# Supplementary Information for

## Chemo- and Regioselective Cyclization of Diene-tethered Enynes via

## Palladium-Catalyzed Aminomethylamination

Renren Li,<sup>a</sup> Haocheng Zhang,<sup>a</sup> Bangkui Yu,<sup>\*,a</sup> and Hanmin Huang<sup>\*,a</sup>

<sup>a</sup> Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.

\*Corresponding author: <u>hanmin@ustc.edu.cn</u>, <u>ybk@ustc.edu.cn</u>

## **Table of contents**

| 1. | General Information                          | 2  |
|----|----------------------------------------------|----|
| 2. | Optimization of the Reaction Conditions      | 3  |
| 3. | General Procedure for the Catalytic Reaction | 6  |
| 4. | Preparation and Spectral Data of Substrates  | 7  |
| 5. | Products Characterization                    | 17 |
| 6. | Synthetic Transformation of Products         | 30 |
| 7. | Mechanistic Experiments                      | 32 |
| 8. | References                                   | 38 |
| 9. | NMR Spectra of Materials and Products        | 39 |

## 1. General Information

All non-aqueous reactions and manipulations were using standard Schlenk techniques. All solvents before using were dried by standard methods and stored under  $N_2$  atmosphere. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on BRUKER Avence III 400 MHz or 500 MHz NMR spectrometers. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. NMR data are reported as follows: chemical shift, multiplicity, coupling constants (Hz) and integration. Coupling constants (*J*) were reported in Hz and referred to apparent peak multiplications. High resolution mass spectra (HRMS) were recorded on Bruker Micro TOF-QII mass instrument (ESI). All commercially available compounds were purchased from Adamas or Energy Chemical. Aminals used here were known compounds and synthesized according to the reported methods.<sup>3</sup> Flash column chromatography was performed using 200-300 mesh silica gels.

### 2. Optimization of the Reaction Conditions

**Table S1**. Screening of temperature and solvents<sup>*a*</sup>

*N*,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (146.2 mg, 0.36 mmol), Pd(Xantphos)(CH<sub>3</sub>CN)<sub>2</sub>(OTf)<sub>2</sub> (16.0 mg, 5 mol %), 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)benzene **1a** (54.0 mg, 0.30 mmol) and solvent (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at designed temperature in an oil bath for 12 hours, and then cooled to room temperature. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3aa** as yellow oil.

|       | + NBn <sub>2</sub> Pd(Xantphos)(C<br>(5 mc<br>NBn <sub>2</sub> Solvent, T | CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub><br>bl %)<br><sup>- o</sup> C, 12 h | • 🗘  | NBn <sub>2</sub><br>3aa NBn <sub>2</sub> |
|-------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------|------------------------------------------|
| entry | catalyst                                                                  | solvent                                                                                | T/ºC | yield $(\%)^b$                           |
| 1     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | DME                                                                                    | 80   | 30                                       |
| 2     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | DME                                                                                    | 40   | 68                                       |
| 3     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | DME                                                                                    | RT   | 77                                       |
| 4     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | CH <sub>2</sub> Cl <sub>2</sub>                                                        | RT   | 87                                       |
| 5     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | THF                                                                                    | RT   | 44                                       |
| 6     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | CH <sub>3</sub> CN                                                                     | RT   | 76                                       |
| 7     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | anisole                                                                                | RT   | 85                                       |
| 8     | Pd(Xantphos)(CH <sub>3</sub> CN) <sub>2</sub> (OTf) <sub>2</sub>          | toluene                                                                                | RT   | 52                                       |

<sup>*a*</sup>Reaction conditions: **1a** (0.3 mmol), **2a** (0.36 mmol), Pd(Xantphos)(CH<sub>3</sub>CN)<sub>2</sub>(OTf)<sub>2</sub> (5 mol %), solvent (1.0 mL), 12 h. <sup>*b*</sup>Isolated yield.

## Table S2. Screening of catalyst precursors<sup>a</sup>

N,N,N',N'-tetrabenzylmethanediamine **2a** (146.2 mg, 0.36 mmol), catalyst precursor (0.015 mmol, 5 mol %), Xantphos (10.4 mg, 6 mol %), AgOTf (7.7 mg, 10 mol %), 1- (but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)benzene **1a** (54.0 mg, 0.30 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere.

The reaction mixture was stirred at room temperature for 12 hours. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3aa** as yellow oil.

| Ling 1a | + NBn <sub>2</sub>         | <b>[Pd]</b> (5 mol %)<br>Xantphos (6 mol %)<br>AgOTf (10 mol %)<br>DME, RT, 12 h | •       | NBn <sub>2</sub><br>3aa NBn <sub>2</sub> |
|---------|----------------------------|----------------------------------------------------------------------------------|---------|------------------------------------------|
| entry   | [Pd]                       | ligand/[Ag]                                                                      | solvent | yield(%) <sup>b</sup>                    |
| 1       | [Pd(allyl)Cl] <sub>2</sub> | Xantphos/AgOTf                                                                   | DME     | 69                                       |
| 2       | Pd(COD)Cl <sub>2</sub>     | Xantphos/AgOTf                                                                   | DME     | 72                                       |
| 3       | Pd(OAc) <sub>2</sub>       | Xantphos/AgOTf                                                                   | DME     | 23                                       |
| 4       | PdBr <sub>2</sub>          | Xantphos/AgOTf                                                                   | DME     | 65                                       |
| 5       | $Pd_2(dba)_3$              | Xantphos/AgOTf                                                                   | DME     | 28                                       |

