Supporting Information

Expedient Assembly of Densely Functionalized Indanones via Nickel-Catalyzed Alkene Hydroacylation with Methyl Esters

Min Zeng, ${ }^{\dagger \mathrm{a}}$ Fuli Huang, ${ }^{\dagger \mathrm{a}}$ Minghui Zhu, ${ }^{\text {a }}$ Jichao Ding, ${ }^{\text {a }}$ Tong Qin, ${ }^{\text {a }}$ Maoting, Xu, ${ }^{\text {a }}$ Wanqing Liu, ${ }^{\text {a Jun Lu, }}{ }^{\dagger}$ Jicheng Wu, ${ }^{* b}$ Xurong Qin*a and Qiao Ren*a

Abstract

a) Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China b) Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.

\section*{Table of Contents}

\qquad

1. General Information 2
2. Experimental Section 3
2.1 Condition Optimization 3
2.2 The Proposed Mechanism 9
2.3 General Procedures for the Intramolecular Alkene Hydroacylation Protocols and Characterization Data 10
2.4 Further Transformations and Characterization Data 28
2.5 Evaluation of the Free Radical Scavenging Activity by ABTS ${ }^{+}$Method 41
2.6 General Procedure for the Synthesis of Substrates 41
3. References 46
4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 48

1. General Information

All NMR spectra were acquired on Bruker 400 MHz NMR spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts were recorded relative to TMS ($\delta 0.00$) or residual solvents $\left(\mathrm{CDCl}_{3:} \delta\right.$ 7.26, Acetone- $d_{6}: \delta 2.05$, DMSO- $d_{6}: 2.50$). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). The number of protons (n) for a given resonance was indicated by nH . Coupling constants were reported as a J value in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 101 MHz on 400 MHz NMR instruments and chemical shifts were recorded relative to solvent resonance $\left(\mathrm{CDCl}_{3}: \delta 77.16\right.$, Acetone$d 6: \delta 206.26,29.84$, DMSO- $d_{6}: 39.52$). ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 376 MHz on 400 MHz NMR spectrometers without any external standard. Proof of purity of new compounds was demonstrated with copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra.

Glassware was dried at $120^{\circ} \mathrm{C}$ for at least 3 h before use. THF, 1,4-dioxane and DME were distilled from sodium under argon and stored over activated $5 \AA$ molecular sieve beads in an argon-filled glove box. DMF, DMA were distilled from calcium hydride under argon and stored over activated $5 \AA$ molecular sieve beads in an argon-filled glove box. MeOH were stored over activated $5 \AA$ molecular sieve beads in an argon-filled glove box. Unless noted otherwise, commercially available chemicals were used as received without purification. The GC internal standard, $n-\mathrm{C}_{12} \mathrm{H}_{26}$ was degassed with argon and dried over activated $5 \AA$ molecular sieve beads before use.

Reactions occurred at a Heidolph MR Hei-Tec magnetic stirrer equipped with a oil bath or a metal bath of WATTCAS LAB-1000. Analytical thin layer chromatography (TLC) using glass plates (HFGS254) coated with a 0.20 mm silica layer. Flash chromatography was performed using 200-300 mesh silica gel. Gas chromatography (GC) analysis was performed on a Shimadzu GC-2030 instrument with Agilent J \& W GC column DB-5MS-UI. GC/MS analysis was conducted on Shimadzu GCMSQP2010 instrument with Agilent J \& W GC column DB-5MS-UI. ESI/MS analysis was conducted on Shimadzu LCMS-8030 spectrometer. ESI/HRMS analysis was conducted on Bruker impact II.

2. Experimental Section

2.1 Condition Optimization

A typical procedure for condition optimization

In an argon-filled glove box, transition-metal salts ($0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$), ligand ($0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and anhydrous solvent $(0.5 \mathrm{~mL})$ were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, $\mathbf{1}(0.1 \mathrm{mmol}), \mathrm{H}$ source ($0.15 \mathrm{mmol}, 1.5$ equiv.), base ($0.15 \mathrm{mmol}, 1.5$ equiv), and GC standard n dodecane $(10 \mu \mathrm{~L})$ were added sequentially. The reaction mixture was heated with vigorous stirring in a metal bath at $140^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was cooled to room temperature and an aliquot of the reaction mixture was passed through a short plug of silica gel with ethyl acetate washings. The filtrate was subjected to GC to determine the GC yield of the desired product $\mathbf{2}$ and byproducts.

Table S1. Screening of transition metal salts. ${ }^{a}$

Entry	Metal Salts	GC Yield (\%) ${ }^{b}$
1	$\mathrm{NiCl}_{2} \cdot$ DME	30
2	$\mathrm{NiBr}_{2} \cdot \mathrm{DME}^{2}$	37
3	NiI_{2}	27
4	$\mathrm{Ni}(\mathrm{OAc})_{2}$	67
5	$\mathrm{Ni}(\mathrm{acac})_{2}$	59
$\mathbf{6}$	$\mathrm{Ni}(\mathbf{O T f})_{2}$	79
7	$\mathrm{Ni}\left(\mathrm{cod}_{2}\right.$	64
8	CoCl_{2}	17
9	CoBr_{2}	19
10	CoI_{2}	22
11	$\mathrm{Pd}\left(\mathrm{OAc}_{2}\right.$	ND^{c}
12	$\mathrm{Pd}\left(\mathrm{PPr}_{3}\right)_{4}$	ND^{c}

${ }^{\text {a }}$ Reaction Conditions: $\mathbf{1}(0.1 \mathrm{mmol})$, Metal salt ($\left.0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%\right), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $t-\mathrm{BuOLi}\left(0.15 \mathrm{mmol}, 1.5\right.$ eq.) and TMDSO ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in 1,4 -dioxane at $140{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Yield determined by GC with n-dodecane as a quantitative internal standard. ${ }^{\mathrm{c}}$ Not detected.

Table S2. Screening of ligands ${ }^{a}$

Entry	Ligand	$\mathrm{GC} \mathrm{Yield}_{(\%)^{b}}$
1	DPPE	ND^{c}
2	DPPF	ND^{c}
3	Xantphos	ND^{c}
4	$\mathrm{PCy}_{3} \cdot \mathrm{HBF}_{4}$	5
5	$\mathrm{P}(t-\mathrm{Bu})_{3} \cdot \mathrm{HBF}_{4}$	<5
6	$2,2^{\prime}-$ bipyridine	<5
7	$1,10-\mathrm{phenanthroline}$	<5
8	SIPr	50
$\mathbf{1 0}$	$\mathrm{ICy} \cdot \mathrm{HBF}_{4}$	<5
11	IPr	$\mathbf{7 9}$
12	$\mathrm{IMes} \cdot \mathrm{HCl}$	14

${ }^{\text {a }}$ Reaction Conditions: $1(0.1 \mathrm{mmol}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, ligand ($0.01 \mathrm{mmol}, 10$ $\mathrm{mol} \%), t$ - $\mathrm{BuOLi}(0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) and TMDSO (0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in 1,4-dioxane at $140^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Yield determined by GC with n-dodecane as a quantitative internal standard. ${ }^{\text {c }}$ Not detected.

Table S3. Screening of H source and its equivalents. ${ }^{a}$

Entry	H source	X	GC Yield $(\%)^{b}$

1	NaH	1.2	<5
2	NaBH_{4}	1.2	ND^{c}
3	LiAlH_{4}	1.2	7
4	$\mathrm{Et}_{3} \mathrm{SiH}$	1.2	60
5	$\mathrm{Ph}_{3} \mathrm{SiH}$	1.2	41
6	$\mathrm{Me}(\mathrm{EtO}) 2_{2} \mathrm{SiH}$	1.2	12
7	$\mathrm{Me}(\mathrm{MeO})_{2} \mathrm{SiH}$	1.2	49
8	$\mathrm{Me}_{2} \mathrm{PhSiH}$	1.2	53
9	TMDSO	1.2	72
10	PhSiH_{3}	1.2	ND^{c}
11	MeOH	1.5	ND^{c}
12	$i-\mathrm{PrOH}$	1.5	ND^{c}
13	BnOH	1.5	ND^{c}
14	$\mathrm{PhCH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$	1.5	ND^{c}
15	HCOONa	1.5	ND^{c}
16	TMDSO	1.0	68
17	TMDSO	1.5	79
18	TMDSO	1.7	72
19	TMDSO	2.0	71
20	TMDSO	2.2	67
21	TMDSO	4.0	72

${ }^{\text {a }}$ Reaction Conditions: $1(0.1 \mathrm{mmol}), \mathrm{Ni}\left(\mathrm{OTf}_{2}\right.$ ($\left.0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%\right), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, $t-\mathrm{BuOLi}\left(0.15 \mathrm{mmol}, 1.5\right.$ eq.) and H source ($0.12 \mathrm{mmol}, 1.2$ eq.) in 1,4 -dioxane at $140{ }^{\circ} \mathrm{C} .{ }^{\mathrm{b}} \mathrm{Y}$ ield determined by GC with n-dodecane as a quantitative internal standard. ${ }^{\mathrm{c}}$ Not detected.

Table S4. Screening of bases. ${ }^{a}$

Entry	Base	GC Yield (\%)

1	$\mathrm{CH}_{3} \mathrm{OLi}$	49
2	$\mathrm{CH}_{3} \mathrm{ONa}$	53
3	$\mathrm{CH}_{3} \mathrm{OK}$	19
4	$t \text {-BuOLi }$	79
5	t - BuONa	34
6	t-BuOK	ND^{c}
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	ND^{c}
8	$\mathrm{K}_{2} \mathrm{CO}_{3}$	19
9	$\mathrm{K}_{3} \mathrm{PO}_{4}$	27
10	NaOAc	17
11	LiOH	30
12	NaOH	42

${ }^{\text {a }}$ Reaction Conditions: $1(0.1 \mathrm{mmol}), \mathrm{Ni}\left(\mathrm{OTf}_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)\right.$, base ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and TMDSO ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in 1,4-dioxane at $140{ }^{\circ} \mathrm{C} .{ }^{\mathrm{b}}$ Yield determined by GC with n-dodecane as a quantitative internal standard. ${ }^{\mathrm{c}}$ Not detected.

Table S5. Screening of base equivalents. ${ }^{a}$

1

1,4-Dioxane (0.2 M), Ar, $140^{\circ} \mathrm{C}$

2

Entry	t-BuOLi (x eq.)	GC Yield (\%)
1	0.5 eq.	28
2	1.0 eq.	73
$\mathbf{3}$	$\mathbf{1 . 5}$ eq.	$\mathbf{7 9}$
4	2.0 eq.	78
5	3.0 eq.	25
6	4.0 eq.	18

${ }^{\text {a }}$ Reaction Conditions: $1(0.1 \mathrm{mmol}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, t - BuOLi (x eq.) and TMDSO ($0.15 \mathrm{mmol}, 1.5$ eq.) in 1,4-dioxane at $140^{\circ} \mathrm{C}$. ${ }^{\text {b Yield determined by }}$ GC with n-dodecane as a quantitative internal standard.

Table S6. Screening of reaction temperature. ${ }^{a}$

Entry	Temperature	GC Yield (\%) ${ }^{b}$
1	$40^{\circ} \mathrm{C}$	20
2	$60^{\circ} \mathrm{C}$	53
3	$80^{\circ} \mathrm{C}$	66
4	$100^{\circ} \mathrm{C}$	69
5	$120^{\circ} \mathrm{C}$	$78(81)^{c}$
$\mathbf{6}$	$\mathbf{1 4 0}{ }^{\circ} \mathbf{C}$	$\mathbf{7 9 (8 7)}{ }^{\boldsymbol{c}}$

${ }^{\text {a Reaction Conditions: }} 1(0.1 \mathrm{mmol}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, t-BuOLi ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and TMDSO ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in 1,4 -dioxane. ${ }^{\mathrm{b}}$ Yield determined by GC with n-dodecane as a quantitative internal standard. ${ }^{\mathrm{c}} 1,4$-dioxane $(0.1 \mathrm{M})$.

