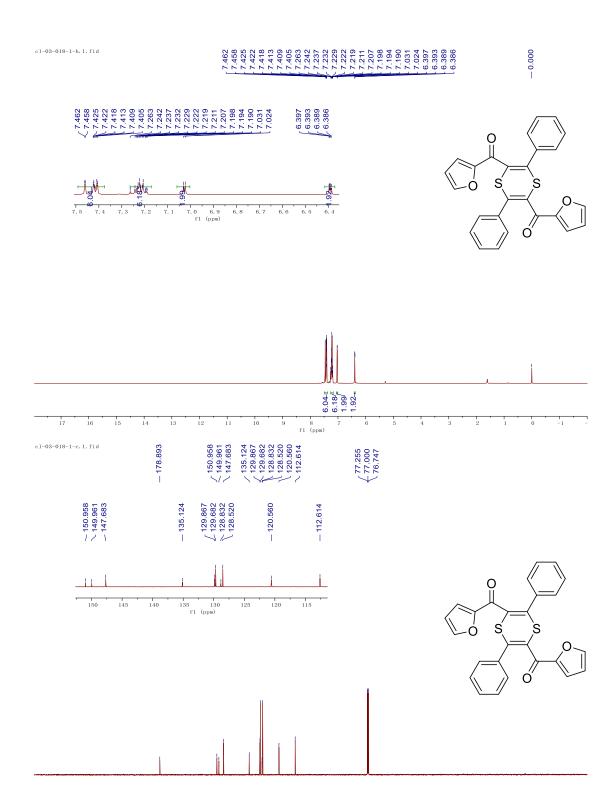

[13] Conner, M. L.; Brown, M. K., Synthesis of 1,3-Substituted Cyclobutanes by Allenoate-Alkene [2 + 2] Cycloaddition, *J. Org. Chem.* **2016**, *81*, 8050–8060.