<sup>&</sup>lt;sup>a</sup>Reaction conditions: **1a** (0.30 mmol), **2a** (0.36 mmol), [Pd] (5 mol %), Xantphos (6 mol %), AgOTf (10 mol %), DME (1.0 mL), RT, 12 h. <sup>b</sup>Isolated yield.

### Table S3. Screening of silver salts<sup>a</sup>

N,N,N',N'-tetrabenzylmethanediamine **2a** (146.2 mg, 0.36 mmol), Pd(COD)Cl<sub>2</sub> (4.3 mg, 5 mol %), Xantphos (10.4 mg, 6 mol %), silver salt (0.03 mmol, 10 mol %), 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)benzene **1a** (54.0 mg, 0.30 mmol) and DME (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at room temperature for 12 hours. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3aa** as yellow oil.



| 1 |   | Pd(COD)Cl <sub>2</sub> /Xantphos | AgOTf              | DME | 72 |
|---|---|----------------------------------|--------------------|-----|----|
| 2 |   | Pd(COD)Cl <sub>2</sub> /Xantphos | AgOMs              | DME | 42 |
|   | 3 | Pd(COD)Cl <sub>2</sub> /Xantphos | AgBF <sub>4</sub>  | DME | 37 |
| 4 |   | Pd(COD)Cl <sub>2</sub> /Xantphos | AgOAc              | DME | 24 |
| 5 |   | Pd(COD)Cl <sub>2</sub> /Xantphos | AgSbF <sub>6</sub> | DME | 58 |

<sup>*a*</sup>Reaction conditions: **1a** (0.30 mmol), **2a** (0.36 mmol), Pd(COD)Cl<sub>2</sub> (5 mol %), Xantphos (6 mol %), [Ag] (10 mol %), DME (1.0 mL), RT, 12 h. <sup>*b*</sup>Isolated yield.

### 3. General Procedure for the Catalytic Reaction



Aminal 2 (0.36 mmol), Pd(Xantphos)(CH<sub>3</sub>CN)<sub>2</sub>(OTf)<sub>2</sub> (16.0 mg, 5 mol %), dienetethered enyne 1 (0.30 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at room temperature for 12 hours. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3** as yellow oil.

### 4. Preparation and Spectral Data of Substrates

#### 4.1. Preparation of Diene-tethered enyne Derivatives

General Procedure A. Synthesis of diene-tethered envne substrate 1a



Diene-tethered enynes **1a-1m** were synthesized by using enynal as starting materials according to the **General Procedure A**.

**Step 1.** Allyltriphenylphosphonium bromide (4.6 g, 12 mmol) was dissolved in anhydrous THF (20 mL) under N<sub>2</sub> atmosphere at 0 °C. Potassium *tert*-butoxide (1.6 g, 14 mmol) was added slowly and stirred at 0 °C for 30 minutes. 2-(but-3-en-1-yn-1-yl)benzaldehyde (1.6 g, 10 mmol) was added and the resulting mixture was stirred at room temperature until complete conversion of the starting material. The reaction mixture was diluted with petroleum ether (20 mL) and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether) to afford 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)benzene **1a** (1.48 g, 82% yield).

General Procedure B. Synthesis of diene-tethered enyne substrate 1n



**Step 1.** (2-Methylallyl)triphenylphosphonium bromide (4.8 g, 12 mmol) was dissolved in anhydrous THF (20 mL) under N<sub>2</sub> atmosphere at 0 °C. Potassium *tert*-butoxide (1.6 g, 14 mmol) was added slowly and stirred at 0 °C for 30 minutes. 2-(but-3-en-1-yn-1-yl)benzaldehyde (1.6 g, 10 mmol) was added and the resulting mixture was stirred at room temperature until complete conversion of the starting material. The reaction mixture was diluted with petroleum ether (20 mL) and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether) to afford 1-(but-3-en-1-yn-1-yl)-2-(3-methylbuta-1,3-dien-1-yl)benzene **1n** (1.51 g, 78% yield).



General Procedure C. Synthesis of aliphatic diene-tethered enyne substrate 10

**Step 1.** Prop-2-yn-1-amine (1.3 mL, 21 mmol) was dissolved in  $CH_2Cl_2$  (50 mL) and the solution was cooled to 0 °C. To this solution were added triethylamine (7.0 mL, 50 mmol) and then *p*-toluenesulfonyl chloride (3.8 g, 20 mmol). The mixture was stirred at room temperature for overnight. Then the reaction mixture was dissolved in Et<sub>2</sub>O (200 mL), washed with a solution of HCl (1M) and a saturated solution of NH<sub>4</sub>Cl. The organic layer was dried over NaSO<sub>4</sub> and filtered. After evaporation of the solvent under reduced pressure, the desired 4-methyl-*N*-(prop-2-yn-1-yl)benzene-1-sulfonamide was obtained as a white powder (3.76 g, 90%).