Table S7. Screening of solvents. ${ }^{a}$

Entry	Solvent	GC Yield (\%) ${ }^{b}$
$\mathbf{1}$	$\mathbf{1 , 4 - \text { dioxane }}$	$\mathbf{7 9}$
2	MeOH	ND^{c}
3	DCE	ND^{c}
4	DMF	ND^{c}
5	DMA	<5

${ }^{\text {a }}$ Reaction Conditions: $1(0.1 \mathrm{mmol}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, t-BuOLi ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and TMDSO ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) at $140^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Yield determined by GC with n-dodecane as a quantitative internal standard. ${ }^{~}$ Not detected.

Table S8. Screening of reaction concentrations. ${ }^{a}$

Entry	1,4-dioxane	GC Yield (\%) ${ }^{b}$
1	0.2 mL	61
2	0.3 mL	67
3	0.4 mL	67
4	0.5 mL	79
$\mathbf{5}$	$\mathbf{1 . 0 ~ m L}$	$\mathbf{8 7}$
6	2.0 mL	83
7	4.0 mL	84

${ }^{\text {a Reaction Conditions: }} \mathbf{1}(0.1 \mathrm{mmol}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, t-BuOLi ($0.15 \mathrm{mmol}, 1.5$ eq.) and TMDSO ($0.15 \mathrm{mmol}, 1.5$ eq.) in 1,4 -dioxane (x mL) at $140^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ Yield determined by GC with n-dodecane as a quantitative internal standard.

Table S9. Screening of catalyst loading. ${ }^{a}$

Entry	$\mathrm{Ni}(\mathrm{OTf})_{2}$	${\text { GC Yield }(\%)^{b}}^{\text {b }}$
1	$1 \mathrm{~mol} \%$	<5
2	$2 \mathrm{~mol} \%$	45
3	$5 \mathrm{~mol} \%$	75
$\mathbf{4}$	$\mathbf{1 0 ~ m o l} \%$	$\mathbf{8 7}$

${ }^{\text {a Reaction Conditions: }} \mathbf{1}(0.1 \mathrm{mmol}), \mathrm{Ni}(\mathrm{OTf}){ }_{2}, \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), t-\operatorname{BuOLi}(0.15 \mathrm{mmol}, 1.5$ eq.) and TMDSO ($0.15 \mathrm{mmol}, 1.5$ eq.) in 1,4 -dioxane $(0.1 \mathrm{M})$ at $140^{\circ} \mathrm{C}$. ${ }^{\text {b }}$ Yield determined by GC with n-dodecane as a quantitative internal standard.

Table S10. Control experiment. ${ }^{a}$

Entry $^{\mathrm{a}}$	Variation of Standard Condition	GC Yield (\%) ${ }^{b}$
1	none	87
2	No nickel	ND^{c}
3	No ligand	ND^{c}
4	No base	26
5	No H source	ND^{c}

${ }^{\text {a }}$ Reaction Conditions: $1(0.1 \mathrm{mmol}), \mathrm{Ni}(\mathrm{OTf})_{2}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), \operatorname{IPr}(0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, t-BuOLi ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.) and TMDSO ($0.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) in 1,4$-dioxane (0.1 M) at $140^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Yield determined by GC with n-dodecane as a quantitative internal standard. ${ }^{\mathrm{c}}$ Not detected.

2.2 The Proposed Mechanism

To gain insight into the reaction pathway of this alkene hydroacylation, the model reaction using $\mathrm{Et}_{3} \mathrm{SiH}$ as hydrogen source was performed under the optimal reaction condition. As illustrated in Scheme S 1 , the formation of $\mathrm{Et}_{3} \mathrm{SiOMe}$ and $\mathrm{Et}_{3} \mathrm{SiOt}$ - Bu was detected by GC-MS. We assumed that the high affinity between oxygen in methoxy group with silicon is beneficial for this process.

Scheme S1 The mechanistic investigation.

To investigate the fate of hydrogen atom in silane, the model reaction using $\mathrm{Ph}(\mathrm{Me})_{2} \mathrm{SiD}$ as deuteride source was performed under the optimal reaction condition. As illustrated in Scheme S2, the deuterium atom was incorporated to the 3-position of the corresponding 2 -phenyl-1-indanone $2-\boldsymbol{d}$ (eq a, 60%, $60 \% \mathrm{D}$). Besides, no deuteration in the recovered starting material was observed in 15 minutes (eq b).

Therefore, we assumed that one hydrogen at the 3-position of $\mathbf{2}$ originated from the silane.

Scheme S2 The deuterium labeling experiment.
On the basis of this experiment and literature precedents about transition metalcatalyzed intramolecular alkene hydroacylations of 2-styrylbenzaldehydes and the oxidative addition of methyl ester, we proposed a possible reaction pathway involving the cleavage of C(acyl)-O bond in methyl ester (Fig. S1).

Fig. S1 The plausible pathway.
First, the oxidation addition of methyl ester with $\mathrm{Ni}(0)-\mathrm{IPr}$ occurs to deliver the key acyl-Ni(II)-Ome species II. Subsequently, acyl-Ni(II)-H species III could be generated via the key transmetalation in the presence of a reducing agent silane. ${ }^{1}$ Rather than acyl$\mathrm{Ni}($ II $)$ species, the crucial $\mathrm{Ni}($ II $)-\mathrm{H}$ species III undergoes the following intramolecular π-bond insertion, leading to a six-membered acyl-Ni(II)-benzyl species IV. The final C (acyl)-C(sp ${ }^{3}$) bond-forming reductive elimination of IV eventually affords the desired 2-phenyl-1-indanone $\mathbf{2}$ along with the regeneration of $\mathrm{Ni}(0)-\mathrm{IPr}$ species \mathbf{I}.

2.3 General Procedures for the Intramolecular Alkene Hydroacylation Protocols and Characterization Data

(1) A general procedure for the assembly of desired indanone derivatives

Procedure A: In an argon-filled glove box, $\mathrm{Ni}(\mathrm{OTf})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.1 \mathrm{mg})$, $\operatorname{IPr}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.8 \mathrm{mg})$ and anhydrous 1,4-dioxane (2.0 mL) were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl 2-styrylbenzoate derivatives $1(0.2 \mathrm{mmol})$, TMDSO ($0.3 \mathrm{mmol}, 1.5$ equiv., 54 $\mu \mathrm{L})$ and $t-\mathrm{BuOLi}(0.3 \mathrm{mmol}, 1.5$ equiv., 24.0 mg) were added into the reaction mixture sequentially. The reaction mixture was heated with vigorous stirring in a metal bath maintained at $140{ }^{\circ} \mathrm{C}$ for $2-12 \mathrm{~h}$. After the reaction mixture was cooled to room temperature, EtOAc and water was added to dilute the mixture. The aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether as eluent to obtain the pure product.

Procedure B: In an argon-filled glove box, $\mathrm{Ni}(\mathrm{OTf})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.1 \mathrm{mg})$, $\operatorname{IPr}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.8 \mathrm{mg})$ and anhydrous 1,4-dioxane (2.0 mL) were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl 2-styrylbenzoate derivatives $\mathbf{1}(0.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{SiH}$ ($0.4 \mathrm{mmol}, 2.0$ equiv., 64 $\mu \mathrm{L}$) and $t-\mathrm{BuOLi}(0.4 \mathrm{mmol}, 2.0$ equiv., 32.0 mg) were added into the reaction mixture sequentially. The reaction mixture was heated with vigorous stirring in a metal bath maintained at $140^{\circ} \mathrm{C}$ for 2 h . The work-up procedure is similar with that of procedure A.

Procedure C: In an argon-filled glove box, $\mathrm{Ni}(\mathrm{OTf})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.1 \mathrm{mg})$, IPr ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.8 \mathrm{mg}$) and anhydrous 1,4-dioxane (2.0 mL) were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl 2-styrylbenzoate derivatives 1 (0.2 mmol), TMDSO ($0.2 \mathrm{mmol}, 1.0$ equiv., 35.5 $\mu \mathrm{L}), \mathrm{NaOH}(0.2 \mathrm{mmol}, 1.0$ equiv., 8.0 mg) were added into the reaction mixture sequentially. The reaction mixture was heated with vigorous stirring in a metal bath maintained at $140{ }^{\circ} \mathrm{C}$ for $2-12 \mathrm{~h}$. The work-up procedure is similar with that of procedure A .

2-phenyl-2,3-dihydro-1 H -inden-1-one (2) ${ }^{2}$ [CAS: 16619-12-8]
Following the general procedure A, the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1: 20) as white solid. $32.8 \mathrm{mg}, 79 \%$ yield, $12 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.25$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 5 \mathrm{H}), 3.89(\mathrm{dd}, J=8.3,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{dd}, J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=17.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 206.0,153.8,139.8,136.4,135.1,129.0,128.0,127.9,127.1,126.6$, 124.7, 53.5, 35.9. MS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$209.10, found 209.00.

2-phenyl-2,3-dihydro-1H-inden-1-one-3-d (2-d)

The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:40) as white solid. $24.8 \mathrm{mg}, 60 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.37$ (ethyl acetate/petroleum ether 1:20).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.53$ $(\mathrm{m}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H})$, 3.92-3.89 (m, 1H), 3.73-3.71 (m, 0.2H), 3.69-3.67 (m, 0.5H), 3.31-3.30 (m, 0.2H), 3.27$3.26(\mathrm{~m}, 0.5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.1,153.81,153.75,139.86,139.84$, $136.45,136.43,135.2,129.0,128.0,127.91,127.90$, 127.2, 126.59, 126.58, 124.7, 53.55, 53.47, 36.0, 35.9-35.4 (m). HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{DO}[\mathrm{M}+\mathrm{H}]^{+}$ 210.1024, found 210.1022 .

6-methyl-2-phenyl-2,3-dihydro-1H-inden-1-one (3) ${ }^{3}$ [CAS : 117482-15-2]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $32.6 \mathrm{mg}, 73 \%$ yield, $12 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.27$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=8.3$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=17.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=17.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 206.1,151.2,140.1,137.9,136.6,136.4,129.0$, 128.0, 127.1, 126.2, 124.6, 53.9, 35.6, 21.2. HRMS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}$ $[\mathrm{M}+\mathrm{Na}]^{+} 245.0937$, found 245.0936 .

6-methoxy-2-phenyl-2,3-dihydro-1 H -inden-1-one (4) ${ }^{4}$ [CAS : 108840-75-1]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $31.5 \mathrm{mg}, 66 \%$ yield, $12 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.23$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 7.43-7.41 (m, 1H), 7.34-7.30(m, 2H), 7.27-7.24 (m, $3 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=8.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=17.1$, $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=17.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 206.0$, 159.9, 146.7, 140.0, 137.6, 129.0, 128.0, 127.3, 127.2, 124.6, 105.8, 55.8, 54.4, 35.4. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$239.11, found 239.10.

6-fluoro-2-phenyl-2,3-dihydro-1 \boldsymbol{H}-inden-1-one (5) ${ }^{4}$ [CAS: 1435929-29-5]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1: 20) as white solid. $28.5 \mathrm{mg}, 63 \%$ yield, 12 h. $\mathrm{R}_{\mathrm{f}}: 0.26$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 7.51-7.48 (m, 1H), 7.46-7.43 (m, 1H), 7.38-7.30 (m, $3 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J$ $=17.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=17.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$ $205.0,162.7(\mathrm{~d}, J=248.4 \mathrm{~Hz}), 149.1(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 139.4,138.2(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 129.0$, 128.0 (d, $J=7.8 \mathrm{~Hz}$), $127.9,127.3,122.9(\mathrm{~d}, J=23.8 \mathrm{~Hz}), 110.4(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 54.4$, 35.3. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-114.0$. MS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FO}$ $[\mathrm{M}+\mathrm{H}]^{+}$227.09, found 227.05.

