SUPPORTING INFORMATION

NMR spectroscopy as Unique Tools for the Quantification of Weak Interactions Between Trivalent Phosphorus compounds and Diphenyliodonium ion

Hend Besrour,^a Matthieu Hedouin,^a Lina Truong,^a Sami Lakhdar^{*,b} Hassan Oulyadi^{*, a}

I.	General procedures3
11.	Procedures for NMR experiments3
111.	NMR parameters and Instrumentation4
IV	. DFT calculations7
v.	NMR data14
	Fig. 1S. 1D ¹ H (500 MHz, left) and ³¹ P{ ¹ H} (202 MHz, right) NMR spectra of mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in MeCN- d_3 at 298 K 14
	Fig. 2S. Zoom of 1D ¹ H (500 MHz, MeCN- d_3 , 298 K) NMR spectra of mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) with in situ-illumination for: a) 20 min; b) 40 min; c) 2 h; d) 5 h; e) 16 h; and f) 24 h 14
	Fig. 3S. Zoom of 2D ¹ H- ³¹ P HMBC (500 MHz, MeCN- <i>d</i> ₃ , 298 K) spectrum of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) 15
	Fig. 4S. a) ¹ H DOSY (500 MHz, MeCN- <i>d</i> ₃ , 298 K) after 2 hours of illumination of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1). b) Signal attenuation curves from ¹ H DOSY of MeCN (red) , PO(OEt) ₂ Ar (blue) and P(OEt) ₃ Ar ⁺ (black) 16
	Fig. 5S. Zoom of 1D ¹ H (500 MHz, left) and ³¹ P{ ¹ H} (202 MHz, right) NMR spectra of mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in MeCN- d_3 at 310 K for: a) 20 min; b) 40 min; c) 2 h; d) 5 h; e) 16 h; and f) 24 h 17
	Fig. 6S. Zoom of 1D ¹ H spectra (500 MHz, MeCN- <i>d</i> ₃ , 240 K) of a mixture of diphenyliodonium triflate and triethylphosphite (red), diphenyliodonium triflate (blue) and triethylphosphite (green).
	Fig. 75. ¹ H DOSY (500 MHz, MeCN- <i>d</i> ₃ , 240 K) spectra of: a) P(OEt) ₃ , b) DPIT and c) mixture of DPIT/P(OEt) ₃ (1.5:1) 18
	Fig. 8S. Zoom of 1D ¹ H NMR spectra (500 MHz, MeCN- <i>d</i> ₃ , 240 K) of mixtures (0.1 M) of diphenyliodonium triflate with various amount of P(OEt) ₃ : a) [P(OEt) ₃]=0.013 M; b) [P(OEt) ₃]=0.142 M; c) [P(OEt) ₃]=0.292 M, d) [P(OEt) ₃]=0.486 M and e) [P(OEt) ₃]=0.582 M 19
	Table 1S. Diphenyliodonium aromatic proton chemical shifts according to various $P(OEt)_3$ concentrations in DPIT/ $P(OEt)_3$ mixtures. ([DPIT]=0.1 M, MeCN- d_3 , at 310 K, 298 K and 240 K) 20
	Table 2S. Comparison of various models (fit method: Nelder-Mead) for binding of P(OEt)₃ to DPIT(T=310K, 298K and 240K).22

Fig. 9S. Potential energy surface (PES) scan for the elongation of the I—Ph bond23
Table 35. Phosphoarylation reaction's conversions with different solvents
Fig. 10S. Zoom of 2D 1 H- 31 P HMBC spectra (500 MHz, 240 K) of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in DMF- d_7 (left) and CD ₂ Cl ₂ (right) 23
Fig. 11S. Zoom of 2D ¹ H- ¹ H NOESY (500 MHz, 240 K) spectra of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in DMF- d_7 (left) and CD ₂ Cl ₂ (right) 24
Fig. 12S. ¹ H DOSY (500 MHz, 240 K) spectra of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in DMF- d_7 (left) and CD ₂ Cl ₂ (right) 24
Fig. 13S. Zoom of 1D ¹ H spectra (500 MHz, MeCN- <i>d</i> ₃ , 260 K) of diphenyliodonium triflate (bottom) and triphenylphosphine (middle) and a mixture of diphenyliodonium triflate and triphenylphosphine (1:1.5 eq) (top) 25
Fig. 14S. Zoom of 2D ¹ H- ³¹ P HMBC spectrum of diphenyliodonium triflate and triphenylphosphine (500 MHz, MeCN- <i>d</i> ₃ , 260 K) 25
Fig. 15S. 2D ¹ H- ¹⁹ F HOESY spectrum of diphenyliodonium triflate and triphenylphosphine (500 MHz, MeCN- <i>d</i> ₃ , 260 K) 26
Fig. 16S. 1D ¹ H spectra of diphenyliodonium triflate (blue), diphenylmethylphosphine (green) and mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- <i>d</i> ₃ , 260 K)
Fig. 17S. Zoom of 2D ¹ H- ³¹ P HMBC spectrum of mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- <i>d</i> ₃ , 260 K) 27
Fig. 18S. Zoom of 2D ¹ H- ¹ H NOESY spectrum of mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- <i>d</i> ₃ , 260 K) 27
Fig. 19S. Zoom of 2D ¹⁹ F- ¹ H HOESY spectrum of mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- <i>d</i> ₃ , 260 K) 28
Table 4S . Diphenyliodonium aromatic proton chemical shifts according to various PPh ₃ concentrations in DPIT/PPh ₃ mixtures ([DPIT]=0.03 M, MeCN- <i>d</i> ₃ , 260 K) 29
Table 55. Comparison of various models (fit method: Nelder-Mead) for binding of PPh3 to DPIT at260K
Table 6S. Diphenyliodonium aromatic proton chemical shifts according various PPh2Meconcentrations in DPIT/PPh2Me mixtures ([DPIT]=0.1 M, MeCN-d3, 260 K) 30
Table 7S. Comparison of various models (fit method: Nelder-Mead) for binding of PPh2Me to DPIT at 260K. 30
Fig. 20S . Calculated UV-Vis absorption spectra of: a) triethylphosphite, b) diphenyliodonium triflate and c) EDA complex. In the case of EDA complex, triflate counterion is removed for calculation time consideration

I. General procedures

Commercially available products were purchased from Sigma Aldrich and were used as received. All manipulations were carried out under an argon atmosphere.

II. Procedures for NMR experiments.

Diphenyliodonium triflate (DPIT) (50 mg, 1.5 eq) was introduced in a tube and the tube was sealed with a septum and conditioned under vacuum (20-25 mmHg) then filled with argon. Dry MeCN- d_3 (0.6 mL) was added and the tube is covered with aluminum foil to keep away from light¹. Then triethylphosphite (P(OEt)₃) was finally added (14 µL, 1eq) and kinetic monitoring was performed by 1D ¹H and ³¹P {¹H} NMR with in situ-illumination² of the solution. For DPIT/PPh₃ sample³, the same procedure is established by adding diphenyliodonium triflate (30 mg, 1 eq) and triphenylphosphine (27 mg, 1.5 eq) in 0.6 mL MeCN- d_3 . DPIT/PPh₂Me sample was prepared by adding diphenyliodonium triflate (30 mg, 1 eq) and triphenylphosphine (60 µL, 4 eq) in 0.6 mL MeCN- d_3 .