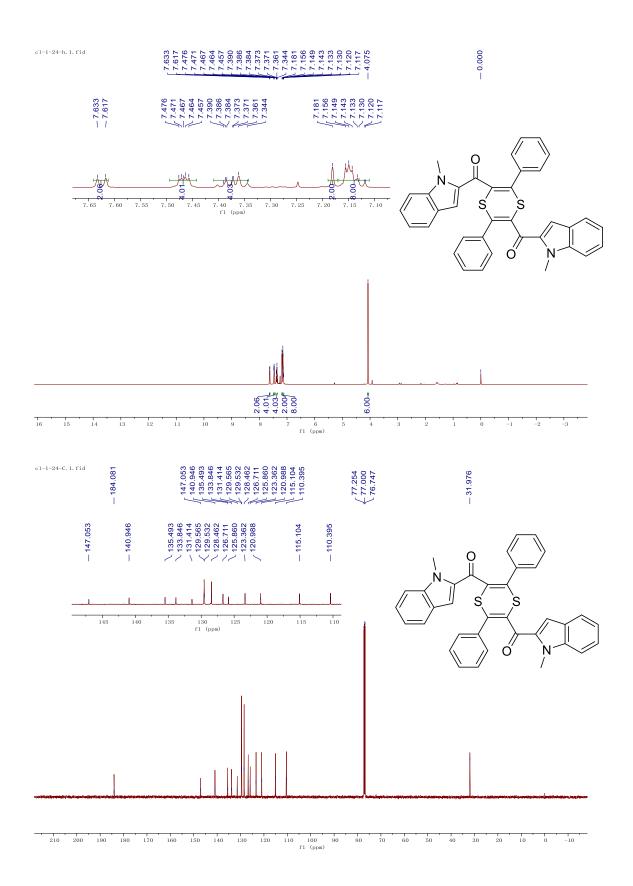
5. Copies of NMR spectra

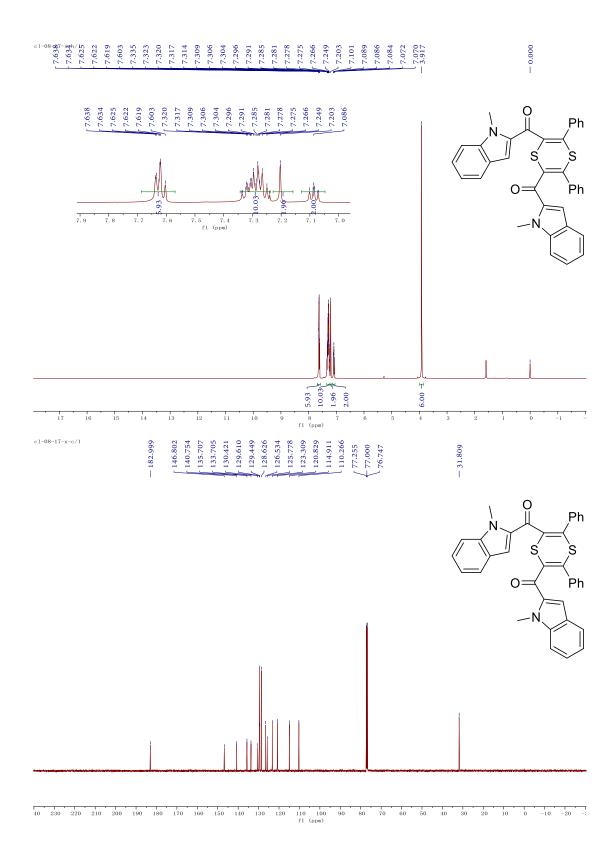




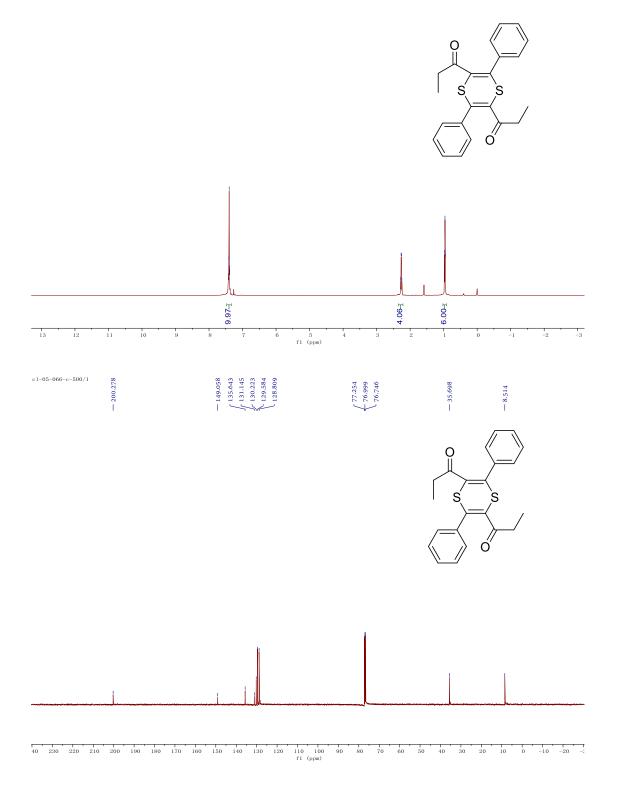


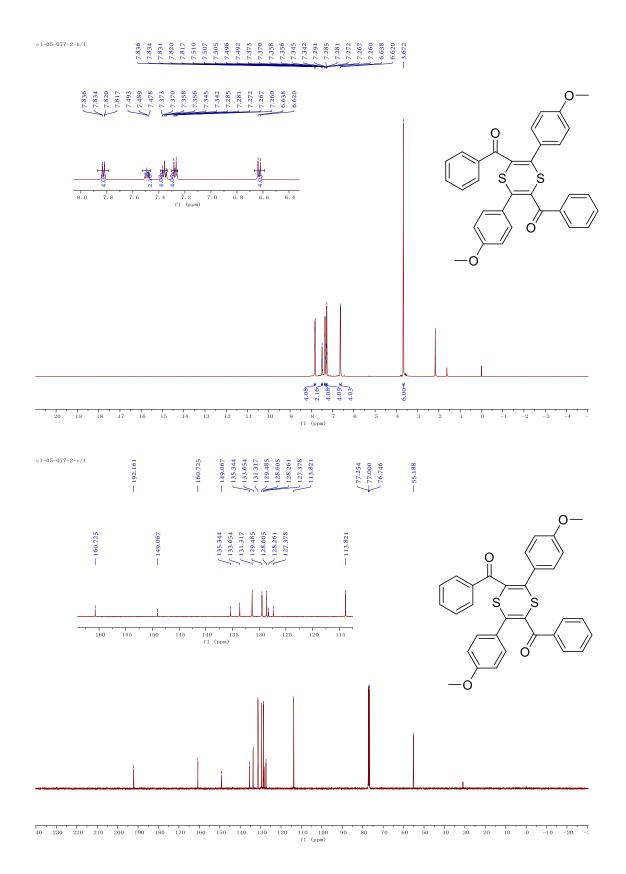

- 25 -

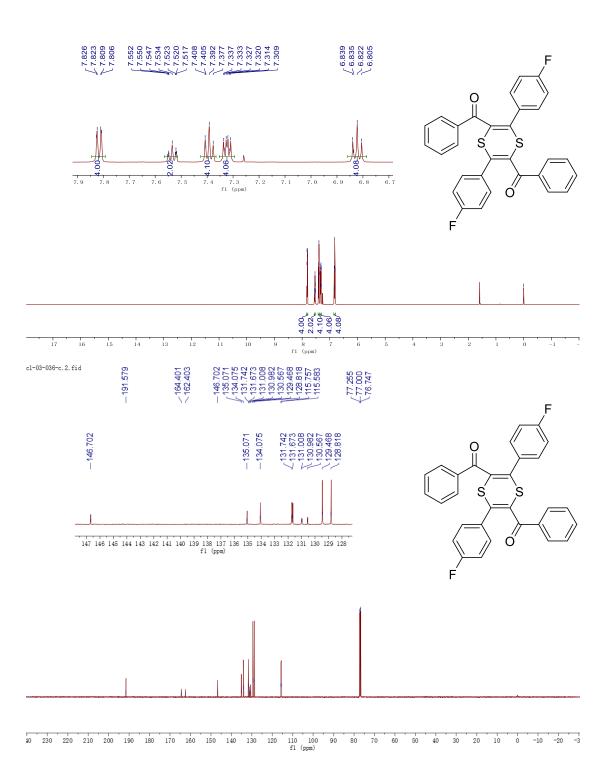


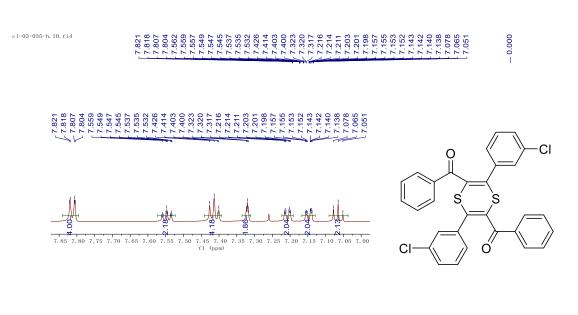

СN

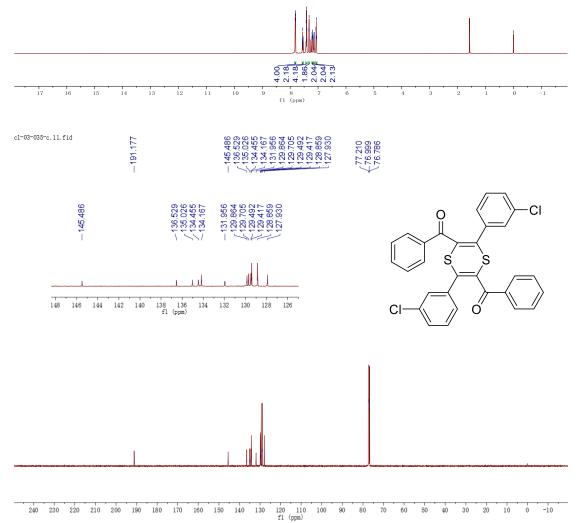
40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -: f1 (ppm)











- 0.000

7,385 7,585 7,585 7,588 7,588 7,588 7,588 7,588 7,588 7,588 7,597 7,598 7,597 7,598 7,597