6-methoxy-2-(4-methoxyphenyl)-2,3-dihydro-1H-inden-1-one (6) [CAS: 857774-18-6]

Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $31.2 \mathrm{mg}, 58 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.20$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 7.42-7.40 $(\mathrm{m}, 1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}$, $2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=17.1,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.14(\mathrm{dd}, J=17.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 206.4,159.9$, $158.8,146.6,137.6,132.0,129.0,127.3,124.6,114.5,105.8,55.8,55.4,53.6,35.4$.

MS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$269.12, found 269.05.

4-methyl-2-phenyl-2,3-dihydro-1H-inden-1-one (7) ${ }^{3}$ [CAS : 117482-13-0]
Following the general procedure A, the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $29.4 \mathrm{mg}, 67 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.25$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.31(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=8.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (dd, $J=17.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.14(\mathrm{dd}, J=17.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 206.4,152.8,140.1,136.3,135.8,135.6,129.0,128.1,128.0,127.1$, 122.1, 53.5, 35.0, 17.9. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$223.11, found 223.05.

2-phenyl-2,3-dihydro- \mathbf{H}-cyclopenta $[b]$ naphthalen-1-one (8)
Following the general procedure B, the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $28.4 \mathrm{mg}, 55 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.30$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.89(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.21 (m, 5H), 4.03-4.01 (m, 1H), $3.86(\mathrm{dd}, J=16.8,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.3,146.4,140.0,137.6,134.2,132.8$, 130.6, 129.0, 128.9, 128.0, 128.0, 127.2, 126.4, 125.6, 124.7, 54.3, 35.5. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 281.0937$, found 281.0936.

2-phenyl-2,3-dihydro-1H-cyclopenta $[a]$ naphthalen-1-one (9)
Following the general procedure B, the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $28.8 \mathrm{mg}, 56 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.29$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22$ $(\mathrm{m}, 3 \mathrm{H}), 3.99(\mathrm{dd}, J=7.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=17.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=$ $17.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.5,157.2,140.2,136.3,133.1$, 130.4, 129.9, 129.2, 129.0, 128.3, 128.0, 127.1, 126.9, 124.3, 123.9, 54.0, 36.3. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 281.0937$, found 281.0935.

2-(p-tolyl)-2,3-dihydro-1H-inden-1-one (10) ${ }^{4}$ [CAS: 784-75-8]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $31.7 \mathrm{mg}, 70 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.26$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.87$ (dd, $J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=17.4,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 206.2,153.8,136.8,136.7,136.5$, 135.1, 129.7, 127.9, 127.8, 126.6, 124.7, 53.2, 36.0, 21.2. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 245.09$, found 245.05 .

2-(m-tolyl)-2,3-dihydro-1H-inden-1-one (11) ${ }^{4}$ [CAS: 1471991-30-6]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1: 20) as white solid. 32.6 mg , 74% yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.26$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\psi \mathrm{t}, J=7.6,1 \mathrm{H}), 7.53(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\psi \mathrm{t}, J=7.4,1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dd}$, $J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=17.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, \mathbf{3 H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.7,153.5,138.7,136.8,136.7,135.1$, 130.8, 127.8, 127.6, 127.2, 126.6, 126.5, 124.4, 51.0, 35.7, 20.2. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+} 245.09$, found 245.05.

2-(o-tolyl)-2,3-dihydro-1H-inden-1-one (12) ${ }^{4}$ [CAS: 117482-14-1]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $29.0 \mathrm{mg}, 67 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.26$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.98-$ $6.96(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=17.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}$, $J=17.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 206.7,153.5,138.7$, 136.8,136.7, 135.1, 130.8, 127.8, 127.6, 127.2, 126.6, 126.5, 124.4, 51.0, 35.7, 20.2. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$245.09, found 245.00.

2-(3,4-dimethylphenyl)-2,3-dihydro-1H-inden-1-one (13)

Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $35.0 \mathrm{mg}, 74 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.31$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}$, $1 \mathrm{H}), 3.84$ (dd, $J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=17.4$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.4,153.9,137.3,137.2$, 136.5, 135.4, 135.0, 130.2, 129.3, 127.8, 126.6, 125.3, 124.7, 53.3, 36.1, 19.9, 19.5. HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$237.1274, found 237.1271.

2-(4-(tert-butyl)phenyl)-2,3-dihydro- 1 H -inden-1-one (14) [CAS: 1160861-83-5]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $32.5 \mathrm{mg}, 61 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.33$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.88$ (dd, $J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=17.4,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 206.2,153.9,150.0,136.7,136.5$, 135.1, 127.8, 127.6, 126.6, 125.9, 124.7, 53.1, 35.9, 34.6, 31.5. MS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$265.16, found 265.05.

2-(4-butylphenyl)-2,3-dihydro-1 H -inden-1-one (15)
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as colorless oil. $36.4 \mathrm{mg}, 68 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.34$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{dd}, J=8.3,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{dd}, J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=17.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathbf{M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.3,153.9,141.8,137.0,136.5,135.1,129.0,127.8,126.6,124.7$, 53.2, 36.0, 35.4, 33.7, 22.5, 14.1. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$ 265.1587, found 265.1587 .

2-(4-cyclopropylphenyl)-2,3-dihydro-1 \boldsymbol{H}-inden-1-one (16)

Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as colorless oil. $24.6 \mathrm{mg}, 50 \%$ yield, $4 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.30$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 4 \mathrm{H}), 3.86$ (dd, $J=8.3,4.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.67 (dd, $J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.25 (dd, $J=17.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90-1.83 (m, $1 \mathrm{H}), 0.95-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.68-0.64(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 206.2$, $153.8,142.9,136.8,136.5,135.1,127.9,127.8,126.6,126.4,124.7,53.2,36.0,15.2$, 9.1. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$249.1274, found 249.1273 .

2-([1,1'-biphenyl]-4-yl)-2,3-dihydro-1H-inden-1-one (17)
Following the general procedure B, the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $31.7 \mathrm{mg}, 58 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.23$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C l}_{3}\right) \delta 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56-7.53 (m, 5H), 7.44-7.39 (m, 3H), 7.34-7.30 (m, 1H), 7.27-7.23 (m, 2H), 3.93 (dd, $J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ (dd, $J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (dd, $J=17.4,3.9 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 206.0,153.8,141.0,140.2,138.8,136.4,135.2,128.9$, 128.4, 127.9, 127.7, 127.3, 127.2, 126.6, 124.7, 53.2, 35.9. HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$285.1274, found 285.1273.

2-(4-methoxyphenyl)-2,3-dihydro- $\mathbf{H} H$-inden-1-one (18) ${ }^{4}$ [CAS: 1086-43-7]
Following the general procedure A, the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $29.1 \mathrm{mg}, 62 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.24$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.85$ (dd, $J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{dd}, J=17.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=$ $17.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 206.4,158.8,153.7,136.4,135.1$, 131.9, 129.0, 127.9, 126.6, 124.7, 114.5, 55.4, 52.8, 36.0. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$239.11, found 239.00.

2-(4-(dimethylamino)phenyl)-2,3-dihydro-1 \boldsymbol{H}-inden-1-one (19)
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:4) as white solid. $28.6 \mathrm{mg}, 57 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.13$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.81(\mathrm{dd}, J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=17.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=17.3$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.9,153.9,149.9,136.6$, 134.9, 128.6, 127.7, 127.6, 126.5, 124.6, 113.3, 52.8, 40.8, 36.0. HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$252.1383, found 252.1381.

2-(4-(trimethylsilyl)phenyl)-2,3-dihydro-1 H -inden-1-one (20)

Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $35.2 \mathrm{mg}, 65 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.34$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left._{3}\right) \delta 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65((\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J$ $=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=17.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 206.0,153.8,140.3,139.1,136.5,135.1,134.1,127.9,127.4,126.6,124.7$, 53.6, 35.8, -1.0. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{SiO}[\mathrm{M}+\mathrm{H}]^{+}$281.1356, found 281.1356 .

N, N-diethyl-4-(1-oxo-2,3-dihydro-1 H -inden-2-yl)benzamide (21)
Following the general procedure B , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $39.8 \mathrm{mg}, 64 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.21$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.92$ (dd, $J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (dd, $J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (br, 2H), 3.27-3.22 (m, 3H), $1.16(\mathrm{~d}, J=48.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 205.7$, 171.2, 153.7, 141.0, 136.3, 136.1, 135.3, 128.1, 128.0, 127.0, 126.6, 124.7, 53.3, 43.4, 39.4, 35.9, 14.4, 13.1. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$308.1645, found 308.1644.

2-(4-morpholinophenyl)-2,3-dihydro-1H-inden-1-one (22)
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $37.4 \mathrm{mg}, 63 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.20$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.86-$ 3.82 (m, 5H), 3.66 (dd, $J=17.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24$ (dd, $J=17.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (t, J $=4.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 206.4,153.8,150.5,136.5,135.0,131.1$, 128.7, 127.8, 126.5, 124.6, 116.3, 67.0, 52.8, 49.6, 35.9. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$294.1489, found 294.1488.

2-(4-(piperidin-1-yl)phenyl)-2,3-dihydro-1 H -inden-1-one (23)

Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1: 4) as white solid. $37.2 \mathrm{mg}, 63 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.42$ (ethyl acetate/petroleum ether 1: 4).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\psi \mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.82 (dd, $J=8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dd, $J=17.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23 (dd, $J=$ $17.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 206.6,153.9,136.6,135.0,128.5,127.8,126.6,124.6,117.1,52.8,51.0,36.0$, 26.0, 24.4. HRMS (ESI): calculated for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 292.1696$, found 292.1693.

2-(benzo[d][1,3]dioxol-5-yl)-2,3-dihydro-1H-inden-1-one (24) ${ }^{5}$ [CAS: 2089052-24-2]

Following the general procedure A, the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $32.5 \mathrm{mg}, 58 \%$ yield, $4 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.19$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.81(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.51$ (m, 1H), 7.44-7.40 (m, 1H), 6.76 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{q}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=8.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=17.4$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=17.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 206.0$, $153.6,148.2,146.8,136.4,135.2,133.6,127.9,126.6,124.7,121.4,108.7,108.3$, 101.2, 53.3, 36.1. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$253.09, found 253.05.

2-(naphthalen-2-yl)-2,3-dihydro-1H-inden-1-one (25) ${ }^{4}$ [CAS: 94213-11-3]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $27.8 \mathrm{mg}, 53 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.23$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.69-7.65$ (m, 2H), 7.56 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47-7.41 (m, 3H), 7.26-7.23 (m, 1H), 4.07 (dd, $J=$ 8.3, 4.1 Hz, 1H), 3.76 (dd, $J=17.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=17.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$

NMR (101 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.0,153.8,137.3,136.6,135.2,133.7,132.7,128.9$, $128.0,127.9,127.8,127.0,126.7,126.3,125.9,125.8,124.8,53.7,36.0$. MS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 259.11$, found 259.00.

2-(dibenzo[b,d]thiophen-3-yl)-2,3-dihydro-1H-inden-1-one (26)
Following the general procedure B , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1: 10) as white solid. $29.8 \mathrm{mg}, 48 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.17$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.12-8.07(\mathrm{~m}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.78$ (m, 3H), 7.68 ($\psi \mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39$ (m, 3H), 7.267.24 (m, 1H), 4.08 (dd, $J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (dd, $J=17.5,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (dd, $J=17.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 206.1,153.7,140.0,138.3,136.4$, $136.2,136.1,135.4,135.3,128.0,126.9,126.7,126.6,124.8,124.4,123.4,123.0$, 121.8, 121.2, 53.6, 36.4. HRMS (ESI): calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{SO}[\mathrm{M}+\mathrm{H}]^{+} 315.0838$, found 315.0836 .