To compute the binding constants,⁴ ten samples of each DPIT/P(OEt)₃, DPIT/PPh₃, and DPIT/PPh₂Me mixture were prepared with a constant DPIT concentration. DPIT was maintained at a concentration of 0.1 M (25.8 mg) for the P(OEt)₃ and PPh₂Me samples. To prevent solubility concerns with PPh₃, a lower concentration of DPIT was utilized at 0.03 M (7.74 mg).

III. NMR parameters and Instrumentation.

All NMR experiments were recorded on a Bruker Avance III 500 MHz spectrometer operating at 500 MHz for ¹H, 470 MHz for ¹⁹F and 202 MHz for ³¹P. Experiments were run under Topspin (version 3.2) with a BBFO {¹H, X} probe and a z gradient unit. The residual solvent signals were used as references for ¹H NMR spectra (MeCN- d_3 : δ_{1H} = 1.97 ppm). ¹⁹F and ³¹P NMR spectra were referenced (δ = 0.0 ppm) to calculated ¹⁹F and ³¹P chemical shift in CCl₃F and H₃PO4 references compounds, respectively. Reactions were monitored by in-situ illumination device using a high-power LED with a center wavelength of 455 nm. For EDA complexes characterization, NMR experiments are done at low temperature (240 and 260 K).

1D NMR measurements

1D ¹**H** experiments were acquired with standard Bruker "zg" program. The spectra were acquired with sweep width of 10 K Hz and 32 K data points, using 16 scans and the relaxation delay (D1) was 5 s. Exponential window function (LB=0.3) was applied before Fourier transformation.

1D ³¹**P**{¹**H**} NMR experiments were acquired with broadband proton decoupling in order to remove ${}^{31}P - {}^{1}H$ coupling. The spectra were recorded with sweep width of 60000 Hz and 66560 data points, using 100 scans and the relaxation delay (D1) was 8 s. Exponential window function (LB=3) was applied before Fourier transformation.

2D NMR measurements

2D ¹H-³¹P HMBC: The following parameters were used for acquiring and processing the 2D ¹H-³¹P HMBC spectrum: 128 experiments with 2048 data points and 16 scans each were recorded. The recycling delay was 5 s; acquisition mode was DQD; one time zero filling in F1; pure sine bell window functions were applied to F2 and F1 dimensions before Fourier transformation to obtain a digital resolution of 39.7 Hz/point in F1 and 7.8 Hz/point in F2. The gradient pulses ratio used are 49.4%, 49.4% and 40%.

2D ¹H-¹H **NOESY:** The following parameters were used for acquiring and processing the spectrum: 256 experiments with 2048 data points and 16 scans each FID was recorded. The recycling delay was 5 s. Pure phase line shapes was obtained by STATES phase cycling. The

4

mixing time τ_m was between 2 to 2.6 s. One time zero filling in F1, pure sine bell window functions were applied before Fourier Transform to obtain a digital resolution of 7.8 Hz/point in F1 and 7.8 Hz/point in F2.

2D ¹⁹**F**-¹**H HOESY:** The following parameters were used for acquiring and processing the spectrum: 128 experiments with 2048 data points and 16 scans each FID were recorded. The recycling delay time was 5 s. Pure phase line shapes was obtained by using time proportional phase incrementation (TPPI) phase cycling. The mixing time was $\tau_m = 2.2$ s. One time zero filling in F1, pure sine bell window functions were applied before Fourier Transform to obtain a digital resolution of 4.9 Hz/point in F1 and 50.9 Hz/point in F2.

¹H DOSY: The DOSY experiments were acquired with the standard Bruker ledbpgp2s program using 8 experiments with 16384 data points. The relaxation delay was 5 s (D1). Diffusion time was between 0.05 - 0.1 s (D20) and rectangular gradient pulse duration was 0.6 ms (P30). Gradient recovery delays of 0.2 ms followed the application of each gradient pulse. Data was accumulated by linearly varying the diffusion encoding gradients over a range from 2 to 95 % for 16 gradient increment values.

Processing of DOSY NMR data were performed using Dynamics Center software (Bruker software). This program allows the use of the pure exponential equation for relevant processing methods:

$$S(g) = I_0 * e^{(-\gamma^2 * g^2 * \delta^2 * (\Delta - \delta/3) * D}$$

The diffusion coefficients were determined by fitting the peak areas to the Stejskal-Tanner equation from T_1/T_2 analysis. Molecular weight calculations were processed using ECC-Mw estimation software (Stalke Chemie, Germany)⁵.

NMR binding constant study

The observed ¹H chemical shift values and concentrations of both the guest and host were inputted into the Bindfit software (http://supramolecular.org/)⁴ alongside an estimation of the binding constants and limiting chemical shifts. These parameters were then refined to achieve the optimal fit between the calculated and empirical chemical shifts based on five host-guest binding models (1:1, 1:2 Full, 1:2 Non-cooperative, 1:2 Additive and 1:2 Non-statistical).

The input parameters were varied until convergence of the best fit values of the binding constants was attained.

References

- W. Lecroq, P. Bazille, F. Morlet-Savary, M. Breugst, J. Lalevée, A. C. Gaumont and S. Lakhdar, Org. Lett., 2018, 20, 4164–4167.
- 2. C. Feldmeier, H. Bartling, E. Riedle and R. M. Gschwind, J. Magn. Reson., 2013, 232, 39–44.
- 3. A. F. Fearnley, J. An, M. Jackson, P. Lindovska and R. M. Denton, *Chem. Commun.*, 2016, **52**, 4987-4990.
- 4. B. Hibbert, P. Thordarson, *Chem. Commun.*, **2016**, *52*, 12792-12805.
- (a) R. Neufeld, D. Stalke, *Chem. Sci.* 2015, 6, 3354-3364; (b) S. Bachmann, B. Gernert and D. Stalke, *Chem Commun.* 2016, **52**, 12861-12864.

IV. DFT calculations

Computational details

Calculations were performed using Gaussian16 package. Full optimizations were performed using hybrid functional M06-2X and 6-31++G** basis set for all atoms except iodine, and the aug-cc-pVTZ-PP for iodine. Geometry optimizations are repeated for all possible conformers of the molecules. Only the more stable optimized geometry was selected.

Following each optimization, the harmonic frequencies has been determined and it has systematically been checked that all vibrational frequencies are real and not imaginary, to correspond to a minima. At each stage, the bulk solvent effect has been considered using the PCM methods.

The potential energy surface (PES) scan was performed with fully relaxed geometry (except for the imposed I—Ph bond length) at each step of the scan. The scan was performed using the same hybrid functional than the full optimizations (M06-2X) and 6-31+G* basis set for all atoms, except for iodine (aug-cc-pVTZ-PP).