**Step 2.** The mixture of copper (I) iodide (68.6 mg, 0.36 mmol) and tetrakis(triphenylphosphine)palladium (208.0 mg, 0.18 mmol) was dissolved in diethylamine (10 mL) under N<sub>2</sub> atmosphere at 0  $^{\circ}$ C. 4-methyl-*N*-(prop-2-yn-1-yl)benzene-1-sulfonamide (3.8 g, 18 mmol) and vinyl bromide (1.0 M in THF, 21.6 mL, 21.6 mmol) were added and the resulting mixture was stirred at 45  $^{\circ}$ C in an oil bath until complete conversion of the starting material. The reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1 to 3/1) to afford 4-methyl-*N*-(pent-4-en-2-yn-1-yl)benzenesulfonamide (3.43 g, 81% yield).

**Step 3.** The mixture of 4-methyl-*N*-(pent-4-en-2-yn-1-yl)benzenesulfonamide (2.4 g, 10 mmol), 5-bromopenta-1,3-diene (2.9 g, 20 mmol), potassium carbonate (5.5 mg, 40 mmol) and tetrabutylammonium iodide (369.4 mg, 1 mmol) were dissolved in CH<sub>3</sub>CN (40 mL). After being stirred at 70 °C for 14 hours, the reaction mixture was cooled to room temperature and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether/ethyl acetate =

30/1 to 10/1) to afford 4-methyl-*N*-(pent-4-en-2-yn-1-yl)-*N*-(penta-2,4-dien-1-yl)benzenesulfonamide **1o** (2.29 g, 76% yield).

General Procedure D. Synthesis of diene-tethered phenylacetylene substrate 1p



**Step 1.** Allyltriphenylphosphonium bromide (4.6 g, 12 mmol) was dissolved in anhydrous THF (20 mL) under N<sub>2</sub> atmosphere at 0 °C. Potassium *tert*-butoxide (1.6 g, 14 mmol) was added slowly and stirred at 0 °C for 30 minutes. 2- (phenylethynyl)benzaldehyde (2.1 g, 10 mmol) was added and the resulting mixture was stirred at room temperature until complete conversion of the starting material. The reaction mixture was diluted with petroleum ether (20 mL) and filtered. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography (petroleum ether) to afford 1-(buta-1,3-dien-1-yl)-2- (phenylethynyl)benzene **1p** (1.77 g, 77% yield).

### 4.2. Substrates Characterization

### 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)benzene (1a)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.48 g, 82% yield (E/Z = 1:2.3). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (d, J = 7.9 Hz, 0.3H), 7.37-7.46 (m, 1.7H), 7.14-

7.29 (m, 2H), 7.03 (d, J = 15.8 Hz, 0.3H), 6.74-6.88 (m, 1H), 6.70 (d, J = 11.5 Hz, 0.7H), 6.54-6.61 (m, 0.3H), 6.35 (t, J = 11.4 Hz, 0.7H), 6.00-6.10 (m, 1H), 5.70-5.77 (m, 1H), 5.51-5.57 (m, 1H), 5.34-5.40 (m, 1H), 5.20-5.23 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  139.2, 138.6, 137.5, 133.4, 132.9, 132.5, 131.7, 131.4, 130.8, 129.6, 129.2, 128.6, 128.1, 127.3, 127.1, 127.0, 124.8, 122.8, 122.1, 120.0, 118.5, 117.4, 93.1, 93.0, 88.7, 88.5; HRMS (ESI) calcd for C<sub>14</sub>H<sub>13</sub> [M+H]<sup>+</sup>: 181.1017, found: 181.1011.

#### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-4-methylbenzene (1b)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.55 g, 80% yield (E/Z = 1:1.6). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 8.1 Hz, 0.38H), 7.44-7.48

(m, 1.62H), 7.26-7.29 (m, 1H), 7.18 (d, J = 15.7 Hz, 0.38H), 6.92-7.04 (m, 1H), 6.86 (d, J = 11.5 Hz, 0.62H), 6.47-6.80 (m, 1H), 6.19-6.30 (m, 1H), 5.88-5.96 (m, 1H), 5.70-5.76 (m, 1H), 5.51-5.58 (m, 1H), 5.36-5.41 (m, 1H), 2.49-2.51 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.6, 137.3, 137.0, 136.4, 135.8, 133.5, 133.2, 132.9, 131.2, 130.8, 130.4, 129.7, 129.4, 129.1, 129.0, 126.9, 124.7, 122.6, 121.9, 119.6, 117.9, 117.4, 92.7, 92.6, 88.9, 88.7, 21.1; HRMS (ESI) calcd for C<sub>15</sub>H<sub>15</sub> [M+H]<sup>+</sup>: 195.1174, found: 195.1160.

### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene (1c)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.64 g, 78% yield (E/Z = 1:3.8). <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30-7.51 (m, 1H), 6.93-7.00 (m, 1.21H), 6.71-6.87 (m, 2.21H), 6.64 (d, *J* = 11.4 Hz, 0.79H), 6.25-6.60 (m, 1H), 6.00-6.11 (m, 0.79H), 5.71-5.79 (m, 1H), 5.53-5.59 (m, 1H), 5.29-5.38 (m, 1H), 5.14-5.21 (m, 1H), 3.79-3.80 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.7, 158.4, 137.7, 133.5, 132.0, 131.6, 130.7, 130.5, 130.4, 129.4, 128.7, 127.2, 126.0, 123.7, 123.0, 119.4, 117.4, 117.3, 116.6, 116.3, 116.2, 115.0, 92.9, 92.8, 88.6, 88.4, 55.5; HRMS (ESI) calcd for C<sub>15</sub>H<sub>15</sub>O [M+H]<sup>+</sup>: 211.1123, found: 211.1116.

### 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)-4-methoxybenzene (1d)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.70 g, 81% yield (E/Z = 1:4). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34-7.40 (m, 1H), 6.99-7.07 (m,

0.4H), 6.90 (s, 0.8H), 6.74-6.85 (m, 2H), 6.66 (d, J = 11.5 Hz, 0.8H), 6.52-6.62 (m, 0.2H), 6.31-6.37 (m, 0.8H), 5.98-6.10 (m, 1H), 5.65-5.73 (m, 1H), 5.47-5.53 (m, 1H), 5.37-5.41 (m, 1H), 5.21-5.24 (m, 1H), 3.79-3.80 (m, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  159.8, 159.3, 140.6, 140.0, 137.4, 134.2, 133.8, 133.3, 131.9, 131.4, 130.8, 129.1, 126.2, 126.2, 120.3, 118.7, 117.5, 115.1, 115.1, 114.7, 114.0, 113.0, 109.4, 91.8, 91.6, 88.7, 88.5, 55.5, 55.4; HRMS (ESI) calcd for C<sub>15</sub>H<sub>15</sub>O [M+H]<sup>+</sup>: 211.1123, found: 211.1118.

### 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)-4,5-dimethoxybenzene (1e)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.63 g, 68% yield (E/Z = 1:1.9). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.02-7.03 (m, 1H),

6.95 (d, J = 11.6 Hz, 0.66H), 6.89-6.90 (m, 1H), 6.65-6.85 (m, 1.34H), 6.52 (dt, J = 16.8 Hz, 10.3 Hz, 0.66H), 6.29 (t, J = 11.2 Hz, 0.34H), 5.99-6.11 (m, 1H), 5.68-5.76 (m, 1H), 5.49-5.55 (m, 1H), 5.32-5.41 (m, 1H), 5.17-5.24 (m, 1H), 3.87-3.93 (m, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  149.8, 149.0, 148.6, 148.1, 137.6, 133.4, 132.9, 132.4, 130.7, 130.7, 129.5, 129.0, 126.4, 126.4, 119.7, 117.6, 117.4, 115.1, 114.7, 114.6, 114.6, 112.4, 106.9, 92.0, 91.7, 88.8, 88.6, 56.1, 56.1, 56.0; HRMS (ESI) calcd for C<sub>16</sub>H<sub>17</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 241.1229, found: 241.1215.

### 5-(but-3-en-1-yn-1-yl)-6-(buta-1,3-dien-1-yl)benzo[d][1,3]dioxole (1f)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.61 g, 72% yield (E/Z = 1:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.98-7.03 (m, 1H), 6.50-6.89 (m,

3.5H), 6.27 (t, J = 11.4 Hz, 0.5H), 5.92-6.09 (m, 3H), 5.66-5.74 (m, 1H), 5.49-5.55 (m, 1H), 5.30-5.39 (m, 1H), 5.16-5.24 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  148.6, 147.8, 147.1, 146.6, 137.5, 134.4, 134.1, 133.2, 130.9, 130.6, 129.8, 128.8, 126.6, 126.6, 120.0, 117.9, 117.4, 116.2, 115.9, 111.8, 111.7, 109.6, 104.2, 101.6, 101.6, 92.0, 91.9, 88.7, 88.5; HRMS (ESI) calcd for C<sub>15</sub>H<sub>13</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 225.0916, found: 225.0908.

### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-4-fluorobenzene (1g)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.56 g, 79% yield (E/Z = 1:1.2). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (dd, J = 8.7 Hz, 5.8 Hz, 0.45H), 7.31 (dd,

*J* = 8.4 Hz, 6.0 Hz, 0.55H), 7.10-7.16 (m, 1H), 6.95-7.01 (m, 1.45H), 6.66-6.80 (m, 1H), 6.61 (d, *J* = 11.5 Hz, 0.55H), 6.50-6.60 (m, 0.45H), 6.33 (t, *J* = 11.4 Hz, 0.55H), 5.99-6.10 (m, 1H), 5.72-5.80 (m, 1H), 5.55-5.62 (m, 1H), 5.33-5.41 (m, 1H), 5.20-5.25 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 160.6 (d, *J*<sub>C-F</sub> = 246 Hz), 160.4 (d, *J*<sub>C-F</sub> = 246 Hz), 137.3, 135.4 (d, *J*<sub>C-F</sub> = 3 Hz), 135.0 (d, *J*<sub>C-F</sub> = 3 Hz), 133.0, 131.7, 131.1, 131.1, 131.1, 129.7, 128.1, 127.8, 126.4 (d, *J*<sub>C-F</sub> = 8 Hz), 124.4 (d, *J*<sub>C-F</sub> = 10 Hz), 123.5 (d, *J*<sub>C-F</sub> = 10 Hz), 120.3, 118.9 (d, *J*<sub>C-F</sub> = 23 Hz), 118.8 (d, *J*<sub>C-F</sub> = 23 Hz), 118.5, 117.0, 116.2 (d, *J*<sub>C-F</sub> *F* = 22 Hz), 115.4 (d, *J*<sub>C-F</sub> = 21 Hz), 93.8, 93.7, 87.5 (d, *J*<sub>C-F</sub> = 3 Hz), 87.3 (d, *J*<sub>C-F</sub> = 3 Hz); <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -114.6, -114.9; HRMS (ESI) calcd for C<sub>14</sub>H<sub>12</sub>F [M+H]<sup>+</sup>: 199.0923, found: 199.0912.

### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-5-fluorobenzene (1h)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.49 g, 75% yield (E/Z = 1:1.1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56-7.63 (m, 1H), 7.26-7.45 (m, 1H), 7.16 (d,

J = 15.7 Hz, 0.48H), 7.04-7.13 (m, 1H), 6.90-7.03 (m, 1H), 6.81 (d, J = 11.6 Hz, 0.52H) 6.53-6.80 (m, 1H), 6.17-6.28 (m, 1H), 5.88-5.96 (m, 1H), 5.70-5.77 (m, 1H), 5.57-5.63 (m, 1H), 5.44-5.48 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.5 (d,  $J_{C-F} = 247$  Hz), 160.9 (d,  $J_{C-F} = 248$  Hz), 141.3 (d,  $J_{C-F} = 8$  Hz), 140.9 (d,  $J_{C-F} = 8$  Hz), 137.1, 134.6 (d,  $J_{C-F} = 9$  Hz), 134.1 (d,  $J_{C-F} = 9$  Hz), 132.8, 132.6, 132.4, 129.8 (d,  $J_{C-F} = 3$  Hz), 128.0, 127.9, 127.1, 121.1, 119.6, 118.9, 118.2, 117.2, 116.5, 116.3, 114.7 (d,  $J_{C-F} = 23$ Hz), 114.3 (d,  $J_{C-F} = 22$  Hz), 111.2 (d,  $J_{C-F} = 23$  Hz), 92.7, 92.6, 87.7, 87.5; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -111.0, -111.3; HRMS (ESI) calcd for C<sub>14</sub>H<sub>12</sub>F [M+H]<sup>+</sup>: 199.0923, found: 199.0913.

### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-6-fluorobenzene (1i)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.45 g, 73% yield (E/Z = 1.5:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15-7.27 (m, 2H), 6.98-7.11 (m, 1.6H), 6.83 (d, J =

16.0 Hz, 0.6H), 6.34-6.59 (m, 2H), 5.95-6.10 (m, 0.8H), 5.69-5.79 (m, 1H), 5.52-5.60 (m, 1H), 5.33-5.41 (m, 1H), 5.19-5.25 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.8 (d, *J*<sub>*C*-*F*</sub> = 249 Hz), 158.3 (d, *J*<sub>*C*-*F*</sub> = 246 Hz), 138.3, 136.5, 136.3, 134.3, 134.2, 128.9 (d, *J*<sub>*C*-*F*</sub> = 3 Hz), 128.4 (d, *J*<sub>*C*-*F*</sub> = 9 Hz), 128.1 (d, *J*<sub>*C*-*F*</sub> = 3 Hz), 127.7 (d, *J*<sub>*C*-*F*</sub> = 10 Hz), 127.6, 127.5, 127.0 (d, *J*<sub>*C*-*F*</sub> = 17 Hz), 126.4 (d, *J*<sub>*C*-*F*</sub> = 13 Hz), 125.4, 124.9 (d, *J*<sub>*C*-*F*</sub> = 5 Hz), 124.0 (d, *J*<sub>*C*-*F*</sub> = 6 Hz), 122.0, 119.7, 119.2, 117.2, 116.2 (d, *J*<sub>*C*-*F*</sub> = 23 Hz), 115.8 (d, *J*<sub>*C*-*F*</sub> = 23 Hz), 93.8, 93.2, 88.1, 88.0; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -112.0, -112.9; HRMS (ESI) calcd for C<sub>14</sub>H<sub>12</sub>F [M+H]<sup>+</sup>: 199.0923, found: 199.0912.