2-(1-methyl-1H-indol-5-yl)-2,3-dihydro-1 H-inden-1-one (27)
Following the general procedure A, the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1: 4) as white solid. $32.7 \mathrm{mg}, 62 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.29$ (ethyl acetate/petroleum ether 1:4).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 2 \mathrm{H})$, $6.40(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=8.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{dd}, J$ $=17.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 207.1,154.1,136.7,136.1,135.0$, $130.8,129.4,129.0,127.7,126.6,124.6,121.5,120.1,109.8,101.0,53.8,36.8,33.0$. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$262.1226, found 262.1223.

2-methyl-2-phenyl-2,3-dihydro-1H-inden-1-one (28) ${ }^{6}$ [CAS: 10474-32-5]

Following the general procedure C , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as white solid. $19.6 \mathrm{mg}, 44 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.28$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49-7.47 (m, 1H), 7.41 ($\psi \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.25 (m, 4H), 7.22-7.18 (m, 1H), $3.59(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 208.7,152.7,144.0,135.8,135.2,128.7,127.9,126.8,126.5,126.4,125.0$, 53.3, 45.0, 24.6. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$223.11, found 223.05 .

2-methyl-2,3-dihydro-1H-inden-1-one (29)
Following the general procedure B, the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 20$) as colorless oil. $15.7 \mathrm{mg}, 54 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.41$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 209.5,153.6,136.6,134.8,127.5$, 126.7, 124.1, 42.1, 35.1, 16.4. HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 169.0624, found 169.0624.

3-methyl-2,3-dihydro-1H-inden-1-one (30)
Following the general procedure C , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as colorless oil. $14.2 \mathrm{mg}, 49 \%$ yield, $2 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.40$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 209.5,153.6,136.6,134.8,127.5$, 126.7, 124.2, 42.2, 35.1, 16.4. HRMS (ESI): calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 169.0624, found 169.0630.

(2) A general procedure for synthesizing of benzosuberone derivatives

Procedure D: In an argon-filled glove box, $\mathrm{Ni}\left(\mathrm{OTf}_{2}\right)_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.1 \mathrm{mg})$, $\operatorname{IPr}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.8 \mathrm{mg})$ and anhydrous 1,4-dioxane/DME ($1 / 2,4.0 \mathrm{~mL}$) were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl 2-dienylbenzoate derivatives (0.2 mmol), TMDSO ($0.3 \mathrm{mmol}, 1.5$ equiv., $54 \mu \mathrm{~L}$) and t - $\mathrm{BuOLi}(0.3 \mathrm{mmol}, 1.5$ equiv., 24.0 mg) were added into the reaction mixture sequentially. The reaction mixture was heated with vigorous stirring in a metal bath maintained at $120^{\circ} \mathrm{C}$ for $12-14 \mathrm{~h}$. After the reaction mixture was cooled to room temperature, EtOAc and water was added to dilute the mixture. The aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether as eluent to obtain the pure product.

6-phenyl-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (31)
Following the general procedure D , the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 50$) as colorless oil. $22.2 \mathrm{mg}, 47 \%$ yield, $12 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.63$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.63-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}$, $7 \mathrm{H}), 4.05$ (dd, $J=10.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14-2.97 (m, 2H), 2.23-2.09 (m, 3H), 1.91-1.82 $(\mathrm{m}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 205.9,141.3,140.5,140.2,131.7,129.8$, 128.9, 128.6, 128.5, 127.1, 126.8, 56.1, 33.1, 31.4,25.7. HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 259.1093$, found 259.1092 .

4-methoxy-6-phenyl-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (32)
Following the general procedure $\mathrm{D}\left(\mathrm{Ni}(\mathrm{OTf})_{2}(15 \mathrm{~mol} \%)\right.$ and $\operatorname{IPr}(15 \mathrm{~mol} \%)$), the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:10) as colorless oil. $25.8 \mathrm{mg}, 48 \%$ yield, $12 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.11$ (ethyl acetate/petroleum ether $1: 10$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.51(\psi \mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.85-2.70 (m, 3H), 2.67-2.60 (m, 1H), 2.31-2.23 (m, 1H), 1.81-1.71 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 206.4,158.3,156.4,141.8,136.5,128.7,128.5,126.1,125.1$, 118.4, 109.1, 55.9, 47.1, 33.7, 33.6, 32.9. HRMS (ESI): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NaO}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 289.1199$, found 289.1196.

6-(3,5-dimethylphenyl)-6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one (33)
Following the general procedure $\mathrm{D}\left(\mathrm{Ni}(\mathrm{OTf})_{2}(20 \mathrm{~mol} \%)\right.$ and $\operatorname{IPr}(20 \mathrm{~mol} \%)$), the product was isolated by flash chromatography (ethyl acetate/petroleum ether $1: 50$) as colorless oil. $19.6 \mathrm{mg}, 37 \%$ yield, $14 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.68$ (ethyl acetate/petroleum ether $1: 10$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.84(\mathrm{~m}, 3 \mathrm{H}), 3.35(\mathrm{dd}, J=17.2,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{dd}, J=17.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.63(\mathrm{~m}, 3 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 7 \mathrm{H}), 1.80-1.71$ (m, 1H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 208.8,153.7,141.5,138.0,137.0,134.8$, 127.8, 127.5, 126.7, 126.5, 124.0, 47.0, 33.6, 33.3, 33.1, 21.4. HRMS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 287.1406$, found 287.1414 .

2-phenyl-3,4-dihydronaphthalen-1(2H)-one (34) [CAS : 7498-87-5]
Following the general procedure A , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:50) as white solid. $41.6 \mathrm{mg}, 47 \%$ yield, 2 h. $\mathrm{R}_{\mathrm{f}}: 0.34$ (ethyl acetate/petroleum ether 1:20).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.11(\mathrm{dd}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.17-$ $3.02(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 198.3,144.2,139.9$, 133.6, 133.0, 128.9, 128.7, 128.6, 127.9, 127.1, 126.9, 54.5, 31.3, 28.9. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$223.1117, found 223.1115.

2-phenethyl-2,3-dihydro-1H-inden-1-one (35) [CAS: 861292-76-4]
Following the general procedure C , the product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as colorless oil. $22.7 \mathrm{mg}, 46 \%$ yield, $12 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.39$ (ethyl acetate/petroleum ether 1:10).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.73(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.15(\mathrm{~m}, 5 \mathrm{H}), 3.32(\mathrm{dd}, J=17.2,7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.81-2.61(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 208.8,153.7,141.7,137.0,134.8,128.7,128.6,127.5,126.7,126.2,124.1$, 46.9, 33.8, 33.3, 33.1. MS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$237.13, found 237.05.

(3) A general procedure for synthesising of indazolone derivatives

Procedure E: In an argon-filled glove box, $\mathrm{Ni}(\mathrm{OTf})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.1 \mathrm{mg})$, $\operatorname{IPr}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.8 \mathrm{mg})$ and anhydrous 1,4 -dioxane (2.0 mL) were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl 2-diazenylbenzoate derivatives (0.2 mmol), TMDSO ($0.3 \mathrm{mmol}, 1.5$ equiv., 54 $\mu \mathrm{L})$ and $t-\mathrm{BuOLi}(0.3 \mathrm{mmol}, 1.5$ equiv., 24.0 mg) were added into the reaction mixture sequentially. The reaction mixture was heated with vigorous stirring in a metal bath maintained at $80{ }^{\circ} \mathrm{C}$ for $4-24 \mathrm{~h}$. After the reaction mixture was cooled to room temperature, EtOAc and water was added to dilute the mixture. The aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether as eluent to obtain the pure product.

2-phenyl-1,2-dihydro-3H-indazol-3-one (36) ${ }^{7}$ [CAS: 17049-65-9]
Following the general procedure E, the product was isolated by flash chromatography (acetone/petroleum ether 1: 4, 1\% triethylamine) as white solid. $38.0 \mathrm{mg}, 90 \%$ yield, 4 h. $\mathrm{R}_{\mathrm{f}}: 0.31$ (acetone /petroleum ether 1:2).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 10.66(\mathrm{~s}, 1 \mathrm{H}), 7.94-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.18(\mathrm{~m}$, 2H). ${ }^{13}$ C NMR (101 MHz, DMSO- \boldsymbol{d}_{6}) $\delta 160.3,146.6,137.6,132.5,129.1,124.9$, 123.4, 121.9, 119.0, 118.1, 112.7. MS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$211.09, found 210.95 .

2-(4-methoxyphenyl)-1,2-dihydro-3H-indazol-3-one (37) ${ }^{7}$ [CAS: 74152-89-9]
Following the general procedure E, the product was isolated by flash chromatography (acetone/petroleum ether $1: 4,1 \%$ triethylamine) as white solid. $42.8 \mathrm{mg}, 94 \%$ yield, $24 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.30$ (acetone/petroleum ether 1:2).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{\boldsymbol{d}}$) $\delta 10.60(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}$, $2 \mathrm{H}), 3.79$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ D M S O - d} \boldsymbol{d}$) $\delta 159.7,156.6,146.3,132.0,130.8$, 123.2, 121.6, 121.0, 118.1, 114.2, 112.4, 55.3. MS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$241.10, found 241.00.

methyl 2-hydroxy-5-(3-oxo-1,3-dihydro-2H-indazol-2-yl)benzoate (38)
Following the general procedure $\mathrm{E}(t-\mathrm{BuOLi}(0.6 \mathrm{mmol}, 3.0$ equiv., 48.0 mg$)$). The product was isolated by flash chromatography (acetone/petroleum ether 1: 4, 1\% triethylamine) as white solid. $39.4 \mathrm{mg}, 69 \%$ yield, $24 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.30$ (acetone /petroleum ether 1:2).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 10.73(\mathrm{br}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d $_{\boldsymbol{6}}$) $\delta 168.7,161.0,160.8,147.1,143.1$, 133.3, 131.2, 123.6, 122.2, 117.8, 112.8, 109.1, 108.9, 105.4, 52.3. HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$285.0870, found 285.0869.