TDDFT methodology is used to investigate the excited states of interest. In accordance with the previous study on this type of compound¹, the MPW1PW91/6-31+G(d,p)/ aug-cc-pVTZ-PP level has been chosen. The lowest 20 singlet-singlet vertical electronic excitations were calculated, and only the major ones were chosen (oscillator strength up to 0.1). The geometry of the lowest singlet excited state of each compound is relaxed using TDDFT, followed by harmonic frequencies calculations to verify the presence of a minimum. State-specific method was used in order to take into account the solvent effect described by PCM. For the absorption, the molecule was optimised in its ground-state and the informations about solvation are stored. Then the vertical excitation is calculated using the solvation precedently stored in a non-

equilibrium calculation.

¹ P. Garra, B. Graff, F. Morlet-Savary, C. Dietlin, J-M. Becht, J-P. Fouassier, J. Lalevée, *Macromolecules*, 2017, **51**, 57-70

Triethylphosphite. E = -804.658071 u.a

Ground State coordinates :

С	-3.717775	-0.191625	1.883670
С	-4.233215	-1.362662	2.687447
Н	-4.292359	-1.088975	3.744124
Н	-3.568779	-2.224599	2.591075
Н	-5.232222	-1.652632	2.352665
Н	-2.713692	0.097006	2.219031
Н	-4.374011	0.677602	1.992367
0	-3.674179	-0.569579	0.498546
Ρ	-2.754920	0.350784	-0.515717
0	-3.835431	1.600074	-0.667337
С	-3.378227	2.816634	-1.279010
С	-4.140604	3.980257	-0.688050
Н	-3.954506	4.063232	0.385444
Н	-5.215125	3.860644	-0.847388
Н	-3.825982	4.911904	-1.165919
Н	-2.300241	2.934248	-1.112701
Н	-3.545551	2.748792	-2.358976
0	-2.968641	-0.518126	-1.881927
С	-4.266113	-0.932993	-2.359968
Н	-4.641405	-1.720893	-1.702153
Н	-4.952102	-0.083048	-2.308839
С	-4.113727	-1.429012	-3.778733
Н	-3.419891	-2.271960	-3.825433
Н	-5.083306	-1.762915	-4.158056
Н	-3.743797	-0.636159	-4.433360

Excited State coordinates :

С	-3.723540	-0.190458	1.887695
С	-4.238105	-1.362877	2.689679
Н	-4.297579	-1.090115	3.746551
Н	-3.572920	-2.224265	2.592459
Н	-5.236830	-1.653428	2.354382
Н	-2.719896	0.098675	2.223324
Н	-4.380467	0.678545	1.996735
0	-3.679794	-0.567954	0.500999
Ρ	-2.764942	0.347717	-0.516921
0	-3.834595	1.602546	-0.668329
С	-3.373837	2.819389	-1.280326
С	-4.131632	3.984064	-0.686309
Н	-3.943120	4.065179	0.386939

Н	-5.206796	3.867763	-0.843663
Н	-3.814969	4.915145	-1.163962
Н	-2.295219	2.933712	-1.115978
Н	-3.543374	2.752680	-2.359965
0	-2.972649	-0.520594	-1.880275
С	-4.269364	-0.935549	-2.363817
Н	-4.647589	-1.722556	-1.706404
Н	-4.955030	-0.085219	-2.316370
С	-4.110542	-1.432824	-3.781362
Н	-3.416796	-2.276147	-3.824427
Н	-5.078804	-1.766705	-4.164539
Н	-3.737411	-0.640722	-4.435318

Diphenyliodonium triflate.

E = - 1720.318488 u.a

Ground State coordinates :

L	2.095134	-1.211471	-1.013047
С	1.747089	0.795466	-1.547655
С	1.175082	1.639859	-0.603010
Н	0.904737	1.286753	0.384597
С	0.954835	2.967082	-0.968958
Н	0.510500	3.648234	-0.251924
С	1.297337	3.411191	-2.245394
Н	1.119287	4.444562	-2.521283
С	1.863901	2.535876	-3.170956
Н	2.126770	2.882482	-4.164090
С	2.097320	1.204426	-2.829276
Н	2.534747	0.518251	-3.544077
С	3.975119	-0.932607	-0.102681
С	4.022175	-0.675474	1.265058
Н	3.116928	-0.604184	1.856303
С	5.271864	-0.509565	1.860113
Н	5.332448	-0.306795	2.923558
С	6.432964	-0.606772	1.094207
Н	7.401040	-0.478139	1.565502
С	6.358343	-0.872236	-0.272751
Н	7.262844	-0.951097	-0.865467
С	5.119428	-1.041507	-0.888863
Н	5.056383	-1.250909	-1.950190
0	-0.290624	-1.689639	-2.346689
S	-1.743959	-1.392293	-2.374069
С	-2.326522	-2.038544	-0.730704
F	-3.643439	-1.851765	-0.588680
F	-1.705711	-1.409513	0.275162
F	-2.077122	-3.348317	-0.616858
0	-2.080026	0.038044	-2.323347
0	-2.500123	-2.193358	-3.348188

Excited State coordinates:

T	2.095134	-1.211471	-1.013047
С	1.747089	0.795466	-1.547655
С	1.175082	1.639859	-0.603010
Н	0.904737	1.286753	0.384597
С	0.954835	2.967082	-0.968958
Н	0.510500	3.648234	-0.251924
С	1.297337	3.411191	-2.245394
Н	1.119287	4.444562	-2.521283
С	1.863901	2.535876	-3.170956
Н	2.126770	2.882482	-4.164090
С	2.097320	1.204426	-2.829276
Н	2.534747	0.518251	-3.544077
С	3.975119	-0.932607	-0.102681
С	4.022175	-0.675474	1.265058
Н	3.116928	-0.604184	1.856303
С	5.271864	-0.509565	1.860113
Н	5.332448	-0.306795	2.923558
С	6.432964	-0.606772	1.094207
Н	7.401040	-0.478139	1.565502
С	6.358343	-0.872236	-0.272751
Н	7.262844	-0.951097	-0.865467
С	5.119428	-1.041507	-0.888863
Н	5.056383	-1.250909	-1.950190
0	-0.290624	-1.689639	-2.346689
S	-1.743959	-1.392293	-2.374069
С	-2.326522	-2.038544	-0.730704
F	-3.643439	-1.851765	-0.588680
F	-1.705711	-1.409513	0.275162
F	-2.077122	-3.348317	-0.616858
0	-2.080026	0.038044	-2.323347
0	-2.500123	-2.193358	-3.348188

Complex 1:1 DPIT/P(OEt)₃. E = -2525.328700 u.a

Ground State coordinates :

Τ	0.863714	-0.298259	0.080869
С	2.909552	-0.856946	0.289954
С	3.608218	-0.422727	1.416317
С	3.485638	-1.652471	-0.700659
С	4.949203	-0.801255	1.545046
Н	3.129829	0.189552	2.172965