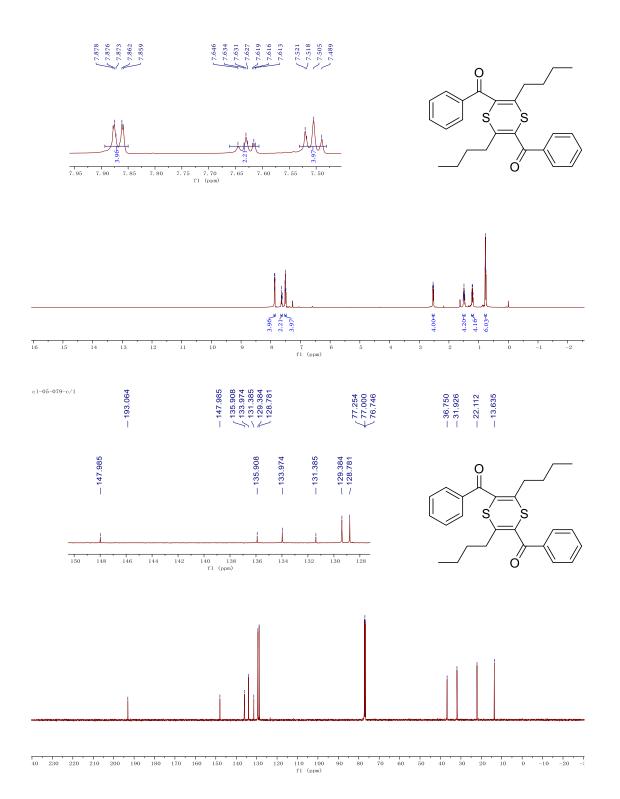
 $\left\{\begin{array}{c} 7.880\\ 7.865\\ 7.865\\ 7.865\\ 7.862\\ 7.619\\ 7.619\\ 7.501\\ 7.521\\ 7.521\\ 7.506\\ 7.790\end{array}\right.$ 0 S 7.9 7.8 7.7 7.6 7.5 8.2 8.1 8.0 7.4 7.3 7.2 7.1 Ó 3.99 } 2.00 ∄ 3.81 Ĵ 4.06 -4.10 12.03 4.00 - 6.00 - 1 20 19 18 17 16 15 14 13 12 11 10 9 8 f1 (ppm) 7 -4 -6 5 4 3 -1 -2 -3 cl=05=073=c/1 -191.574 -147.802 $\int_{-135.971} 135.971$ $\int_{-130.714} 129.515$ $\int_{-128.720} 128.720$ 77.255 77.000 76.746
 34.987