2-(3,4-dichlorophenyl)-1,2-dihydro-3H-indazol-3-one (39) [CAS: 2183608-55-9]
Following the general procedure E, the product was isolated by flash chromatography (acetone/petroleum ether 1: 4, 1% triethylamine) as white solid. $45.2 \mathrm{mg}, 81 \%$ yield, $24 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.31$ (acetone/petroleum ether 1:2).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 10.71(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.93$ $(\mathrm{m}, 1 \mathrm{H}), 7.79-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\psi \mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, DMSO-d $\boldsymbol{d}_{\boldsymbol{6}}$) $\mathbf{1 6 0 . 7}$, 147.0, 137.4, 133.1, 131.4 , 131.0, 126.4, 123.5, 122.2, 119.6, 118.2, 117.7, 112.7. MS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 279.01$, found 278.95.

methyl 3-(3-oxo-1,3-dihydro-2H-indazol-2-yl)thiophene-2-carboxylate (40)
Following the general procedure E, the product was isolated by flash chromatography (acetone/petroleum ether 1: 4, 1\% triethylamine) as white solid. $33.9 \mathrm{mg}, 61 \%$ yield, $24 \mathrm{~h} . \mathrm{R}_{\mathrm{f}}: 0.30$ (acetone /petroleum ether 1:2).
${ }^{1} H$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 10.63(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.39$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ 7.18 (m, 1H), 3.75 (s, 3H). ${ }^{13}$ C NMR (101 MHz, DMSO-d \boldsymbol{d}_{6}) δ 161.1, 160.0, 147.4, 137.3, 132.7, 131.4, 125.5, 123.6, 121.9, 121.7, 116.7, 112.5, 52.1. HRMS (ESI): calculated for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{SO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$275.0485, found 275.0485. Key HMBC correlation ($\mathbf{H} \rightarrow \mathbf{C}$):

2.4 Further Transformations and Characterization Data

(1) Gram-scale reaction

$8 \mathrm{mmol}, 1.02 \mathrm{~g}, 61 \%$
In an argon-filled glove box, $\mathrm{Ni}(\mathrm{OTf})_{2}(0.8 \mathrm{mmol}, 10 \mathrm{~mol} \%, 285.4 \mathrm{mg}), \operatorname{IPr}(0.8$ $\mathrm{mmol}, 10 \mathrm{~mol} \%, 310.9 \mathrm{mg}$) and anhydrous 1,4 -dioxane (60.0 mL) were charged into a dry $120-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl 2-styrylbenzoate $1(8.0 \mathrm{mmol}, 1.90 \mathrm{~g})$ was added in one portion. Then, a solution of t $\mathrm{BuOLi}(12 \mathrm{mmol}, 1.5$ equiv., 960.6 mg) and TMDSO ($12 \mathrm{mmol}, 1.5$ equiv., 2.1 mL) in anhydrous 1,4-dioxane (20.0 mL) was added in the reaction mixture slowly. The reaction mixture was heated with vigorous stirring in a metal bath maintained at $140^{\circ} \mathrm{C}$ for 2 hours. After the reaction mixture was cooled to room temperature, EtOAc and water was added to dilute the mixture. The mixture was washed with saturated brine solution. The combined aqueous phases were re-extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:20) as eluent to obtain the pure product 2-phenyl-1-indanone 2 ($1.02 \mathrm{~g}, 61 \%$ yield).
(2) α-Hydroxylation

To a solution of 2-phenyl-1-indanone $2(0.2 \mathrm{mmol}, 41.7 \mathrm{mg})$ in DMSO $(2.0 \mathrm{~mL})$ was added $\mathrm{HIO}_{3}(0.34 \mathrm{mmol}, 1.7$ equiv., 59.8 mg) in an argon-filled glove box at room temperature. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 10 hours. After the reaction mixture was cooled to room temperature, EtOAc and water was added to dilute the mixture. The mixture was washed with saturated brine solution. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was
then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1: 4) as eluent to afford the 2-hydroxy-2-phenyl-1-indanone 41 ($30.2 \mathrm{mg}, 67 \%$ yield).

(3) α-Alkoxylation

To a solution of $\mathrm{Co}(\mathrm{acac})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \% ., 7.1 \mathrm{mg}), t-\mathrm{BuOOH}(0.8 \mathrm{mmol}, 4.0$ equiv., 70% w in $\mathrm{H}_{2} \mathrm{O}, 114 \mu \mathrm{~L}$) in acetone (1 mL) was added 2-phenyl-1-indanone 2 (0.2 $\mathrm{mmol}, 41.7 \mathrm{mg}$) in an argon-filled glove box at room temperature. The reaction was stirred at room temperature for 60 hours. After the reaction mixture was cooled to room temperature, water was added to the mixture. The mixture was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:20) as eluent to afford 2-(tert-butoxy)-2-phenyl-1-indanone 42 ($31.8 \mathrm{mg}, 61 \%$ yield).

(4) α-Bromination

To a solution of 2-phenyl-1-indanone $2(0.2 \mathrm{mmol}, 41.7 \mathrm{mg})$ in THF (2.0 mL) was added $\mathrm{NH}_{4} \mathrm{OAc}(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%, 3.1 \mathrm{mg}$) and NBS ($0.2 \mathrm{mmol}, 1.0$ equiv., 37.5 mg) in an argon-filled glove box at room temperature. The reaction mixture was refluxed for 24 hours. After the reaction mixture was cooled to room temperature, water was added to the mixture. The mixture was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:20) as eluent to afford 2-bromo-2-phenyl-1-indanone 43 ($27.2 \mathrm{mg}, 47 \%$ yield).
(5) α-Methylation

To a solution of 2-phenyl-1-indanone $2(0.2 \mathrm{mmol}, 41.7 \mathrm{mg})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol}$, 1.5 equiv., 41.5 mg) in DMF (0.5 mL) was added $\mathrm{CH}_{3} \mathrm{I}(0.4 \mathrm{mmol}$, 2.0 equiv., $25 \mu \mathrm{~L}$) in an argon-filled glove box at room temperature. The reaction mixture was stirred at room temperature for 7 hours. Then water was added and the mixture was extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:20) as eluent to afford 2-methyl-2-phenyl-1-indanone 28 ($34.8 \mathrm{mg}, 78 \%$ yield).
(6) β-oxidation

To a solution of 2-methyl-2-phenyl-1-indanone $28(0.2 \mathrm{mmol}, 44.5 \mathrm{mg})$ in $\mathrm{CCl}_{4}(2.0$ mL) was added AIBN ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 9.9 \mathrm{mg}$) and NBS ($0.6 \mathrm{mmol}, 3.0$ equiv., 106.5 mg) in an argon-filled glove box at room temperature. The reaction mixture was refluxed for 24 hours. After completion, $\mathrm{AgOAc}(0.6 \mathrm{mmol}, 3.0$ equiv., 100.1 mg) and $\mathrm{AcOH}(2.0 \mathrm{~mL})$ was added into the reaction mixture . The mixture was further stirred at room temperature for 12 hours. After the reaction mixture was cooled to room temperature, the mixture was washed with aqueous sodium bicarbonate solution. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:4) as eluent to afford 2-methyl-2-phenyl-1,3-indandione 44 ($23.1 \mathrm{mg}, 49 \%$ yield).

(7) Reduction for the construction of 1-indanol scaffold

To a solution of 2-phenyl-1-indanone $2(0.2 \mathrm{mmol}, 41.7 \mathrm{mg})$ in anhydrous THF (0.4 mL) and $\mathrm{MeOH}(0.1 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.3 \mathrm{mmol}, 1.5$ equiv., 11.3 mg) in an argon-filled glove box at room temperature. The reaction mixture was stirred at room temperature for 3 h . Water was added at $0^{\circ} \mathrm{C}$ and the mixture was extracted with DCM ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:4) as eluent to afford 2-phenyl-1-indanol 45 ($37.9 \mathrm{mg}, 90 \%$ yield, dr: 1: 1).

(8) Reduction for the construction of indane scaffold

To a solution of 2-phenyl-1-indanone $2(0.2 \mathrm{mmol}, 41.7 \mathrm{mg})$ in trifluoroacetic acid $(298 \mu \mathrm{~L})$ was added $\mathrm{Et}_{3} \mathrm{SiH}(1.0 \mathrm{mmol}, 5.0$ equiv., $159.0 \mu \mathrm{~L})$ in an argon-filled glove box at room temperature. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . The mixture was washed with aqueous sodium bicarbonate solution and saturated brine solution. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:50) as eluent to afford 2-phenylindane 46 ($31.0 \mathrm{mg}, 80 \%$ yield).

(9) Wittig reaction of indanone

To a solution of $\mathrm{Ph}_{3}(\mathrm{Me}) \mathrm{P}^{+} \mathrm{Br}^{-}(0.32 \mathrm{mmol}, 1.6$ equiv., 114.3 mg$)$ in THF $(2.0 \mathrm{~mL})$ was added t-BuOK ($0.32 \mathrm{mmol}, 1.6$ equiv., 35.9 mg) in an argon-filled glove box at room temperature. The reaction mixture was stirred at rt for 30 min . Then, 2-phenyl-1indanone $2(0.2 \mathrm{mmol}, 41.7 \mathrm{mg})$ was added. The reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 48 h . Then water was added and the mixture was extracted with $\mathrm{DCM}(10 \mathrm{~mL} \times 3)$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:50) as eluent to afford 1-methylene-2-phenyl-indane 47 ($28.4 \mathrm{mg}, 70 \%$ yield).
(10) Total synthesis of oral anticoagulant phenindione

To a solution of 2-phenyl-1-indanone $2(0.2 \mathrm{mmol}, 41.7 \mathrm{mg})$ in $\mathrm{CCl}_{4}(2.0 \mathrm{~mL})$ was added AIBN ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 9.9 \mathrm{mg}$) and NBS ($0.6 \mathrm{mmol}, 3.0$ equiv., 106.5 mg) in an argon-filled glove box at room temperature. The reaction mixture was refluxed for 72 h . After cooling to room temperature, the reaction mixture was then filtered, diluted with DCM and washed with saturated brine solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:20) as eluent to afford 3-bromo-2-phenyl-1indenone 48 ($42.4 \mathrm{mg}, 74 \%$ yield).

To a solution of 3-bromo-2-phenyl-1-indenone $48(0.2 \mathrm{mmol}, 57.0 \mathrm{mg})$ in MeOH $(2.0 \mathrm{~mL})$ was added $\mathrm{KOH}(0.4 \mathrm{mmol}, 2.0$ equiv., 22.4 mg) at room temperature. The reaction mixture was stirred at room temperature for 5 h . After completion, 10%
aqueous HCl solution $(0.5 \mathrm{~mL})$ and $\mathrm{THF}(1.0 \mathrm{~mL})$ was added. The reaction mixture was stirred at room temperature for 6 h . After completion, the mixture was washed with aqueous sodium bicarbonate solution. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:4) as eluent to afford oral anticoagulant phenindione 49 ($33.8 \mathrm{mg}, 76 \%$ yield).
(11) Total synthesis of oral anticoagulant anisindione

To a solution of 2-(4-methoxyphenyl)-1-indanone $\mathbf{1 8}(0.2 \mathrm{mmol}, 47.7 \mathrm{mg})$ in CCl_{4} $(2.0 \mathrm{~mL})$ was added AIBN ($0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 9.9 \mathrm{mg}$) and NBS ($0.6 \mathrm{mmol}, 3.0$ equiv., 106.5 mg) in an argon-filled glove box at room temperature. The reaction mixture was refluxed for 24 h . After cooling to room temperature, the reaction mixture was then filtered, diluted with DCM and washed with saturated brine solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:20) as eluent to afford 3-bromo-2-(4-methoxyphenyl)-1-indenone intermediate ($57.0 \mathrm{mg}, 90 \%$ yield).

To a solution of 3-bromo-2-(4-methoxyphenyl)-1-indenone intermediate (0.2 $\mathrm{mmol}, 63.0 \mathrm{mg}$) in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added $\mathrm{KOH}(0.4 \mathrm{mmol}, 2.0$ equiv., 22.4 mg) at room temperature. The reaction mixture was stirred at room temperature for 1 h . After completion, 10% aqueous HCl solution $(0.5 \mathrm{~mL})$ and THF (1.0 mL) was added. The reaction mixture was stirred at room temperature for 2 h . After completion, the mixture was washed with aqueous sodium bicarbonate solution. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The
residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:4) as eluent to afford oral anticoagulant anisindione $\mathbf{5 0}$ (38.2 mg , 76% yield).

(12) Total synthesis of estrogen receptor ligand

To a solution of 6-methoxy-2-(4-methoxyphenyl)-1-indanone $6(0.2 \mathrm{mmol}, 53.6 \mathrm{mg})$ in $\mathrm{CCl}_{4}(2.0 \mathrm{~mL})$ was added AIBN $(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 9.9 \mathrm{mg})$ and NBS $(0.6 \mathrm{mmol}$, 3.0 equiv., 106.5 mg) in an argon-filled glove box at room temperature. The reaction mixture was refluxed for 24 h . After cooling to room temperature, the reaction mixture was then filtered, diluted with DCM and washed with saturated brine solution. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:50) as eluent to afford 3-bromo-6-methoxy-2-(4-methoxyphenyl)-1-indenone intermediate ($30.7 \mathrm{mg}, 89 \%$ yield).