Н	5.710593	-2.313794	-1.386774
Н	6.938002	-1.543715	0.638451
С	1.210440	1.446675	-0.946547
С	1.354570	2.616320	-0.193451
С	1.142754	1.428416	-2.343174
С	1.442584	3.832012	-0.890835
Н	1.396985	2.601998	0.888329
С	1.231536	2.658521	-3.014964
Н	1.026479	0.507579	-2.900359
С	1.381421	3.852056	-2.292701
Н	1.556291	4.753793	-0.333033
Н	1.182524	2.674210	-4.097154
Н	1.448879	4.795959	-2.820851
Ρ	-2.634454	0.104893	-0.427605
0	-3.566003	1.581290	-0.497858
0	-3.039982	-0.670756	-1.900424
0	-3.770813	-0.732771	0.579680
С	-3.935826	-0.339160	1.988004
С	-2.971636	2.806531	-1.054075
С	-4.883524	-1.337423	2.627428
С	-4.425083	-0.802120	-2.396479
С	-4.348494	-1.402964	-3.787846
Н	-4.889228	0.188676	-2.409339
Н	-4.980134	-1.444015	-1.707815
Н	-3.782136	-0.754679	-4.462203
Н	-5.358548	-1.525203	-4.192949
Н	-3.867986	-2.384918	-3.761237
Н	-2.918788	2.711495	-2.143875
Н	-1.953792	2.933338	-0.665463
С	-3.859679	3.969381	-0.649628
Н	-4.873261	3.833764	-1.036815
Н	-3.457627	4.903203	-1.056282
Н	-3.910390	4.058570	0.438998
Н	-5.041831	-1.077067	3.679106
Н	-4.472543	-2.349442	2.579241
Н	-5.852466	-1.328717	2.120744
Н	-2.958594	-0.347035	2.486693
Н	-4.341067	0.676684	2.024813

Complex 1:2 DPI/P(OEt)₃ d_{I-Ph}= 2.17 Å. E = -2370.313515 u.a

	0.676514	-0.495381	1.213483
С	0.462073	-2.578187	1.792779
С	-0.672468	-3.248089	1.363346
С	1.456794	-3.214652	2.515073
С	-0.801983	-4.603065	1.659666
Н	-1.441348	-2.731093	0.800110
С	1.313905	-4.567497	2.808214
Н	2.335040	-2.671544	2.842768
С	0.187520	-5.260680	2.380194
Н	-1.680788	-5.140495	1.325964
Н	2.085544	-5.077837	3.370836

С	4.827584	-2.020008	-0.550997
Н	2.913858	-1.980088	-1.562072
С	5.555267	-1.595622	0.565864
Н	5.513380	-0.474986	2.413976
Н	5.297660	-2.639258	-1.309472
Н	6.595970	-1.886836	0.674823
С	1.194369	1.557852	-0.903588
С	1.307242	2.711438	-0.126739
С	1.273178	1.574040	-2.296715
С	1.516027	3.930415	-0.781592
Н	1.235826	2.668550	0.954694
С	1.483053	2.803207	-2.931490
Н	1.176014	0.661123	-2.874334
С	1.604413	3.975292	-2.177108
Н	1.608020	4.840794	-0.196390
Н	1.549606	2.838668	-4.015026
Н	1.766348	4.925442	-2.677912
Ρ	-2.757052	0.339286	-0.484969
0	-3.799418	1.632249	-0.609127
0	-2.988573	-0.502152	-1.872949
0	-3.691211	-0.574174	0.529424
С	-3.737970	-0.220244	1.935009
С	-3.340706	2.837066	-1.273545
С	-4.200200	-1.430283	2.723958
С	-4.297709	-0.895469	-2.378619
С	-4.125145	-1.421443	-3.790278
н	-4.962593	-0.026048	-2.358606
н	-4.707076	-1.664795	-1.717051
н	-3.718677	-0.649455	-4.452620
н	-5.099148	-1.734399	-4.183983
Н	-3.454710	-2.287561	-3.808046
Н	-3.474751	2.712927	-2.354836
н	-2.270954	2.983508	-1.077106
C	-4.147934	4.015094	-0.761556
Н	-5.217046	3,867936	-0.949707
н	-3 832051	4 929356	-1 277116
н	-3.997856	4.156120	0.314288
н	-4.270783	-1.170483	3,786417
н	-3.493575	-2.260115	2,617926
н	-5 187622	-1 763435	2 386220
н	-2 742320	0 103047	2 267022
н	-4 430585	0.619639	2.207022
C	0.655817	-3 094886	4 029779
F	-0 542365	-2 564453	4.353506
F	0.942909	-3 96/365	5.003643
F	1 561612	-2 Ud/UV2	1 027721
' C	0 595970	-3 945508	7 357885
0	-0 438671	- <u>7</u> 988101	2.552005
0		-7 838231	1 /20225
0	1 980762	2.030334 _A A39/97	2 176/12/
\cup	1.200702	7.755757	2.1,0724

Excited State coordinates :

L	1.072936	-0.426055	0.094750
С	3.175364	-0.823567	0.284480
С	3.829059	-0.379808	1.438711
С	3.815653	-1.521670	-0.744838
С	5.202581	-0.647865	1.554929
Н	3.307456	0.153237	2.223618
С	5.189419	-1.776244	-0.603692
Н	3.284874	-1.860275	-1.625805
С	5.878024	-1.341069	0.539004
Н	5.733779	-0.314189	2.438263