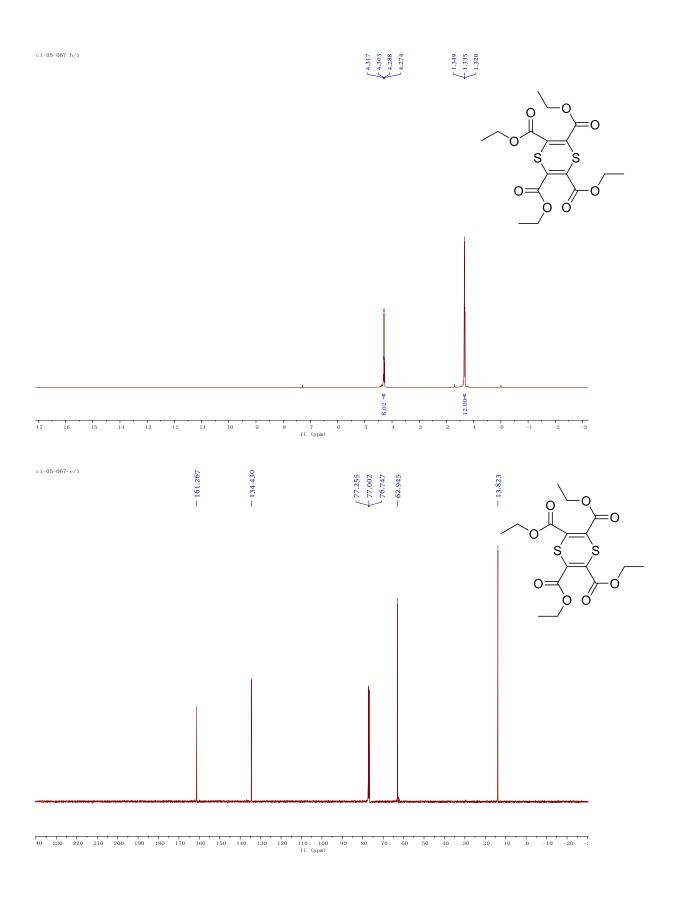
 31.255

 31.255

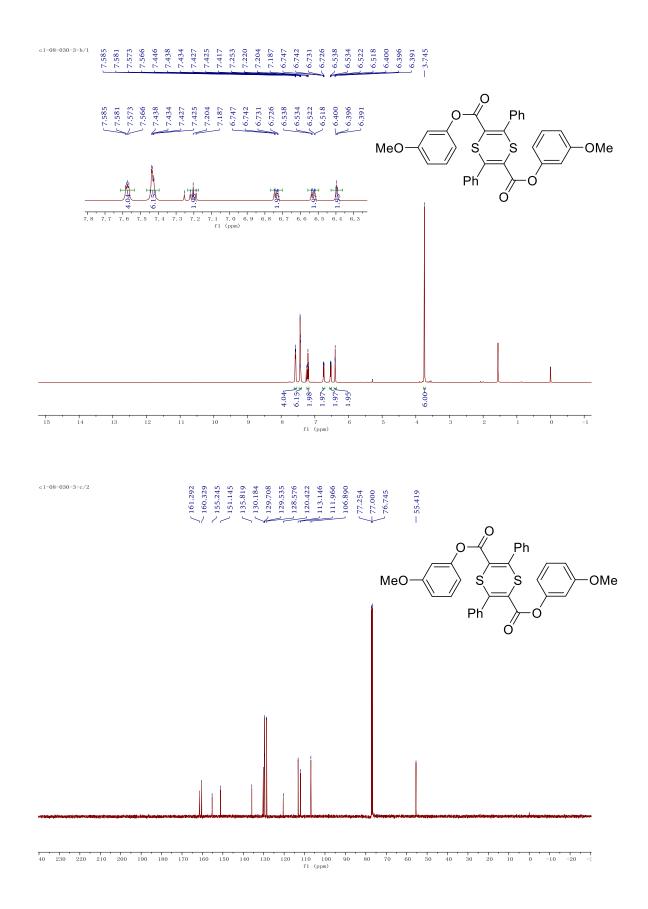
 28.911

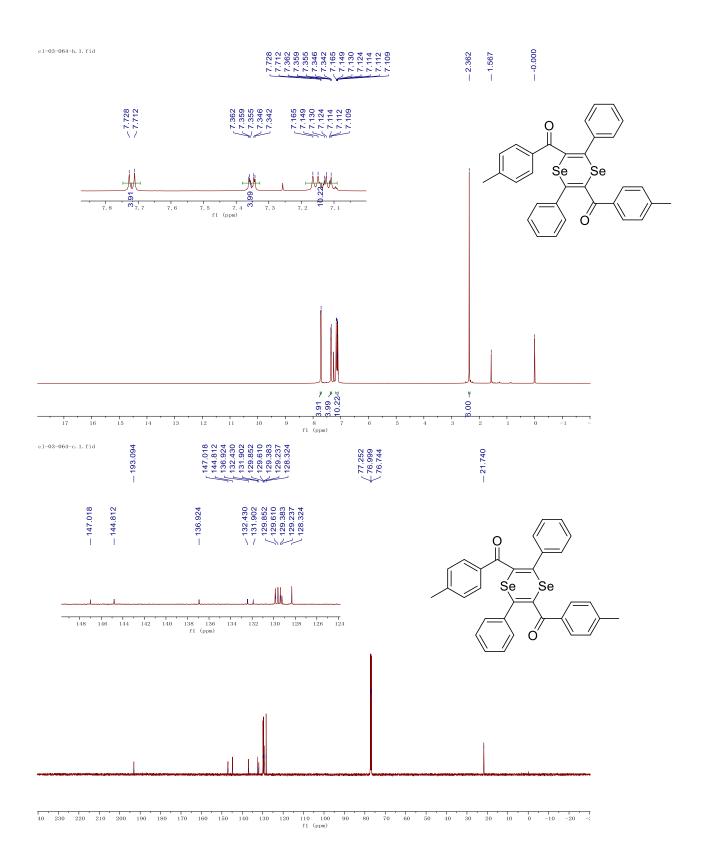
 28.911

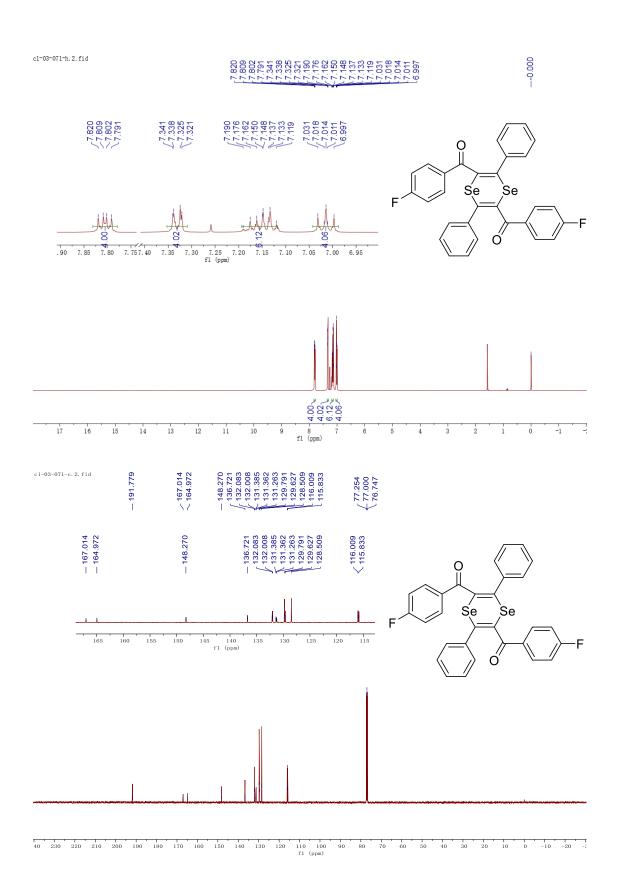

 28.634

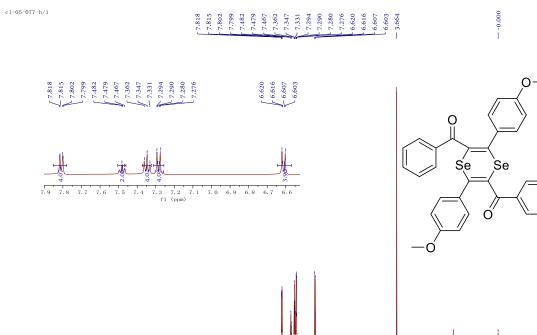

 22.353