## 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)-4,5-difluorobenzene (1j)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.40 g, 65% yield (E/Z = 1:1.5). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.31 (dd, J = 11.6 Hz, 8.0 Hz, 0.4H), 7.16-

7.27 (m, 1.6H), 6.90 (d, J = 15.6 Hz, 0.4H), 6.66-6.75 (m, 1H), 6.50-6.58 (m, 1H), 6.35 (t, J = 11.4 Hz, 0.6H), 5.97-6.08 (m, 1H), 5.72-5.80 (m, 1H), 5.56-5.62 (m, 1H), 5.37-5.46 (m, 1H), 5.25-5.31 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  149.7 (dd,  $J_{C-F} = 250$  Hz, 13 Hz), 148.9 (dd,  $J_{C-F} = 250$  Hz, 13 Hz), 148.2 (dd,  $J_{C-F} = 249$  Hz, 14 Hz), 147.9 (dd,  $J_{C-F} = 248$  Hz, 13 Hz), 136.9, 136.4 (dd,  $J_{C-F} = 6$  Hz, 4 Hz), 136.2 (dd,  $J_{C-F} = 6$  Hz, 4 Hz), 132.5, 132.5, 132.2, 132.1, 128.9, 127.8, 127.0, 121.4, 121.1, 120.9, 120.8, 119.6, 119.4 (dd,  $J_{C-F} = 8$  Hz, 4 Hz), 118.5 (d,  $J_{C-F} = 7$  Hz), 118.2 (d,  $J_{C-F} = 18$  Hz), 116.9, 113.2 (d,  $J_{C-F} = 18$  Hz), 93.4, 93.4, 86.6, 86.4; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -135.3, -135.8, -135.8, -138.3, -138.4, -138.8, -138.8; HRMS (ESI) calcd for C<sub>14</sub>H<sub>11</sub>F<sub>2</sub> [M+H]<sup>+</sup>:217.0823, found: 217.0821.

#### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-4-chlorobenzene (1k)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.65 g, 77% yield (E/Z = 1:6.1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56-7.65 (m, 1H), 7.36-7.47 (m, 2H),

7.11 (d, J = 15.7 Hz, 0.14H), 6.83-7.00 (m, 1H), 6.77 (d, J = 11.5 Hz, 0.86H), 6.67-6.74 (m, 0.14H), 6.51 (t, J = 11.4 Hz, 0.86H), 6.15-6.26 (m, 1H), 5.88-5.96 (m, 1H), 5.71-5.78 (m, 1H), 5.52-5.59 (m, 1H), 5.39-5.43 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.6, 137.3, 137.1, 133.2, 132.9, 132.8, 132.7, 132.5, 132.3, 132.2, 132.0, 131.8, 130.6, 129.6, 128.8, 128.2, 127.9, 127.8, 125.9, 124.3, 123.4, 120.7, 119.0, 117.0, 94.0, 94.0, 87.4, 87.2; HRMS (ESI) calcd for C<sub>14</sub>H<sub>12</sub>Cl [M+H]<sup>+</sup>: 215.0628, found: 215.0620.

### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-5-chlorobenzene (11)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.69 g, 79% yield (E/Z = 1:1.9). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (d, J = 2.0 Hz, 0.35H), 7.33-7.38

(m, 1.65H), 7.12-7.20 (m, 1H), 6.94 (d, J = 15.7 Hz, 0.35H), 6.69-6.86 (m, 1H), 6.60 (d, J = 11.5 Hz, 0.65H), 6.34-6.58 (m, 1H), 5.98-6.09 (m, 1H), 5.70-5.79 (m, 1H), 5.53-5.60 (m, 1H), 5.38-5.45 (m, 1H), 5.25-5.30 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  140.7, 140.2, 137.1, 134.6, 134.0, 133.9, 133.5, 132.8, 132.7, 132.5, 129.5, 129.4, 127.7, 127.4, 127.3, 124.8, 121.3, 121.2, 120.5, 119.6, 117.2, 93.8, 93.7, 87.7, 87.5; HRMS (ESI) calcd for C<sub>14</sub>H<sub>12</sub>Cl [M+H]<sup>+</sup>: 215.0628, found: 215.0629.

### 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-4-(trifluoromethyl)benzene (1m)



The title compound was prepared according to the **general procedure A** and purified by column chromatography to give yellow oil, 1.84 g, 74% yield (E/Z = 1:1.1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65-7.72 (m, 1.48H), 7.47-7.52 (m,

1.52H), 7.01 (d, J = 15.7 Hz, 0.48H), 6.88-6.95 (m, 0.52H), 6.67-6.77 (m, 1H), 6.40-6.63 (m, 1H), 6.00-6.11 (m, 1H), 5.75-5.83 (m, 1H), 5.58-5.64 (m, 1H), 5.42-5.47 (m, 1H), 5.29-5.31 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  142.4, 141.7, 137.1, 133.5, 133.3, 132.7, 129.9, 129.8 (d,  $J_{C-F} = 4$  Hz), 129.5, 129.3 (d,  $J_{C-F} = 4$  Hz), 129.2 (d,  $J_{C-F} = 7$  Hz), 128.1, 127.8, 125.1, 125.0, 124.5 (d,  $J_{C-F} = 4$  Hz), 123.5, 122.8, 122.5, 121.5, 120.6 (q,  $J_{C-F} = 271$  Hz), 120.2, 116.9, 116.9, 94.3, 94.2, 87.2, 87.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.8, -62.8; HRMS (ESI) calcd for C<sub>15</sub>H<sub>12</sub>F<sub>3</sub> [M+H]<sup>+</sup>: 249.0891, found: 249.0873.