Н	0.080579	-6.312767	2.609563
С	1.178523	1.571267	1.238019
С	0.172075	2.516688	1.362848
С	2.505087	1.949208	1.089610
С	0.501412	3.867818	1.318582
Н	-0.859292	2.211261	1.489502
С	2.824852	3.302465	1.047268
Н	3,283073	1.200897	1.000740
C	1.824845	4.261264	1.161168
н	-0.280566	4 611224	1 411559
н	3 857449	3 604528	0.926428
н	2 077211	5 313073	1 130324
D	_1 527910	-0.646022	-1 8//108
$\overline{0}$	1 102011	0.040022	1 516679
0	-1.193011	0.913778	2 000162
0	-2.545467	-0.526404	-3.099103
0	-2.515475	-0.940655	-0.598052
C	-3.14//14	0.028988	0.249327
C	-0.009657	1.486630	-2.088325
C	-3.852218	-0.714966	1.357081
C	-3.696609	0.327540	-3.106913
С	-4.159753	0.498377	-4.533282
Н	-3.436581	1.291124	-2.664818
Н	-4.475130	-0.135088	-2.496532
Н	-3.381724	0.970234	-5.134162
Н	-5.049542	1.128123	-4.561988
Н	-4.405149	-0.467363	-4.975572
Н	0.821892	0.783852	-1.975016
Н	0.213546	2.368380	-1.489051
С	-0.207532	1.859770	-3.541708
Н	-0.380824	0.975695	-4.156363
Н	0.682883	2.367755	-3.914421
Н	-1.059940	2.531863	-3.650047
Н	-4.369583	-0.007687	2.006587
Н	-3.131897	-1.269776	1.961010
Н	-4.584684	-1.412352	0.949024
Н	-2.386140	0.697406	0.652903
Н	-3.850736	0.623785	-0.336426
0	-2.712860	1.166858	5.320395
Ρ	-1.778719	0.798566	4.047220
0	-1.503309	-0.781756	4.198133
С	-0.470643	-1.393507	4.988738
С	-0.832544	-2.843831	5.189754
Н	-0.039390	-3.350132	5.741692
Н	-0.958322	-3.342670	4.227995
Н	-1.760453	-2.933663	5.756182
Н	0.473785	-1.291890	4.450593
н	-0 372560	-0.877626	5 943415
0	-0 315103	1 322257	4 548198
c	-0 160789	2 732058	4.540150
c	1 309751	3 067949	4.741075 A 717529
ц	1.303731	2 780585	3 762147
н Ц	1.750755	2.780385	5.702147
	1.055770	2.344736	J.J10109
п	1.44/004 0.60/771	4.14U/80 2 27200	4.03/133 2 053507
н	-0.694771	3.2/3008	3.953587
Н	-0.61006/	3.00//25	5.699156
	-2.4016/6	0.784108	0.003/3
Н	-2.52/85/	-0.296923	6.762639
H	-1.359483	1.029553	6.8840/1
С	-3.331481	1.519071	/.602605
Н	-4.370395	1.276336	/.378881
Н	-3.123487	1.233858	8.634268
Н	-3.195705	2.596761	7.507276

Complex 1:2 DPIT/P(OEt)₃ d_{I-Ph}= 3.17 Å . E = -2370.329366 u.a				
	3000			
Ι	0.798449	-0.298740	1.411884	
С	0.377809	-2.904004	1.833529	
C	-0./8/559	-3.420934	1.32/995	
C	1.302014	-3.580643	2.588007	
С	-1.04/910	-4./62092	1.619261	
Н	-1.4/0/32	-2.824073	0./3512/	
С	1.019142	-4.919501	2.862980	
Н	2.202989	-3.107882	2.958434	
С Ц	-0.149623	-5.500431 E 222407	2.381944	
П	-1.954015	-5.225407	3 455708	
н	-0.361357	-6 53829/	2 602788	
C	1.111667	1.790553	1,166112	
C	0.057574	2.664556	1.380914	
С	2.367169	2.251935	0.798261	
С	0.268928	4.030296	1.227135	
Н	-0.916117	2.293007	1.671222	
С	2.566030	3.619655	0.644711	
Н	3.181540	1.559281	0.632730	
С	1.520087	4.509313	0.859131	
Н	-0.549629	4.718132	1.397337	
Н	3.542947	3.986598	0.357389	
Н	1.680397	5.572715	0.739907	
Р	-1.272057	-0.565214	-1.771404	
0	-1.058159	1.018441	-1.450774	
0	-2.254221	-0.532135	-3.058605	
0	-2.2/7051	-0.9112/3	-0.554208	
C	-2.990307	1 682808	-2 037969	
c	-3 709960	-0 752496	1 339921	
C	-3.466876	0.233220	-3.107496	
С	-3.913465	0.337137	-4.545543	
Н	-3.287641	1.223268	-2.683875	
Н	-4.221299	-0.271695	-2.500219	
Н	-3.160972	0.851846	-5.143760	
Н	-4.846550	0.898319	-4.605071	
Н	-4.078180	-0.653932	-4.968835	
Н	0.953838	1.047004	-1.941565	
H	0.231158	2.576864	-1.43/111	
C L	-0.180810	2.046602	-3.4801U9	
H	-0.288308	1.155639	-4.105452	
H LI	1.007200	2.029/88	-3.800UUb	
Н	-1.08/200	2.04008U	-3.370040 1 967999	
п	-4.200/13	-0.071093	1,904099	
Н	-4.390572	-1.481101	0.897670	
н	-7 276/190	0 7251/5	0.703480	
Н	-3.692078	0.5922143	-0.348612	

0	-2.657917	1.188713	5.460669
Ρ	-1.784175	0.825486	4.143819
0	-1.540886	-0.762268	4.247886
С	-0.515885	-1.435051	4.997113
С	-0.951175	-2.864662	5.206315
Н	-0.167078	-3.417745	5.725324
Н	-1.141444	-3.351200	4.248139
Н	-1.860462	-2.906055	5.807393
Н	0.411110	-1.384113	4.422690
Н	-0.351990	-0.931107	5.949112
0	-0.292036	1.315122	4.593908
С	-0.109119	2.720172	4.800180
С	1.359866	3.046826	4.689150
Н	1.736300	2.791841	3.697472
Н	1.931800	2.493338	5.434632
Н	1.514579	4.113313	4.856990
Н	-0.687146	3.281334	4.058366
Н	-0.493367	2.983407	5.789444
С	-2.298304	0.778354	6.788370
Н	-2.446203	-0.300775	6.872563
Н	-1.242295	0.996329	6.962466
С	-3.169276	1.519995	7.772671
Н	-4.222312	1.304323	7.591346
Н	-2.923248	1.214395	8.790044
Н	-3.012540	2.595639	7.686829

Complex 1:1 DPIT/P(Ph)₃.

E = - 2756.901617 u.a

С	-0.066482	1.124402	-2.563164
С	0.686978	0.166849	-3.253063
С	0.566397	2.111586	-1.790240
Н	-1.149799	1.099289	-2.635885
С	1.973062	2.110228	-1.716428
Ρ	-0.326570	3.398750	-0.799584
С	2.725994	1.163448	-2.415893
Н	2.484220	2.855528	-1.110393
С	2.083634	0.185079	-3.184536
Н	3.810842	1.183007	-2.351471
Н	0.179403	-0.589502	-3.846563
Н	2.667063	-0.558780	-3.720477
С	-2.099716	2.871636	-0.914298
С	-0.253102	4.883825	-1.904664
С	-2.579896	2.018051	0.096543
С	-2.988387	3.295455	-1.917108
С	-3.908236	1.580890	0.093535
Н	-1.912799	1.694073	0.892667