To a solution of 3-bromo-6-methoxy-2-(4-methoxyphenyl)-1-indenone intermediate ($0.1 \mathrm{mmol}, 34.5 \mathrm{mg}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added $\mathrm{BBr}_{3}(2.0 \mathrm{mmol}$, 20.0 equiv., $2 \mathrm{~mol} / \mathrm{L}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.0 \mathrm{~mL}$) at $-20^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min . After completion, EtOAc and ice-cold water was added to dilute the mixture. The mixture was washed with saturated brine solution. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using dichloromethane and methanol (40:1) as eluent to afford the estrogen receptor ligand 51 ($20.9 \mathrm{mg}, 66 \%$ yield).

(13) Total synthesis of TRPV1

In an argon-filled glove box, $\mathrm{Ni}(\mathrm{OTf})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.1 \mathrm{mg}), \operatorname{IPr}(0.02$ $\mathrm{mmol}, 10 \mathrm{~mol} \%, 7.8 \mathrm{mg}$) and anhydrous 1,4 -dioxane (2.0 mL) were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl (E) -2-((4-(trifluoromethyl)phenyl)diazenyl)benzoate 52 ($0.2 \mathrm{mmol}, 61.7 \mathrm{mg}$), TMDSO (0.3 mmol, 1.5 equiv., $54 \mu \mathrm{~L}$) and $t-\mathrm{BuOLi}(0.3 \mathrm{mmol}, 1.5$ equiv., 24.0 mg) were added sequentially. The reaction mixture was heated under argon with vigorous stirring in a metal bath at $120^{\circ} \mathrm{C}$ for 4 h . After cooling to room temperature, EtOAc and water was added to dilute the mixture. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using acetone and petroleum ether (1: 4, 1\% triethylamine) as eluent to afford the TRPV1 antagonist $\mathbf{5 3}$ ($45.9 \mathrm{mg}, 82 \%$ yield).

(14) Late-stage functionalization of antimicrobial agent sulfamethoxazole

In an argon-filled glove box, $\mathrm{Ni}(\mathrm{OTf})_{2}(0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%, 7.1 \mathrm{mg}), \operatorname{IPr}(0.02$ $\mathrm{mmol}, 10 \mathrm{~mol} \%, 7.8 \mathrm{mg}$) and anhydrous 1,4-dioxane (2.0 mL) were charged into a dry $15-\mathrm{mL}$ Schlenk tube. After stirring for about 10 min at room temperature, methyl (E) -2-((4-(N-(5-methylisoxazol-3-yl) sulfamoyl)phenyl)diazenyl)benzoate 54 (0.2 mmol ,
80.0 mg), TMDSO ($0.3 \mathrm{mmol}, 1.5$ equiv., $54 \mu \mathrm{~L}$) and t-BuOLi ($0.6 \mathrm{mmol}, 3.0$ equiv., 48.0 mg) were added sequentially. The reaction mixture was heated under argon with vigorous stirring in a metal bath at $140^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, EtOAc and water was added to dilute the mixture. The combined aqueous phases were re-extracted with EtOAc ($10 \mathrm{~mL} \times 3$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel using acetone and petroleum ether (1: $4,1 \%$ triethylamine) as eluent to afford the indazolone-derived sulfamethoxazole 55 ($52.1 \mathrm{mg}, 70 \%$ yield).

2-hydroxy-2-phenyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-inden-1-one (41) ${ }^{8}$ [CAS: 60815-12-5]
The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:4) as white solid. $30.2 \mathrm{mg}, 67 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.31$ (ethyl acetate/petroleum ether $1: 4$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\psi \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 5 \mathrm{H}), 3.59(\mathrm{q}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.32(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 206.1,152.0,142.5,136.2,134.5,128.7$, 128.3, 127.9, 126.6, 125.4, 124.9, 81.4, 44.5. MS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$225.09, found 225.05 .

2-(tert-butoxy)-2-phenyl-2,3-dihydro-1H-inden-1-one (42)
The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $31.8 \mathrm{mg}, 61 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.37$ (ethyl acetate/petroleum ether $1: 10$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\psi \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41-7.37 (m, 3H), 7.32-7.24 (m, 3H), 4.02 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.57 (d, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 201.7,151.6$, 138.2, 135.7, 135.2, 128.6, 128.3, 127.9, 126.4, 126.0, 125.1, 89.5, 80.7, 38.8, 26.8. MS (ESI): calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 281.15$, found 281.00

2-bromo-2-phenyl-2,3-dihydro-1 H -inden-1-one (43) ${ }^{9}$ [CAS: 5728-94-9]
The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:20) as white solid. $27.2 \mathrm{mg}, 47 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.36$ (ethyl acetate/petroleum ether $1: 10$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.48(\psi \mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40-7.29 (m, 3H), 4.16-4.06 (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ 198.7, 149.0, 139.3, 136.1, 133.3, 128.8, 128.6, 128.5, 127.9, 126.3, 126.0, 63.1, 47.7. MS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrO}[\mathrm{M}+\mathrm{Na}]^{+} 308.99$, found 308.99.

2-methyl-2-phenyl-1H-indene-1,3(2H)-dione (44) ${ }^{10}$ [CAS : 2136-69-8]
The product was isolated by flash chromatography (acetone/petroleum ether 1:4) as white solid. $23.1 \mathrm{mg}, 49 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.32$ (acetone/petroleum ether 1: 4).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}$, 5 H), $1.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 202.0,141.5,137.9,136.1,129.0$, 127.8, 126.8, 124.0, 58.1, 20.2. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{KO}_{2}[\mathrm{M}+\mathrm{K}]^{+} 275.05$, found 274.95 .

cis-2-phenyl-2,3-dihydro-1 H -inden-1-ol (45-cis)
The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:4) as white solid. $20.2 \mathrm{mg}, 48 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.43$ (ethyl acetate/petroleum ether $1: 4$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 8 \mathrm{H}), 5.25(\mathrm{~d}, J$ $=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=15.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=$ $15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 144.0,143.3,139.4$, 129.0, 128.9, 128.8, 127.2, 127.1, 125.3, 124.9, 77.6, 51.3, 35.9. HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$233.0937, found 233.0934.

trans-2-phenyl-2,3-dihydro-1H-inden-1-ol (45-trans)
The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:4) as white solid. $17.7 \mathrm{mg}, 42 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.41$ (ethyl acetate/petroleum ether $1: 4$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.25(\mathrm{~m}$, $4 \mathrm{H}), 5.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 144.2,142.5,141.3,128.8,128.5,127.7,127.3,126.9$, 124.8, $124.0,82.9,56.8,37.8$. m.p.: $81.9^{\circ} \mathrm{C}$. HRMS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NaO}$ $[\mathrm{M}+\mathrm{Na}]^{+} 233.0937$, found 233.0934.

2-phenyl-2,3-dihydro-1 H -indene (46) ${ }^{11}$ [CAS: 22253-11-8]
The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:50) as white solid. $31.0 \mathrm{mg}, 80 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.74$ (ethyl acetate/petroleum ether $1: 10$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 7.33-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.25-7.15 (m, 5H) 3.73-3.65 (p, $J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=15.3,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=15.4,9.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 145.6,143.1,128.6,127.2,126.6,126.3,124.5,45.6,41.1$. HRMS (APCI): calculated for $\mathrm{C}_{15} \mathrm{H}_{15}[\mathrm{M}+\mathrm{H}]^{+}$195.1168, found 195.1165 .

1-methylene-2-phenyl-2,3-dihydro- $\mathbf{H} \boldsymbol{H}$-indene (47) ${ }^{12}$ [CAS: 207619-59-8]
The product was isolated by flash chromatography (ethyl acetate/petroleum ether 1:50) as white solid. $28.4 \mathrm{mg}, 70 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.71$ (ethyl acetate/petroleum ether 1: 10).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 8 \mathrm{H}), 5.55(\mathrm{~d}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=16.5,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08(\mathrm{dd}, J=16.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 147.7,142.6,140.5$, $137.8,134.9,128.5,128.4,126.8,126.6,124.9,123.5,119.3,41.2,12.1$ HRMS (APCI): calculated for $\mathrm{C}_{16} \mathrm{H}_{15}[\mathrm{M}+\mathrm{H}]^{+}$207.1168, found 207.1194.

3-bromo-2-phenyl-1H-inden-1-one (48) ${ }^{13}$ [CAS : 19096-28-7]

The product was isolated by flash chromatography (ethyl acetate /petroleum ether 1: 20) as orange solid. $42.2 \mathrm{mg}, 74 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.40$ (ethyl acetate /petroleum ether 1:20). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.69-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.29(\mathrm{~m}$, 2H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 192.6,143.5,142.3,135.1,134.2,130.1,130.0$, 129.9, 129.6, 128.9, 128.4, 122.4, 121.6. HRMS (APCI): calculated for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrNaO}$ $[\mathrm{M}+\mathrm{Na}]^{+} 306.9729$, found 306.9733 .

2-phenyl-1H-indene-1,3(2H)-dione (49) ${ }^{14}$ [CAS: 83-12-5]

The product was isolated by flash chromatography (acetone/petroleum ether 1:4) as white solid. $33.8 \mathrm{mg}, 76 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.30$ (acetone/petroleum ether 1:4).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.09-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 198.4,142.8$, 136.1, 133.3, 129.1, 128.9, 128.0, 123.9, 60.0. MS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$223.08, found 223.00.

2-(4-methoxyphenyl)-1H-indene-1,3(2H)-dione (50) ${ }^{15}$ [CAS: 117-37-3]

The product was isolated by flash chromatography (acetone/petroleum ether 1:4) as white solid. $38.2 \mathrm{mg}, 76 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.29$ (acetone/petroleum ether $1: 4$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 8.09-8.04 (m, 2H), 7.92-7.88 (m, 2H), 7.13-7.09 (m, $2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta$ 198.8, 159.4, 142.7, 136.1, 130.0, 125.3, 123.9, 114.7, 59.3, 55.4. MS (ESI): calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 253.09$, found 253.05 .

3-bromo-6-hydroxy-2-(4-hydroxyphenyl)-1H-inden-1-one (51) ${ }^{16}$ [CAS: 594816-63-4]

The product was isolated by flash chromatography (acetone/petroleum ether 1:4) as white solid. $20.9 \mathrm{mg}, 66 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.20$ (acetone/petroleum ether $1: 2$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, Acetone- \boldsymbol{d}_{6}) $\delta 9.13(\mathrm{br}, 1 \mathrm{H}), 8.69(\mathrm{br}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H})$, 7.14-7.12 (m, 1H), 6.97-6.92 (m, 4H). ${ }^{13}$ C NMR (101 MHz, Acetone-d ${ }_{6}$) $\delta 193.2$, $160.7,158.7,141.6,135.4,134.0,132.8,131.8,123.4,122.4,119.4,116.0,111.7$. MS (ESI): calculated for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 316.98$, found 317.20.

2-(4-(trifluoromethyl)phenyl)-1,2-dihydro-3H-indazol-3-one (53) 17 [CAS: 889359-36-8]

Following the general procedure, the reaction was heated at $120^{\circ} \mathrm{C}$ for 4 h . The product was isolated by flash chromatography (acetone/petroleum ether 1:4) as white solid. $45.9 \mathrm{mg}, 82 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.32$ (acetone/petroleum ether $1: 4,1 \%$ triethylamine).
${ }^{1} H$ NMR (400 MHz, DMSO- $\boldsymbol{d}_{\mathbf{6}}$) $\delta 10.75(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ $(\psi t, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (101 MHz, DMSO- $\left.\boldsymbol{d}_{\mathbf{6}}\right) \delta$ 161.0, 147.2, 140.8, 133.2, $126.4(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.6(\mathrm{q}, J=32.1 \mathrm{~Hz}), 124.2(\mathrm{q}, J=271.5 \mathrm{~Hz}), 123.7,122.3$, 118.4, 117.9, 112.9. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR (377 MHz, DMSO- \boldsymbol{d}_{6}) $\delta-60.5$. MS (ESI): calculated for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 279.07$, found 279.00.