#### 1-(but-3-en-1-yn-1-yl)-2-(3-methylbuta-1,3-dien-1-yl)benzene (1n)



The title compound was prepared according to the **general procedure B** and purified by column chromatography to give yellow oil, 1.51 g, 78% yield (E/Z = 1:1.8). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56-7.77 (m, 2H), 7.34-7.49 (m, 2H), 7.22 (d, J = 15.7

Hz, 0.36H), 6.93-7.09 (m, 1H), 6.89 (d, J = 11.4 Hz, 0.64H), 6.71-6.80 (m, 0.36H), 6.54 (t, J = 11.4 Hz, 0.64H), 5.54-5.61 (m, 2H), 5.48-5.51 (m, 1H), 5.40-5.43 (m, 1H), 2.18-2.22 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  139.1, 138.4, 137.6, 133.4, 132.8, 132.4, 131.6, 131.2, 130.9, 129.5, 129.2, 128.5, 127.9, 127.3, 127.1, 127.0, 124.8, 122.8, 122.1, 122.0, 122.0, 118.4, 95.6, 95.5, 87.1, 87.0, 23.6; HRMS (ESI) calcd for C<sub>15</sub>H<sub>15</sub> [M+H]<sup>+</sup>: 195.1174, found: 195.1172.

### 4-methyl-*N*-(pent-4-en-2-yn-1-yl)-*N*-(penta-2,4-dien-1-yl)benzenesulfonamide (10)



The title compound was prepared according to the **general procedure C** and purified by column chromatography to give yellow oil, 2.29 g, 76% yield (E/Z = 9:1). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72-7.75 (m, 2H), 7.28-7.30 (m, 2H), 6.59-6.68 (m,

0.1H), 6.19-6.36 (m, 1.9H), 5.47-5.63 (m, 2H), 5.30-5.39 (m, 2H), 5.10-5.23 (m, 2H), 4.18 (d, J = 1.7 Hz, 2H), 3.96 (d, J = 7.5 Hz, 0.2H), 3.84 (d, J = 6.8 Hz, 1.8H), 2.41-2.41 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 136.0, 135.9, 135.5, 134.5, 131.0, 129.5, 129.3, 127.9, 129.7, 127.4, 127.1, 124.6, 120.1, 118.4, 116.3, 84.4, 82.6, 82.6, 48.3, 43.4, 36.8, 36.7, 21.6; HRMS (ESI) calcd for C<sub>17</sub>H<sub>20</sub>NO<sub>2</sub>S [M+H]<sup>+</sup>: 302.1215, found:302.1212.

#### 1-(buta-1,3-dien-1-yl)-2-(phenylethynyl)benzene (1p)



The title compound was prepared according to the **general procedure D** and purified by column chromatography to give yellow oil, 1.77 g, 77% yield (E/Z = 1:1.4). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49-7.57 (m, 3.42H), 7.38 (d, J = 7.6 Hz, 0.58H),

7.26-7.35 (m, 3.42H), 7.14-7.24 (m, 2H), 6.76-6.91 (m, 1.58H), 6.53-6.62 (m, 0.42H), 6.37 (t, J = 11.4 Hz, 0.58H), 5.34-5.41 (m, 1H), 5.19-5.23 (m, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  139.2, 138.6, 137.6, 133.4, 132.8, 132.4, 131.7, 131.7, 131.7, 131.4, 130.9, 129.6, 129.2, 128.6, 128.5, 128.5, 128.5, 128.4, 128.0, 127.4, 127.2, 124.8, 123.4, 122.8, 122.1, 120.1, 118.5, 94.4, 94.3, 88.2, 88.0; HRMS (ESI) calcd for C<sub>18</sub>H<sub>15</sub> [M+H]<sup>+</sup>:231.1174, found: 231.1176.

### 5. Products Characterization

## (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-2-vinyl-1*H*-inden-1-yl)prop-2en-1-amine (3aa)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 153.0 mg, 87% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (d, *J* = 7.5 Hz, 1H), 7.25-7.34 (m, 16H), 7.18-7.23 (m, 6H), 7.11-7.14 (m, 1H), 6.85 (dd, *J* = 17.6 Hz, 11.2 Hz, 1H),

5.88-5.96 (m, 1H), 5.47 (dd, J = 17.2 Hz, 1.2 Hz, 1H), 5.15-5.22 (m, 2H), 4.19 (d, J = 9.2 Hz, 1H), 3.51-3.59 (m, 10H), 2.96-3.06 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.0, 144.9, 144.7, 139.8, 139.6, 138.6, 134.0, 130.3, 129.7, 129.4, 129.0, 128.3, 127.1, 126.9, 125.8, 123.6, 121.2, 116.8, 59.0, 57.7, 55.3, 52.7, 49.2; HRMS (ESI) calcd for C<sub>43</sub>H<sub>43</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 587.3426, found: 587.3431.