С	-4.783588	2.007402	-0.911861
Н	-4.260558	0.919876	0.881354
С	-4.320732	2.867347	-1.914237
Н	-5.819631	1.679056	-0.909523
Н	-2.646456	3.961743	-2.703849
Н	-4.995565	3.206299	-2.696383
С	0.125993	4.850429	-3.256854
С	-0.579809	6.123768	-1.322391
С	0.173573	6.029082	-4.010348
Н	0.384515	3.906998	-3.728623
С	-0.542152	7.299285	-2.079324
Н	-0.872638	6.167790	-0.276383
С	-0.160535	7.255220	-3.424838
Н	-0.801743	8.247553	-1.615436
Н	0.468432	5.987674	-5.055832
Н	-0.123189	8.168807	-4.012646
T	0.956767	3.645352	3.375391
С	1.183962	3.652898	5.508004
С	2.249548	1.999979	3.020897
С	0.749205	2.543985	6.231545
С	1.704367	0.716485	2.940758
С	1.773079	4.763499	6.105461
С	3.615793	2.247145	2.866803
С	2.570483	-0.358695	2.712096
Н	0.637734	0.554296	3.050575
С	0.929180	2.551165	7.619056
Н	0.289622	1.695088	5.736865
С	1.941080	4.750900	7.495858
Н	2.089840	5.623942	5.529747
С	3.943776	-0.137666	2.561685
Н	2.167706	-1.365537	2.648703
С	1.524042	3.649846	8.249409
Н	0.597817	1.695601	8.200741
С	4.464844	1.158980	2.635886
Н	4.010383	3.255323	2.930211
Н	1.661079	3.647322	9.326867
Н	2.400693	5.607633	7.980635
Н	5.531034	1.328760	2.515823
Н	4.608489	-0.977451	2.380150
С	-0.476955	8.679619	3.455985
S	-1.362358	7.022617	3.432474
0	-2.605861	7.289674	4.188542
0	-1.524471	6.738463	1.988887
0	-0.389056	6.135657	4.130030
F	-0.249339	9.091526	4.719222
F	-1.210864	9.627510	2.837690
F	0.713907	8.606027	2.826233

Complex DPI/P(Ph)₃/MeCN. E = - 2756.901617 u.a

С	-1.607064	1.226346	-1.418504
С	-1.647408	-0.112931	-1.817987
С	-0.514392	1.718371	-0.685393
Н	-2.425496	1.888015	-1.674754
С	0.533931	0.837314	-0.355781
Ρ	-0.375598	3.455061	-0.096608
С	0.495625	-0.497556	-0.763631
Н	1.378583	1.197761	0.222704
C	-0.596615	-0.976204	-1.494718
н	1 311501	-1 163336	-0 505204
н	-2 /977/6	-0.479786	-2 382236
Ц	-0.630209	-2 014410	-1 805210
П С	-0.030209	-2.014410	-1.803210
C	-2.083488	4.094127	-0.328207
C	0.547994	4.268464	-1.464160
C	-2.96/355	3.986315	0.762484
C	-2.541670	4.686571	-1.51/06/
С	-4.282605	4.446594	0.660520
Н	-2.620426	3.546090	1.692130
С	-4.728687	5.032695	-0.529100
Н	-4.954638	4.351848	1.506230
С	-3.855906	5.153331	-1.614629
Н	-5.747320	5.395532	-0.607363
Н	-1.871662	4.785430	-2.362676
Н	-4.197335	5.609342	-2.537336
С	0.808777	3.653370	-2.700118
С	1.039022	5.569820	-1.232412
С	1.538273	4.325487	-3.685689
Н	0.444631	2,651360	-2.890817
C	1 760977	6 239251	-2 222854
н	0.846757	6.053738	-0 279371
C	2 01/0/2	5 618506	-3 450817
Ц	2.014042	7 2/120/	2 02/2/5
	2.130334	2 9 2 9 0 C 2	-2.034343
	1.752716	5.050505	-4.055255
П	2.580269	0.137239	-4.216244
I C	0.581604	3.290209	5.224014
C	1.216809	3.023549	5.272364
C	3.401479	2.636245	2.41/8/8
C	1.//1431	4.101045	5.9/1924
С	4.206186	1.870375	3.248705
С	1.070311	1.774546	5.886755
С	3.812046	3.097299	1.175282
С	5.501322	1.549552	2.806040
Н	3.856964	1.523356	4.215533
С	2.180266	3.923403	7.297875
Н	1.884818	5.065280	5.491979
С	1.483342	1.607447	7.213242
Н	0.639468	0.943644	5.341776
С	5.946251	1.999442	1.556843
Н	6.154320	0.952619	3.434456
С	2.037548	2.679178	7.919720
Н	2.610163	4.758050	7.840260
С	5,108968	2,769544	0.741178
н	3 159968	3 696139	0 547710
н	2 355853	2 545787	8 947225
ц	1 260020	0 6/017/	7 689816
Ц	5 459222	2 116511	0 225824
п	5.420222 6 016012	1 7/0/20	-U.ZZ3024
	2,470243	1.74943U	1.219303
U J	-2.4/8200	1.105315	2.3/8810
Н	-2.60/404	8./38153	2.23/301
Н	-3.303156	7.098160	2.189931
Н	-2.512/35	1.0886/2	3.0/3662
C	-1.211835	/.1/4465	2.10/659
N	-0.201092	6.741895	1./26774

Complex 1:1 DPIT/P(Ph)₂Me. E = - 2565.157907 u.a

С	0.725704	2.143867	-1.416192
Ρ	-0.117135	3.405604	-0.351890
С	-1.900733	3.080229	-0.738272
С	0.213265	5.007596	-1.209467
С	-2.692925	2.465364	0.245153
С	-2.483126	3.391728	-1.979903
С	-4.035358	2.158393	-0.007106
Н	-2 262563	2 227383	1 214653
C	-4 603580	2.227303	-1 245278
н	-4 634500	1 683279	0.765164
C	-3 82/15/09	3 090193	-2 230994
ц	-5.646986	2 2202025	-2.230334
	1 001275	2.239303	-1.441290
п	-1.891375	3.8/3895	-2.753294
Н	-4.261799	3.338316	-3.194681
C	1.111225	5.138227	-2.282025
C	-0.403935	6.168273	-0.701542
С	1.373970	6.394507	-2.843587
Н	1.609474	4.266199	-2.693694
С	-0.148369	7.418340	-1.269363
Н	-1.090794	6.098560	0.139590
С	0.743621	7.536745	-2.342929
Н	-0.640513	8.300967	-0.869079
Н	2.069480	6.474585	-3.675122
Н	0.946154	8.510439	-2.780800
T	0.742775	3.608559	2.951509
С	1.358721	3.722635	5.002446
С	1.910848	1.893012	2.474898
С	0.582145	3.085453	5.971379
С	1.349473	0.627443	2.650612
С	2.504639	4.452799	5.320587
С	3.207625	2.081425	1.995858
С	2.128706	-0.491685	2.336676
Н	0.336896	0.510416	3.021497
С	0.982614	3.177511	7.309432
Н	-0.310393	2.531851	5.699072
С	2.889785	4.532660	6.663732
Н	3.085046	4.947781	4.548957
C	3,433439	-0.331226	1.857702
н	1 710743	-1 485722	2 467261
C	2 132072	3 897007	7 653405
н	0 392008	2 687373	8 078205
C	2 970542	2.087373	1 697666
С Ц	2 6 1 7 2 4 2	2 077100	1.067000
	3.01/248	2.01/139	1.004485
	2.430005	5.302138	0.094003
Н	3./80048	5.094857	0.931100
н	4 002027	1 074450	1 21 4 407
	4.982937	1.074452	1.314487
Н	4.982937 4.031486	1.074452	1.314487

S	-2.119786	6.546473	3.517730
0	-2.998306	6.068769	4.610338
0	-2.689648	6.460952	2.153099
0	-0.695528	6.128491	3.627535
F	-1.509868	8.662185	5.049014
F	-3.241599	8.967018	3.761550
F	-1.234399	9.007045	2.914670
Н	1.811583	2.249833	-1.330649
Н	0.432094	2.214001	-2.468603
Н	0.449496	1.155222	-1.035978

V. NMR data

Fig. 1S. 1D ¹H (500 MHz, left) and ³¹P{¹H} (202 MHz, right) NMR spectra of mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in MeCN- d_3 at 298 K.