N-(5-methylisoxazol-3-yl)-4-(3-oxo-1,3-dihydro-2H-indazol-2-yl)

benzenesulfonamide (55)

Following the general procedure, the reaction was heated at $140{ }^{\circ} \mathrm{C}$ for 24 h . The product was isolated by flash chromatography (acetone/petroleum ether 1:4) as white solid. $52.1 \mathrm{mg}, 70 \%$ yield. $\mathrm{R}_{\mathrm{f}}: 0.27$ (acetone/petroleum ether $1: 4,1 \%$ triethylamine).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO-d $\left.\mathbf{d}_{6}\right) \delta 11.47(\mathrm{br}, 1 \mathrm{H}), 10.73(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\psi \mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$
(d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\psi \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ MHz, DMSO- $\boldsymbol{d}_{\boldsymbol{6}}$) $\delta 170.4,161.1,157.6,147.3,141.2,134.6,133.4,128.2,123.7$, 122.4, 118.4, 117.7, 112.9, 95.5, 12.1. HRMS (ESI): calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaSO}_{4}$ $[\mathrm{M}+\mathrm{Na}]^{+} 371.0809$, found 371.0806 .

2.5 Evaluation of the Free Radical Scavenging Activity by ABTS ${ }^{+}$Method

Measurement of ABTS free radical scavenging activity

The experiment to measure antioxidant activity of the compounds was performed according to method described in the literature. ${ }^{18}$ In brief, $10 \mu \mathrm{~L}$ of solution containing $1000,500,250,125,62.5,31.25$ and $15.63 \mu \mathrm{M}$ compounds (dissolved in DMSO) were incubated with $190 \mu \mathrm{~L} 80 \%$ ethanol working solution containing $0.665 \mathrm{mM} \mathrm{ABTS}{ }^{+}$, $0.2356 \mathrm{mM} \mathrm{K} 2_{2} \mathrm{~S}_{5} \mathrm{O}_{8}$ in a 96-well plate at room temperature for 30 min , and then the absorbance of the mixture at 734 nm was measured as A_{i}. DMSO aqueous solution with the working solution and 80% ethanol alone was used to measure $A_{o \text { and }} A_{j}$, respectively. ABTS free radical scavenging rate of the compounds was calculated as follows:

$$
\mathrm{S}(\%)=\frac{A_{o}-\left(A_{i}-A_{j}\right)}{A_{o}} \times 100 \%
$$

Then the dose-response relationship curve was drawn to calculate the IC_{50} value. Trolox standard solution was set as a reference.

Table S11. Preliminary in vitro evaluation of free radical scavenging activities.

Compd	$\mathrm{IC}_{50}(\mu \mathrm{M})$	Compd	$\mathrm{IC}_{50}(\mu \mathrm{M})$
$\mathbf{2}$	>50	$\mathbf{4 4}$	>50
$\mathbf{1 9}$	14.75	$\mathbf{4 9}$	11.34
$\mathbf{3 6}$	5.84	$\mathbf{5 0}$	23.54
$\mathbf{3 7}$	5.97	$\mathbf{5 1}$	11.19
$\mathbf{3 8}$	>50	$\mathbf{5 3}$	6.53
$\mathbf{3 9}$	10.65	$\mathbf{5 5}$	5.69
$\mathbf{4 0}$	5.43	Trolox	6.25

2.6 General Procedure for the Synthesis of Substrates

(1) A general procedure for preparing methyl 2-styrylbenzoate derivatives ${ }^{\mathbf{1 9 , 2 0}}$

Method a:

A mixture of methyl o-iodobenzoate derivatives ($5 \mathrm{mmol}, 1.0$ equiv.), styrene derivatives ($6 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(3.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(7 \mathrm{~mol} \%)$ in $\mathrm{Et}_{3} \mathrm{~N}$ was
stirred at $100^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature, and EtOAc and 1 M aqueous HCl was added. The resulting mixture was passed through a Celite pad to remove a black solid. Then the reaction mixture was washed with water and brine. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain the product.

Method b:

A mixture of methyl o-vinylbenzoate derivatives ($5 \mathrm{mmol}, 1.0$ equiv.), bromobenzene derivatives ($6 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\operatorname{SPhos}(7 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}$ in DMF was stirred at $120^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature, and EtOAc and 1 M aqueous HCl was added. The resulting mixture was passed through a Celite pad to remove a black solid. Then the reaction mixture was washed with water and brine. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain the product.

(2) A general procedure for preparing methyl 2-diazenylbenzoate derivatives ${ }^{21}$

Methyl anthranilate ($30.0 \mathrm{mmol}, 1.0$ equiv.) was dissolved in a dichloromethanewater (1:4) (100 mL) mixture. Oxone was added and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, dichloromethane and water was added. The organic layers were combined, washed with 1 M aqueous HCl , aqueous sodium bicarbonate and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to obtain the methyl o-nitrosobenzoate.

Then, methyl o-nitrosobenzoate was dissolved in AcOH . Aniline derivatives were added and the mixture was stirred at room temperature for 1 hours. After completion of the reaction, EtOAc and water was added. The organic layers were combined and
washed with aqueous sodium bicarbonate and brine. The layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain the product.
(3) A general procedure for preparing methyl (E)-2-(4-phenylbut-3-en-1yl)benzoate derivatives ${ }^{22}$

Method a:

To an anhydrous THF (10 mL) solution of o-methylbenzoic acid derivatives (5.0 mmol, 1.0 equiv.) was added HMPA ($5.0 \mathrm{mmol}, 1.0$ equiv.) and $n-\mathrm{BuLi}(12.5 \mathrm{mmol}$, 2.5 equiv.) at $-78{ }^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then, the solution of (E)-(3-bromoprop-1-en-1-yl)benzene ($6.0 \mathrm{mmol}, 1.2$ equiv.) in anhydrous THF (5 mL) was added at $-20^{\circ} \mathrm{C}$, and the reaction was stirred at room temperature for 1 h . After completion of the reaction, EtOAc and 1 M aqueous HCl was added, and the organic layers were combined, washed with aqueous sodium bicarbonate and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain (E)-2-(4-phenylbut-3-en-1yl)benzoic acid derivatives.

Then to a DMF (10 mL) solution of (E)-2-(4-phenylbut-3-en-1-yl)benzoic acid (3.0 mmol, 1.0 equiv.) derivatives was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($4.5 \mathrm{mmol}, 1.5$ equiv.) and MeI (6.0 $\mathrm{mmol}, 2.0$ equiv.). The mixture was stirred at room temperature for 3 hours. After completion of the reaction, EtOAc and water was added, and the organic layers were combined, washed with aqueous sodium bicarbonate and brine. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain the product.

Method b:

To an anhydrous THF (10 mL) solution of o-methylbenzoic acid derivatives (5.0 mmol, 1.0 equiv.) was added HMPA ($5.0 \mathrm{mmol}, 1.0$ equiv.) and $n-\operatorname{BuLi}(12.5 \mathrm{mmol}$, 2.5 equiv.) at $-78^{\circ} \mathrm{C}$ under N_{2}. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then, the solution of allyl bromide ($6.0 \mathrm{mmol}, 1.2$ equiv.) in anhydrous THF (5 mL) was added at $-20^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 1 h . After completion of the reaction, EtOAc and 1 M aqueous HCl was added, and the organic layers were combined, washed with aqueous sodium bicarbonate and brine. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain 2-(but-3-en-1-yl)benzoic acid.

To a DMF (10 mL) solution of 2-(but-3-en-1-yl)benzoic acid ($3.0 \mathrm{mmol}, 1.0$ equiv.) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($4.5 \mathrm{mmol}, 1.5$ equiv.) and MeI ($6.0 \mathrm{mmol}, 2.0$ equiv.). The mixture was stirred at room temperature for 3 hours. After completion of the reaction, EtOAc and water was added, and the organic layers were combined, washed with aqueous sodium bicarbonate and brine. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain methyl 2-(but-3-en-1-yl)benzoate.

A mixture of methyl 2-(but-3-en-1-yl)benzoate ($3 \mathrm{mmol}, 1.0$ equiv.), bromobenzene derivatives ($3.6 \mathrm{mmol}, 1.2$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$, $\mathrm{SPhos}(10 \mathrm{~mol} \%)$ and $\mathrm{Et}_{3} \mathrm{~N}$ in DMF was stirred at $120{ }^{\circ} \mathrm{C}$ overnight. The reaction mixture was cooled to room temperature, and EtOAc and 1 M aqueous HCl was added. The resulting mixture was passed through a Celite pad to remove a black solid. Then the reaction mixture was washed with water and brine. The organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered and concentrated in vacuo. The residue was purified by silica gel flash chromatography using ethyl acetate and petroleum ether as eluent to obtain the product.

3. References

1. Tasker, S. Z., Standley, E. A. and Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 2014, 509, 299-309.
2. Li, J., Ye, J., Zhou, J., Li, J., Liu, D. and Zhang, W. RuPHOX-Ru catalyzed asymmetric hydrogenation of α-substituted tetralones via a dynamic kinetic resolution. Chem. Coттип. 2022, 58, 4905-4908
3. Joh, T., Doyama, K., Fujiwara, K., Maeshima, K. and Takahashi, S. Cobalt-catalyzed cyclocarbonylation of acetylenes under water gas shift conditions. Selective synthesis of indan-1-ones. Chem. Lett. 1988, 5, 901-904.
4. Yuan, J., Liu, C., Chen, Y., Zhang, Z., Yan, D. and Zhang, W. Rhodium-catalyzed intramolecular hydroacylation of 1,2-disubstituted alkenes for the synthesis of 2substituted indanones. Tetrahedron 2019, 75, 269-277.
5. Kingston, C. and Guiry, P. J. Enantiodivergent synthesis of tertiary α-aryl 1-indanones: Evidence toward disparate mechanisms in the palladium-catalyzed decarboxylative asymmetric protonation. J. Org. Chem. 2017, 82, 3806-3819.
6. Janssen-Müller, D., Schedler, M., Fleige, M., Daniliuc, C. G. and Glorius, F. Enantioselective intramolecular hydroacylation of unactivated alkenes: An NHCcatalyzed robust and versatile formation of cyclic chiral ketones. Angew. Chem. Int. Ed. 2015, 54, 12492-12496.
7. Wang, Z., Yin, Z., Zhu, F., Li, Y. and Wu, X.-F. Palladium-catalyzed carbonylative cyclization of azoarenes. ChemCatChem 2017, 9, 3637-3640.
8. Zhang, C., Li, H., Pei, C., Qiu, L., Hu, W., Bao, X. and Xu, X. Selective vinylogous reactivity of carbene intermediate in gold-catalyzed alkyne carbocyclization: Synthesis of indenols. ACS Catal. 2019, 9, 2440-2447.
9. Fretz, H., Gatfield, J., Isler, M., Kimmerlin, T., Koberstein, R., Lyothier, I., Monnier, L., Pothier, J. and Valdenaire, A. Indanones, indandione derivatives and heterocyclic analogs as neuropeptide S receptor antagonists and their preparation. PCT Int. Appl. 2013, 2013068785.
10. Kistemaker, J. C. M., Štacko, P., Roke, D., Wolters, A. T., Heideman, G. H., Chang, M.-C. Meulen, P. v. d., Visser, J., Otten, E. and Feringa, B. L. Third-generation lightdriven symmetric molecular motors. J. Am. Chem. Soc. 2017, 139, 9650-9661.
11. Li, Z., Sun, W., Wang, X., Li, L., Zhang, Y. and Li, C. Electrochemically enabled, nickel-catalyzed dehydroxylative cross-coupling of alcohols with aryl halides. J. Am. Chem. Soc. 2021, 143, 3536-3543.
12. Bräse, S., Rümper, J., Voigt, K., Albecq, S., Thurau, G., Villard, R., Waegell, B. and Meijere, A. de Synthesis of o-dialkenylbenzenes and indenes using Heck and oxypalladation Reactions. Eur. J. Org. Chem. 1998, 671-678.
13. Ueda, M., Ueno, T. Suyama, Y. and Ryu, I. Synthesis of 2,3-disubstituted indenones by cobalt-catalyzed [3+2] annulation of o-methoxycarbonylphenylboronic acid with alkynes. Chem. Commun. 2016, 52, 13237-13240.
14. Tamizharasan, N., Hallur, G. and Suresh, P. Palladium-catalyzed direct α-arylation of indane-1,3-dione to 2 -substituted indene-1,3-diones. J. Org. Chem. 2021, 86, 12318-12325.
15. Kayaleh, N. E., Gupta, R. C. and Johnson, F. Enolate ions as β-activators of orthometalation: Direct synthesis of 3-aminoindenones. J. Org. Chem. 2000, 65, 4515-4522.
16. Mcdevitt, R. E., Adebi, F. O., Harris, H. A., Keith, J. C. and Albert, L. M., Preparation of substituted indenones as estrogenic agents. U.S. Pat. Appl. Publ. 2003, US 20030166643.
17. Li, G., Miller, S. P. and Radosevich, A. T. PIII/PV=O-catalyzed intermolecular $\mathrm{N}-\mathrm{N}$ bond formation: Cross-selective reductive coupling of nitroarenes and anilines. J. Am. Chem. Soc. 2021, 143, 14464-14469.
18. Ozgen, M., Reese, R. N., Tulio Jr, A. Z., Scheerens J. C. and Miller, A. R. Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151-1157.
19. Shunsuke, E., Kenta, S., Tagui, N., Akira, M. and Keisuke, A. Trans-cyclooctenes as halolactonization catalysts. Angew. Chem. Int. Ed. 2018, 57, 13863-13867.
20. Mikhael, M., Guo, W., Tantillo, D. J. and Wengryniuk, S. E. Umpolung strategy for arene C-H etherification leading to functionalized chromanes enabled by I (III) N ligated hypervalent iodine reagents. Adv. Synth. Catal. 2021, 363, 4867-4875.
21. Osorio-Planes, L., Rodríguez-Escrich, C. and Pericas, M. A. Photoswitchable thioureas for the external manipulation of catalytic activity. Org. Lett. 2014, 16, 17041707.
22. Chen, H., Jin, W. W. and Yu, S. Y. Enantioselective remote C(sp $\left.{ }^{3}\right)-$ H cyanation via dual photoredox and copper catalysis Org. Lett. 2020, 22, 5910-5914.