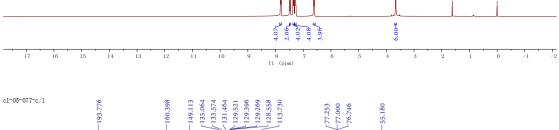
 13.922
 ~130.714 ~129.515 ~128.720 -147.8020 150 130 145 140 fl (ppm) 135 Ο

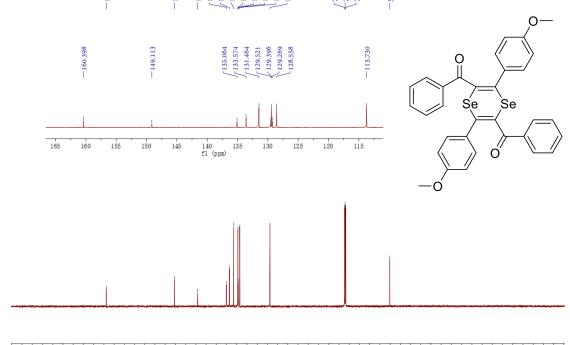

c1-05-073-h/1

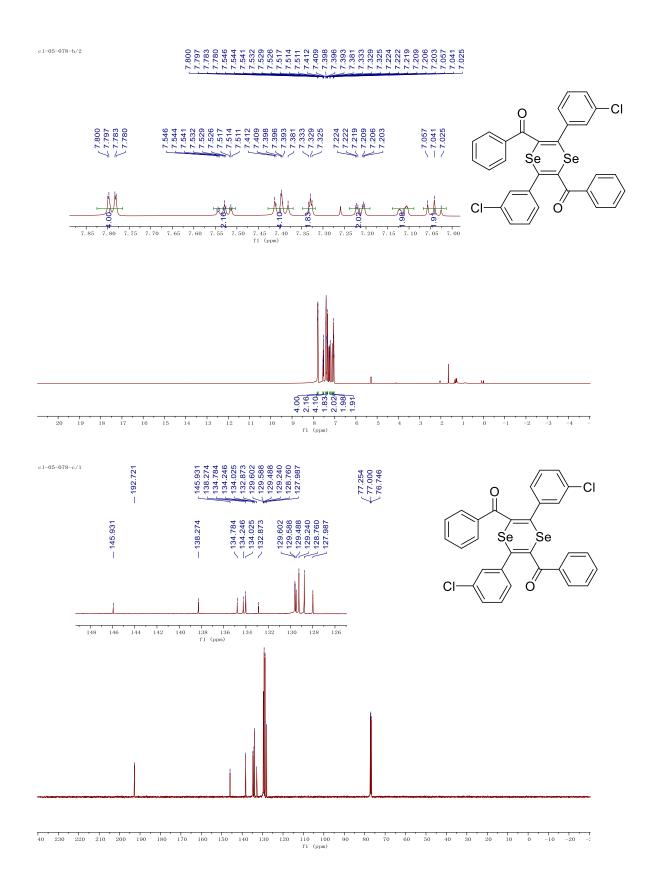

40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3 Fl (ppm)