Fig. 2S. Zoom of 1D ¹H (500 MHz, MeCN- d_3 , 298 K) NMR spectra of mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) with in situ-illumination for: a) 20 min; b) 40 min; c) 2 h; d) 5 h; e) 16 h; and f) 24 h.

Fig. 3S. Zoom of 2D 1 H- 31 P HMBC (500 MHz, MeCN- d_{3} , 298 K) spectrum of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1).

Fig. 4S. a) ¹H DOSY (500 MHz, MeCN-d₃, 298 K) after 2 hours of illumination of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1). b) Signal attenuation curves from ¹H DOSY of MeCN (red), PO(OEt)₂Ar (blue) and P(OEt)₃Ar⁺ (black).

Fig. 5S. Zoom of 1D ¹H (500 MHz, left) and ³¹P{¹H} (202 MHz, right) NMR spectra of mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in MeCN- d_3 at 310 K for: a) 20 min; b) 40 min; c) 2 h; d) 5 h; e) 16 h; and f) 24 h.

Fig. 6S. Zoom of 1D ¹H spectra (500 MHz, MeCN- d_3 , 240 K) of a mixture of diphenyliodonium triflate and triethylphosphite (red), diphenyliodonium triflate (blue) and triethylphosphite (green).

Fig. 7S. ¹H DOSY (500 MHz, MeCN- d_3 , 240 K) spectra of: a) P(OEt)₃, b) DPIT and c) mixture of DPIT/P(OEt)₃ (1.5:1).

Fig. 8S. Zoom of 1D ¹H NMR spectra (500 MHz, MeCN- d_3 , 240 K) of mixtures (0.1 M) of diphenyliodonium triflate with various amount of P(OEt)₃: a) [P(OEt)₃]=0.013 M; b) [P(OEt)₃]=0.142 M; c) [P(OEt)₃]=0.292 M; d) [P(OEt)₃]=0.486 M and e) [P(OEt)₃]=0.582 M.

[DPIT]=0.1 M, MeCN- <i>d</i> ₃ , T= 310 K						
P(OEt)₃ volume (µl)	[P(OEt)₃] Concentration (M)	δ ortho (ppm)	δ para (ppm)	δ meta (ppm)		
5	0.013	8.1103	7.7387	7.5674		
10	0.081	8.1109	7.7383	7.5671		
15	0.142	8.1113	7.739	7.5681		
20	0.193	8.1116	7.7392	7.5686		
25	0.243	8.1137	7.7356	7.5654		
30	0.292	8.1132	7.7369	7.5664		
40	0.388	8.1133	7.7366	7.5662		
50	0.486	8.1145	7.7358	7.5657		
60	0.582	8.1149	7.7357	7.5655		
0	0	8.1101	7.7391	7.5684		

Table 1S. Diphenyliodonium aromatic proton chemical shifts according to various $P(OEt)_3$ concentrations in DPIT/ $P(OEt)_3$ mixtures. ([DPIT]=0.1 M, MeCN- d_3 , at 310 K, 298 K and 240 K).

[DPIT]=0.1 M, MeCN- <i>d</i> ₃ , T= 298 K					
P(OEt)₃ volume (μl)	[P(OEt)₃] Concentration (M)	δ ortho (ppm)	δ para (ppm)	δ meta (ppm)	
5	0.048	8.1103	7.7355	7.5641	
10	0.096	8.1113	7.736	7.5649	
15	0.145	8.1116	7.7357	7.565	
20	0.193	8.1123	7.7354	7.5648	
25	0.243	8.1127	7.7345	7.5638	
30	0.292	8.1134	7.7338	7.5634	
40	0.388	8.1136	7.7337	7.5633	
50	0.486	8.115	7.7327	7.5626	
60	0.582	8.1156	7.7329	7.5629	
0	0	8.1106	7.7354	7.5643	

[DPIT]=0.1 M, MeCN- <i>d</i> ₃ , T= 240 K						
P(OEt)₃ volume (μl)	$[P(OEt)_3]$ Concentration (M)	δ ortho (ppm)	δ para (ppm)	δ meta (ppm)		
5	0.013	8,1184	7,7036	7,5371		
10	0.081	8.1199	7.7025	7.5363		
15	0.142	8.1206	7.7046	7.5378		
20	0.193	8.1204	7.705	7.5384		
25	0.243	8.1214	7.7032	7.5369		
30	0.292	8.1225	7.7023	7.5364		
40	0.388	8.123	7.7013	7.5356		
50	0.486	8.1247	7.6996	7.5345		
60	0.582	8.125	7.7025	7.5368		
0	0	8.1163	7.708	7.5402		

Table 2S. Comparison of various models (fit method: Nelder-Mead) for binding of $P(OEt)_3$ to DPIT (T=310K, 298K and 240K).

Т=310К						
Binding Model	K ₁ [M ⁻¹] ± % error	$K_2 [M^{-1}] \pm \%$ error	$Cov_{fit} ratio$ ($Cov_{fit 1:2} / Cov_{fit 1:1}$)			
1:1	0.144 ± 17.49	-	-			
1 : 2 (full)	84.362 ± 376.41	8.315 ± 38.87	1.204			
1 : 2 (non-coop)	46.589 ± 39.41	11.647	2.036			
1 : 2 (additive)	0.004 ± 133014.59	4955.063 ± 133013.39	1.069			
1 : 2 (statistical)	0.297 ± 17.74	0.132	1.000			

Link for the corresponding non-cooperative model at 310K :

http://app.supramolecular.org/bindfit/view/36a097fd-e45a-4680-92bd-4a313fced4cb

Т=298К				
Binding Model	K ₁ [M ⁻¹] ± % error	$K_2 [M^{-1}] \pm \%$ error	$Cov_{fit} ratio$ ($Cov_{fit 1:2} / Cov_{fit 1:1}$)	
1:1	9.92 x 10 ⁻⁶ ± 0.718	-	-	
1 : 2 (full)	1497.29 ± 694.863	1.769 ± 10.757	2.977	
1 : 2 (non-coop)	22.542 ± 12.162	5.635	2.650	
1 : 2 (additive)	0.003 ± 59480.196	3126.845 ± 59488.471	1.219	
1 : 2 (statistical)	- 0.397 ± 9.272	- 0.099	1.033	