4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectra of compound 2

${ }^{13} \mathrm{C}$ NMR spectra of compound 2

$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \underset{\sim}{\infty} \\ & \stackrel{\sim}{n} \end{aligned}$		 		~0000
।	।	人।	1	\downarrow	\|

1	1	1	1	1		1		1	1	1	1	1	1	1		
210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	-10

${ }^{1} \mathrm{H}$ NMR spectra of compound 2-d

${ }^{13} \mathrm{C}$ NMR spectra of compound 2-d

${ }^{1} \mathrm{H}$ NMR spectra of compound 3

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3}$

			$\begin{gathered} \text { ̃. } \\ \text { \% } \end{gathered}$	\%

${ }^{1} \mathrm{H}$ NMR spectra of compound 4

${ }^{13} \mathrm{C}$ NMR spectra of compound 4

${ }^{1} \mathrm{H}$ NMR spectra of compound 5

${ }^{13} \mathrm{C}$ NMR spectra of compound 5

${ }^{19} \mathrm{~F}$ NMR spectra of compound 5

${ }^{1} \mathrm{H}$ NMR spectra of compound 6

${ }^{13} \mathrm{C}$ NMR spectra of compound 6

230	210	190	170	150	130	$\begin{array}{r} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR spectra of compound 7

${ }^{13} \mathrm{C}$ NMR spectra of compound 7

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{8}$

```
~m
MN⿱一⿻口⿰亻丨丶寸~
```


${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8}$

$\begin{array}{llllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectra of compound 9

${ }^{13} \mathrm{C}$ NMR spectra of compound 9
స

$\begin{array}{llllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectra of compound 10

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0}$

		o્ల mion mivio id d		

${ }^{1} \mathrm{H}$ NMR spectra of compound 11

 へヘNヘNへNへNへN

${ }^{13} \mathrm{C}$ NMR spectra of compound 11

${ }^{1} H$ NMR spectra of compound 12

```
&~
```


${ }^{13} \mathrm{C}$ NMR spectra of compound 12

${ }^{1} \mathrm{H}$ NMR spectra of compound 13

${ }^{13} \mathrm{C}$ NMR spectra of compound 13
$\stackrel{0}{7}$
$\stackrel{0}{0}$
$\stackrel{\sim}{\sim}$
1

${ }^{1} \mathrm{H}$ NMR spectra of compound 14

${ }^{13} \mathrm{C}$ NMR spectra of compound 14

[^0]${ }^{1} \mathrm{H}$ NMR spectra of compound 15

${ }^{13} \mathrm{C}$ NMR spectra of compound 15

[^1]${ }^{1} \mathrm{H}$ NMR spectra of compound 16

${ }^{13} \mathrm{C}$ NMR spectra of compound 16

${ }^{1} \mathrm{H}$ NMR spectra of compound 17

 MinNuNANANANNNA

${ }^{13} \mathrm{C}$ NMR spectra of compound 17

${ }^{1} \mathrm{H}$ NMR spectra of compound 18

${ }^{13} \mathrm{C}$ NMR spectra of compound 18

${ }^{1} \mathrm{H}$ NMR spectra of compound 19

${ }^{13} \mathrm{C}$ NMR spectra of compound 19

${ }^{1} \mathrm{H}$ NMR spectra of compound 20

${ }^{13} \mathrm{C}$ NMR spectra of compound 20

[^2]
${ }^{1} \mathrm{H}$ NMR spectra of compound 21

-icicicicicicer

\qquad
${ }^{13} \mathrm{C}$ NMR spectra of compound 21

${ }^{1} \mathrm{H}$ NMR spectra of compound 22

${ }^{13} \mathrm{C}$ NMR spectra of compound 22
風

${ }^{1} \mathrm{H}$ NMR spectra of compound 23

${ }^{13} \mathrm{C}$ NMR spectra of compound 23

${ }^{1} \mathrm{H}$ NMR spectra of compound 24

º

${ }^{13} \mathrm{C}$ NMR spectra of compound 24

${ }^{1} \mathrm{H}$ NMR spectra of compound 25

「... ${ }^{\circ}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 25

${ }^{1} \mathrm{H}$ NMR spectra of compound 26


```
NNNNNNNNNNNNNNNNNNNN
```


${ }^{13} \mathrm{C}$ NMR spectra of compound 26

[^3]${ }^{1} \mathrm{H}$ NMR spectra of compound 27

${ }^{13} \mathrm{C}$ NMR spectra of compound 27

[^4]${ }^{1} \mathrm{H}$ NMR spectra of compound 28

${ }^{13} \mathrm{C}$ NMR spectra of compound 28
$\stackrel{N}{N}$

$\stackrel{N}{\text { N }}$

${ }^{1} \mathrm{H}$ NMR spectra of compound 29

$\underbrace{\text { rimminin }}$
푸굴

${ }^{13} \mathrm{C}$ NMR spectra of compound 29
in

$\begin{array}{llllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 0}$

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 0}$

$\begin{array}{llllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$
${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 1}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 31
-

$\begin{array}{lllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$
${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 2}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 32

$\begin{array}{lllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & 10\end{array}$
${ }^{1} \mathrm{H}$ NMR spectra of compound 33

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 3}$

${ }^{1} \mathrm{H}$ NMR spectra of compound 34

${ }^{13} \mathrm{C}$ NMR spectra of compound 34

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 5}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 35

${ }^{1} \mathrm{H}$ NMR spectra of compound 36

${ }^{13} \mathrm{C}$ NMR spectra of compound 36

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 7}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 37

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{3 8}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 38

${ }^{1} \mathrm{H}$ NMR spectra of compound 39

${ }^{13} \mathrm{C}$ NMR spectra of compound 39

${ }^{1} \mathrm{H}$ NMR spectra of compound 40
응

${ }^{13} \mathrm{C}$ NMR spectra of compound 40

HMBC spectra of compound 40

${ }^{1} \mathrm{H}$ NMR spectra of compound 41

${ }^{13} \mathrm{C}$ NMR spectra of compound 41

[^5]${ }^{1} \mathrm{H}$ NMR spectra of compound 42

${ }^{13} \mathrm{C}$ NMR spectra of compound 42
$\stackrel{\text { 导 }}{\stackrel{\text { ® }}{+}}$

웅 우으․

${ }^{1} \mathrm{H}$ NMR spectra of compound 43

${ }^{13} \mathrm{C}$ NMR spectra of compound 43

${ }^{1} \mathrm{H}$ NMR spectra of compound 44
$\stackrel{\underset{i}{~}}{\stackrel{N}{+}}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 44

$\stackrel{\sim}{\sim}$

${ }^{1} \mathrm{H}$ NMR spectra of compound cis-45

ポ

$\stackrel{\infty}{\stackrel{\infty}{+}}$

cis

${ }^{13} \mathrm{C}$ NMR spectra of compound cis-45

$$
\begin{aligned}
& \text { ুㅓㅇ엉 }
\end{aligned}
$$

$\rightarrow 1$ ~~~~

cis
${ }^{1} \mathrm{H}$ NMR spectra of compound trans-45

trans

${ }^{13} \mathrm{C}$ NMR spectra of compound trans-45

trans

-37.839

${ }^{1} \mathrm{H}$ NMR spectra of compound 46

${ }^{13} \mathrm{C}$ NMR spectra of compound 46

	今 ${ }_{+}^{\circ} \mathrm{O}$
1 い	\downarrow

${ }^{1} \mathrm{H}$ NMR spectra of compound 47

${ }^{13} \mathrm{C}$ NMR spectra of compound 47

๗	No	8
-	¢ ¢	
	'	

$$
\begin{aligned}
& \text { ¢\% \% } \\
& \text { N年 }
\end{aligned}
$$

$\stackrel{\infty}{\stackrel{\infty}{\bullet}} \underset{\stackrel{\infty}{\dot{+}}}{\stackrel{\circ}{\circ}}$

Ph

${ }^{1} \mathrm{H}$ NMR spectra of compound 48

-

${ }^{13} \mathrm{C}$ NMR spectra of compound 48

${ }^{1} \mathrm{H}$ NMR spectra of compound 49

$\stackrel{\circ}{\text { ¢ }}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 49

$\begin{aligned} & \stackrel{\circ}{0} \\ & \text { © } \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\text { º }}{\text { ¢ }}$	® ल్ల	
1	，	$1 \ldots$	\downarrow

${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 0}$

${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 0}$

${ }^{1} \mathrm{H}$ NMR spectra of compound 51

${ }^{13} \mathrm{C}$ NMR spectra of compound 51

${ }^{1} \mathrm{H}$ NMR spectra of compound 53

${ }^{13} \mathrm{C}$ NMR spectra of compound 53

${ }^{19}$ F NMR spectra of compound $\mathbf{5 3}$

$\begin{array}{llllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 \\ \mathrm{f1}(\mathrm{ppm}) & -120 & -140 & -160 & -180 & -200\end{array}$
${ }^{1} \mathrm{H}$ NMR spectra of compound $\mathbf{5 5}$

${ }^{13} \mathrm{C}$ NMR spectra of compound 55

[^6]
[^0]:

[^1]: $\begin{array}{lllllllllllllllllll}210 & 190 & 170 & 150 & 130 & 110 & & 10 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