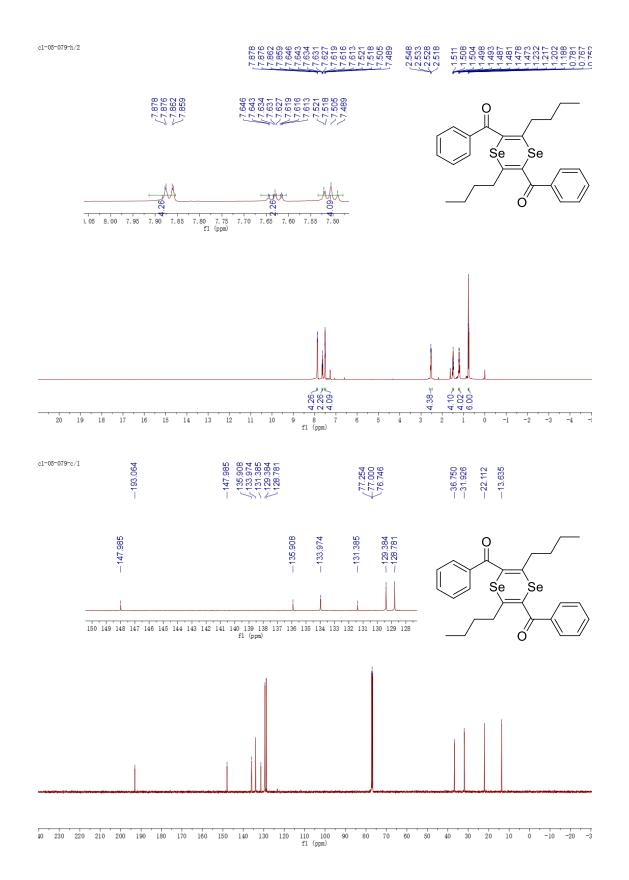


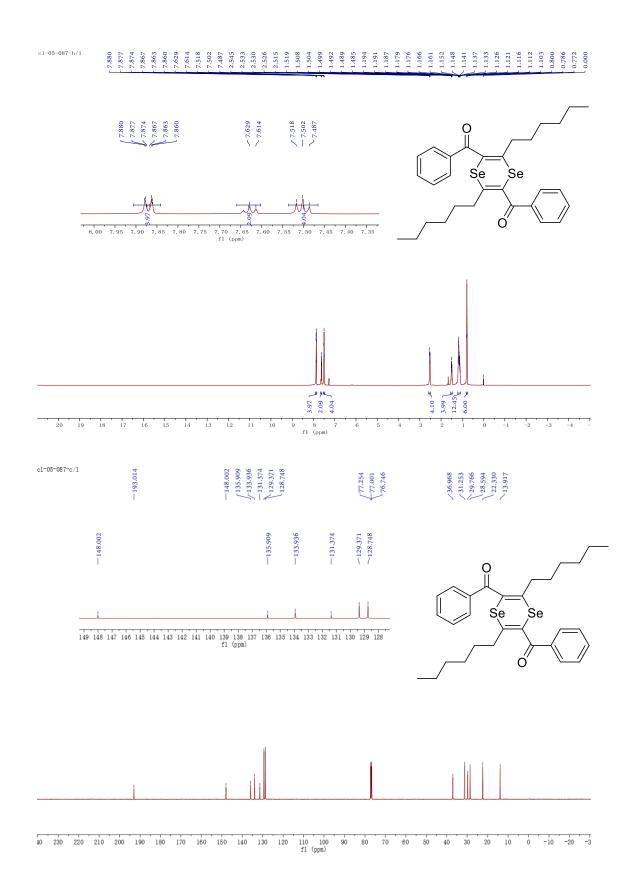

- 37 -

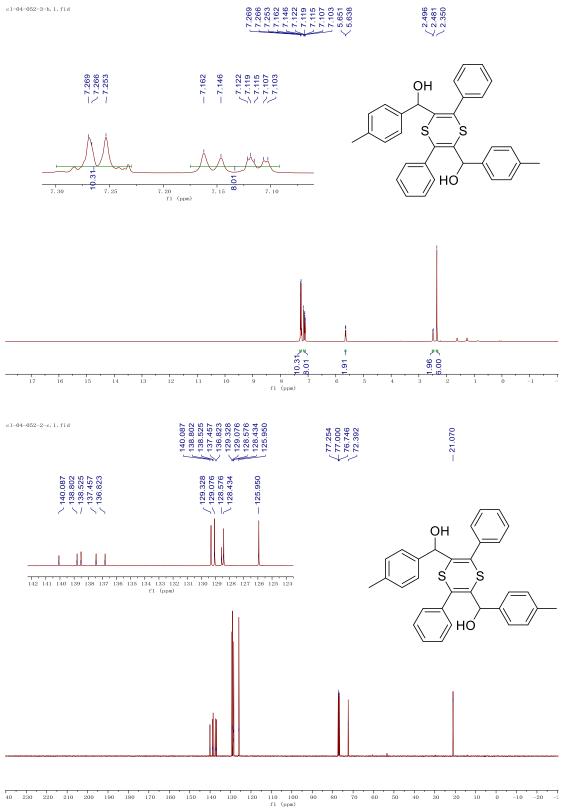


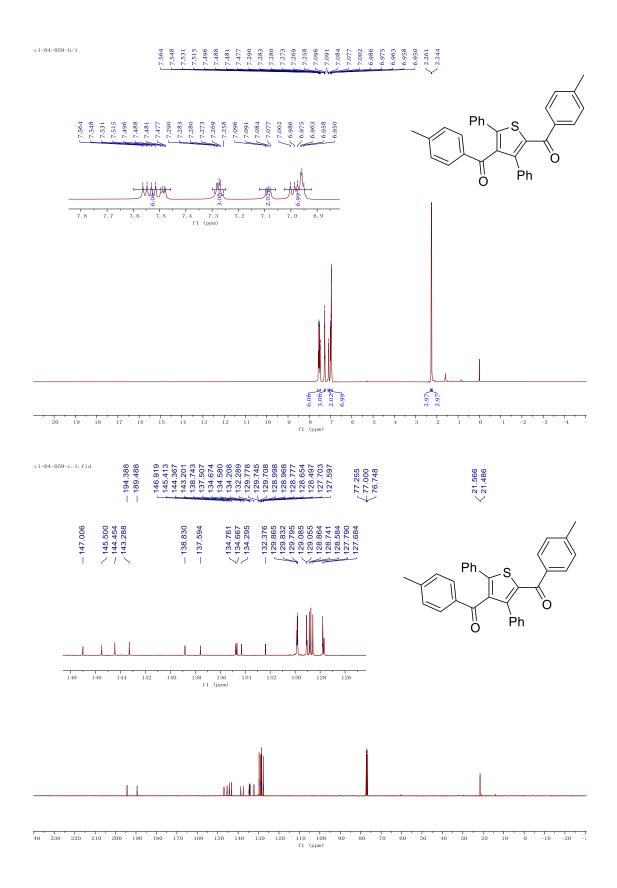


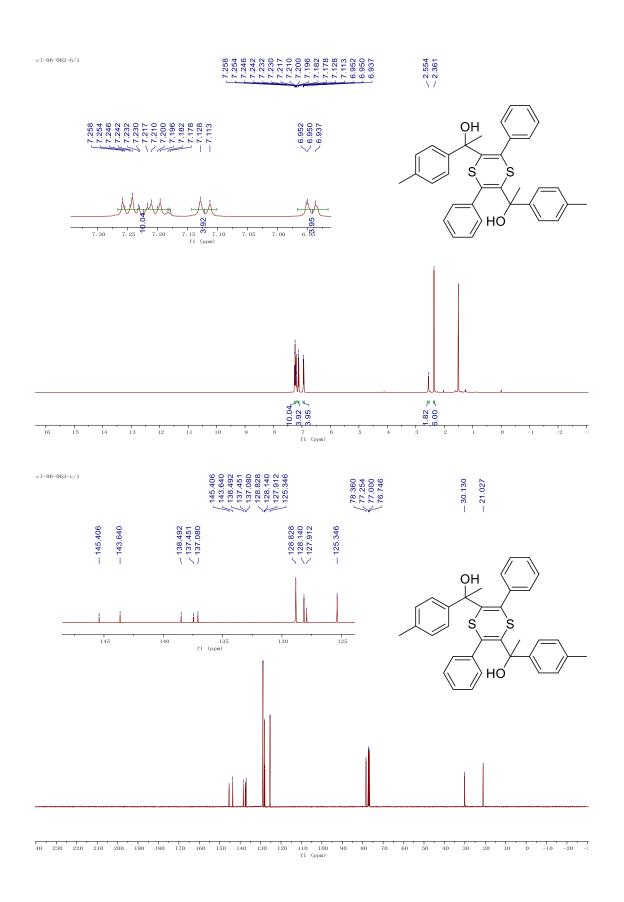

- 40 -

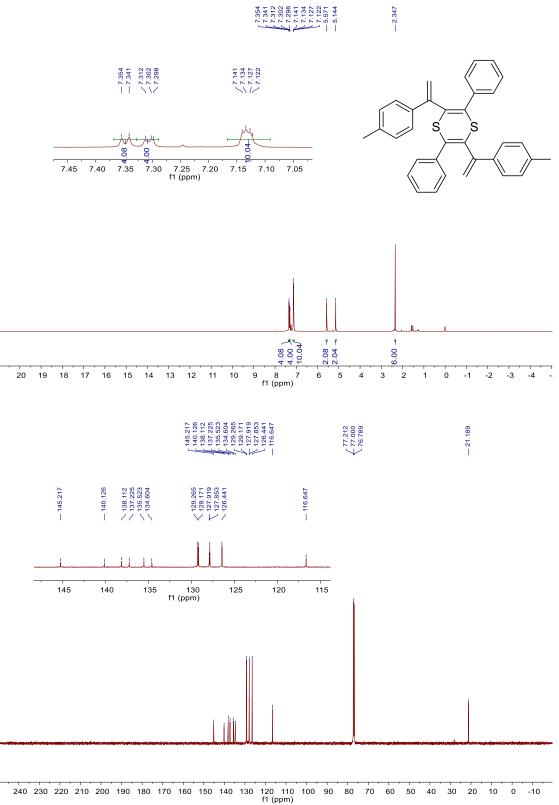


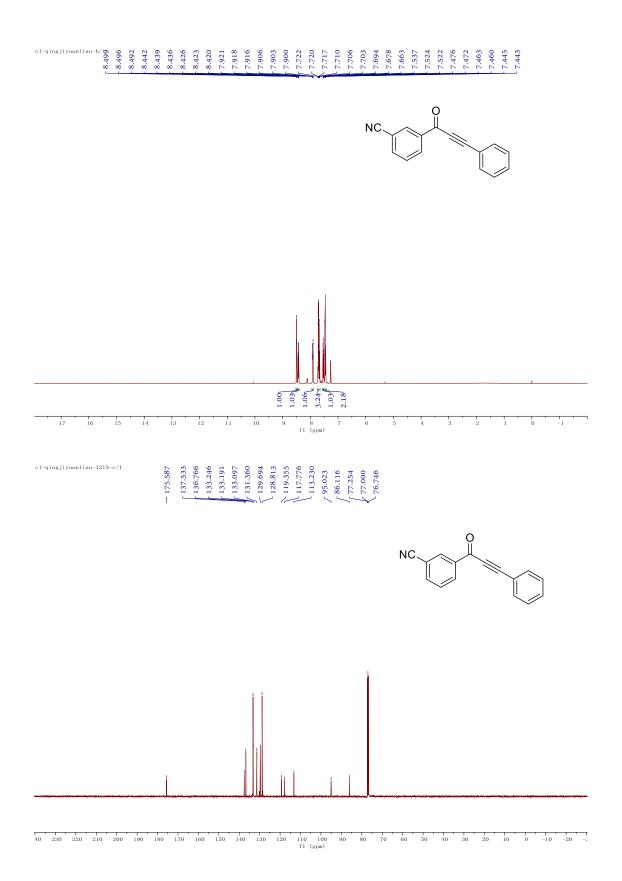



40 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3 fl (ppm)

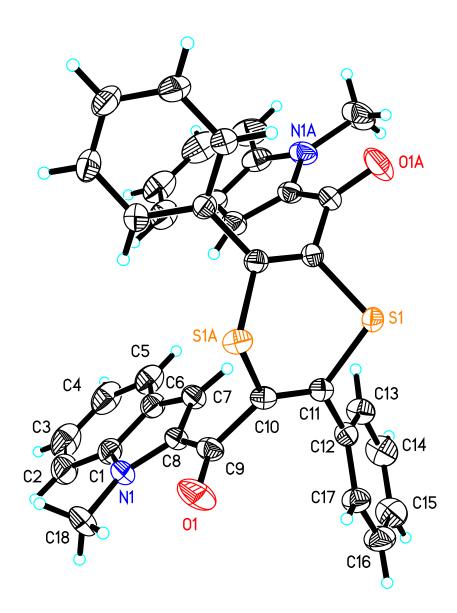



- 43 -





- 46 -



- 49 -

6. X-Ray Crystal Structure of 3h (CCDC: 2201657)

(3,6-diphenyl-1,4-dithiine-2,5-diyl)bis((1-methyl-1H-indol-2-yl)methanone) (3h) Sample preparation for crystal growth: Compound 3h (50 mg) was dissolved in the