Link for the corresponding non-cooperative model at 298K :

http://app.supramolecular.org/bindfit/view/ab8ccee4-1b95-4e41-8220-6e0996a429b4

Т=240К				
Binding Model	K ₁ [M ⁻¹] ± % error	K ₂ [M ⁻¹] ± % error	Cov _{fit} ratio (Cov _{fit 1:2} / Cov _{fit 1:1})	
1:1	0.119 ± 26.292	-	-	
1 : 2 (full)	21.184 ± 396.371	3.028 ± 59.825	1.044	
1 : 2 (non-coop)	15.185 ± 44.484	3.796	1.044	
1 : 2 (additive)	0.755 ± 821.916	15.021 ± 840.854	1.018	
1 : 2 (statistical)	0.244 ± 26.604	0.061	0.999	

Link for the corresponding non-cooperative model at 240K :

http://app.supramolecular.org/bindfit/view/0b1ea45d-6f1e-4b94-ae41-da26320d91e2

Fig. 9S. Potential energy surface (PES) scan for the elongation of the I—Ph bond

Table 3S. Phosphoarylation reaction's conversions with different solvents

Solvant	Conversion (%)	
MeCN	93	
DMF	47	
CH ₂ Cl ₂	24	

Fig. 10S. Zoom of 2D ¹H-³¹P HMBC spectra (500 MHz, 240 K) of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in DMF-d₇ (left) and CD₂Cl₂ (right).

Fig. 11S. Zoom of 2D ¹H-¹H NOESY (500 MHz, 240 K) spectra of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in DMF- d_7 (left) and CD₂Cl₂ (right).

Fig. 12S. ¹H DOSY (500 MHz, 240 K) spectra of a mixture of diphenyliodonium triflate (0.2M) and triethylphosphite (1.5:1) in DMF- d_7 (left) and CD₂Cl₂ (right).

Fig. 13S. Zoom of 1D ¹H spectra (500 MHz, MeCN- d_3 , 260 K) of diphenyliodonium triflate (bottom) and triphenylphosphine (middle) and a mixture of diphenyliodonium triflate and triphenylphosphine (1:1.5 eq) (top).

Fig. 14S. Zoom of 2D ${}^{1}\text{H}{}^{-31}\text{P}$ HMBC spectrum of diphenyliodonium triflate and triphenylphosphine (500 MHz, MeCN- d_{3} , 260 K).

Fig. 15S. 2D 1 H- 19 F HOESY spectrum of diphenyliodonium triflate and triphenylphosphine (500 MHz, MeCN- d_{3} , 260 K).

Fig. 16S. 1D ¹H spectra of diphenyliodonium triflate (blue), diphenylmethylphosphine (green) and mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- d_3 , 260 K)

Fig. 17S. Zoom of 2D 1 H- 31 P HMBC spectrum of mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- d_3 , 260 K)

Fig. 18S. Zoom of 2D ¹H-¹H NOESY spectrum of mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- d_3 , 260 K)

Fig. 19S. Zoom of 2D 19 F-¹H HOESY spectrum of mixture of diphenyliodonium triflate and diphenylmethylphosphine (1:4 eq) (500 MHz, MeCN- d_3 , 260 K)

Table 4S. Diphenyliodonium aromatic proton chemical shifts according to various PPh_3 concentrations in DPIT/PPh₃ mixtures ([DPIT]=0.03 M, MeCN- d_3 , 260 K)

PPh ₃ mass (mg)	[PPh ₃] Concentration (M)	δ ortho (ppm)	δ para (ppm)	δ meta (ppm)
2	0.013	8.1073	7.7274	7.5556
5	0.032	8.1058	7.7259	7.554
10	0.064	8.1041	7.7208	7.5492
12	0.076	8.1033	7.719	7.5474
15	0.095	8.1029	7.7184	7.547
18	0.114	8.1021	7.7161	7.5452
20	0.127	8.1015	7.7151	7.5442
22	0.139	8.1011	7.7138	7.5428
25	0.158	8.1009	7.7133	7.5426
0	0	8.112	7.7186	7.5531

Table 5S. Comparison of various models (fit method: Nelder-Mead) for binding of PPh_3 to DPIT at 260K

Binding Model	K ₁ [M ⁻¹] ± % error	K ₂ [M ⁻¹] ± % error	Cov _{fit} ratio (Cov _{fit 1 :2} / Cov _{fit 1 :1})
1:1	8.85 x 10 ⁻⁵ ± 18.558	-	-
1 : 2 (full)	0.002 ± 546.391	203281.1 ± 215.987	1.118
1 : 2 (non-coop)	57.921 ± 61.121	14.480	1.064
1 : 2 (additive)	0.003 ± 453138.544	32407.037 ± 453207.897	1.114
1 : 2 (statistical)	- 1.117 ± 12.803	- 0.279	0.994

Link for the corresponding non-cooperative model at 260K : http://app.supramolecular.org/bindfit/view/4b482329-be64-4ebe-b593-445604e03fdc **Table 6S.** Diphenyliodonium aromatic proton chemical shifts according various PPh_2Me concentrations in DPIT/PPh₂Me mixtures ([DPIT]=0.1 M, MeCN- d_3 , 260 K)

	PPh₂Me volume (μl)	[PPh ₂ Me] concentration (M)	δ ortho (ppm)	δ para (ppm)	δ meta (ppm)
	5	0.045	8.1102	7.7119	7.5426
	10	0.09	8.1061	7.7018	7.5326
_	15	0.135	8.103	7.697	7.5278
Tab	20	0.18	8.1021	7.6908	7.5218
ie 75	25	0.223	8.0987	7.6854	7.5163
Co	30	0.268	8.0979	7.6809	7.5121
mp	40	0.365	8.0933	7.6761	7.5067
aris	50	0.447	8.0876	7.6494	7.4814
on	60	0.537	8.1134	7.6505	7.482
of vari	0	0	8.1134	7.7186	7.5494

ous models (fit method: Nelder-Mead) for binding of PPh₂Me to DPIT at 260K.

Binding Model	K ₁ [M ⁻¹] ± % error	K ₂ [M ⁻¹] ± % error	Cov _{fit} ratio (Cov _{fit 1 :2} / Cov _{fit 1 :1})
1:1	0.144 x 10 ⁻⁵ ± 0.804	-	-
1 : 2 (full)	0.056 ± 51.506	52.338 ± 140.925	1.034
1 : 2 (non-coop)	4.625 ± 7.611	1.156	1.031
1 : 2 (additive)	1.183 ± 62.094	3.339 ± 78.927	1.018
1 : 2 (statistical)	1.421 x 10 ⁻¹⁴ ± 5.728	3.553 x 10 ⁻¹⁵	0.999

Link for the corresponding non-cooperative model at 260K : http://app.supramolecular.org/bindfit/view/fd34ddce-1769-4b40-a9c2-c77d0114ee1d

Fig. 20S. Calculated UV-Vis absorption spectra of: a) triethylphosphite, b) diphenyliodonium triflate and c) EDA complex. In the case of EDA complex, triflate counterion is removed for calculation time consideration