mixed solvent of dichloromethane/petroleum ether = 3 ml/6 ml in a 50 mL roundbottom flask. The yellow single crystal of 3h was obtained by slowly evaporating mixed solvent at room temperature under air.

Table ST. Crystal data and structure	
Identification code	3h
Empirical formula	$C_{36}H_{26}N_2O_2S_2$
Formula weight	582.71
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C 21/c
Unit cell dimensions	$a = 16.5229(12) \text{ Å} \qquad \alpha = 90^{\circ}.$
	$b = 10.3183(8) \text{ Å}$ $\beta = 114.004(2)^{\circ}.$
	$c = 19.3418(16) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	3012.4(4) Å ³
Z	4
Density (calculated)	1.285 Mg/m ³
Absorption coefficient	0.212 mm ⁻¹
F(000)	1216
Crystal size	0.200 x 0.150 x 0.120 mm ³
Theta range for data collection	2.391 to 25.999°.
Index ranges	-20<=h<=20, -12<=k<=12, -23<=l<=23
Reflections collected	21487
Independent reflections	2917 [R(int) = 0.0287]
Completeness to theta = 25.242°	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6806
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2917 / 0 / 192
Goodness-of-fit on F ²	1.024
Final R indices [I>2sigma(I)]	R1 = 0.0362, wR2 = 0.0961
R indices (all data)	R1 = 0.0403, WR2 = 0.0995
Extinction coefficient	0.0056(18)
Largest diff. peak and hole	0.201 and -0.214 e.Å ⁻³

Table S1. Crystal data and structure refinement for **3h**