# (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl-*d*<sub>2</sub>)-2-vinyl-1*H*-inden-1-yl)prop-2en-1-amine (3aa-*d*<sub>2</sub>)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 137.7 mg, 78% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (d, *J* = 7.6 Hz, 1H), 7.18-7.34 (m, 22H), 7.11-7.14 (m, 1H), 6.84 (dd, *J* = 17.6 Hz, 11.2 Hz, 1H), 5.89-5.96 (m, 1H),

5.47 (dd, J = 17.2 Hz, 1.2 Hz, 1H), 5.15-5.21 (m, 2H), 4.19 (d, J = 9.2 Hz, 1H), 3.51-3.58 (m, 8H), 2.96-3.06 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.0, 144.9, 144.7, 139.8, 139.6, 138.5, 134.0, 130.3, 129.7, 129.4, 129.0, 128.3, 127.1, 126.9, 125.7, 123.6, 121.2, 116.8, 58.9, 57.7, 55.3, 52.7; HRMS (ESI) calcd for C<sub>43</sub>H<sub>41</sub>D<sub>2</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 589.3552, found: 589.3547.

(*E*)-3-(3-((bis(4-methylbenzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(4-methylbenzyl)prop-2-en-1-amine (3ab)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 152.3 mg, 79% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 (d, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 10H), 7.06-7.14 (m, 9H), 6.85 (dd, *J* = 17.6 Hz, 11.2 Hz, 1H), 5.88-5.95 (m, 1H), 5.46 (dd, *J* = 17.2 Hz, 1.6 Hz, 1H), 5.13-5.19 (m, 2H), 4.18 (d, *J* = 9.2 Hz, 1H), 3.43-3.54 (m, 10H), 2.94-3.04 (m, 2H), 2.31 (s,

6H), 2.31 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  146.1, 144.8, 144.7, 138.8, 136.7, 136.5, 136.5, 136.4, 134.0, 130.4, 129.8, 129.3, 129.0, 126.8, 125.7, 123.6, 121.3, 116.6, 58.5, 57.3, 55.1, 52.8, 49.1, 21.3, 21.2; HRMS (ESI) calcd for C<sub>47</sub>H<sub>51</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 643.4052, found: 643.4048.

# (*E*)-3-(3-((bis(4-(*tert*-butyl)benzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(4-(*tert*-butyl)benzyl)prop-2-en-1-amine (3ac)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 194.5 mg, 80% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (d, *J* = 7.5 Hz, 1H), 7.27-7.32 (m, 16H), 7.20-7.23 (m, 2H), 7.11-7.14 (m, 1H), 6.87 (dd, *J* = 17.5 Hz, 11.1 Hz, 1H), 5.91-5.98 (m, 1H), 5.48 (dd, *J* = 17.6 Hz, 1.2 Hz, 1H), 5.17-5.23 (m, 2H), 4.18 (d, *J* = 9.1 Hz, 1H), 3.46-3.56 (m, 10H), 2.98-3.08 (m, 2H), 1.29-

1.30 (m, 36H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  149.8, 149.6, 146.1, 144.8, 144.7, 138.8, 136.8, 136.6, 133.9, 130.6, 129.8, 129.0, 128.6, 126.8, 125.7, 125.1, 125.1, 123.6, 121.4, 116.7, 58.5, 57.3, 55.4, 52.8, 49.4, 34.6, 34.6, 31.6; HRMS (ESI) calcd for C<sub>59</sub>H<sub>75</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 811.5930, found: 811.5936.

(*E*)-3-(3-((bis(4-fluorobenzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(4-fluorobenzyl)prop-2-en-1-amine (3ad)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 160.0 mg, 81% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36-7.46 (m, 5H), 7.11-7.23 (m, 7H), 7.04-7.08 (m, 4H), 6.95-7.01 (m, 4H), 6.84 (dd, *J* = 17.6 Hz, 11.0 Hz, 1H), 5.90-5.97 (m, 1H), 5.46 (dd, *J* = 17.6 Hz, 1.4 Hz, 1H), 5.17-5.25 (m, 2H), 4.19 (d, *J* = 9.1 Hz, 1H), 3.62-3.65 (m, 10H), 3.01-3.11 (m, 2H); <sup>13</sup>C NMR (100

MHz, CDCl<sub>3</sub>)  $\delta$  160.3 (d,  $J_{C-F} = 245$  Hz), 160.3 (d,  $J_{C-F} = 245$  Hz), 145.9, 144.6 (d,  $J_{C-F} = 29$  Hz), 138.3, 134.2, 131.8 (d,  $J_{C-F} = 4$  Hz), 131.1 (d,  $J_{C-F} = 5$  Hz), 130.1, 129.5, 128.7 (d,  $J_{C-F} = 8$  Hz), 128.4 (d,  $J_{C-F} = 8$  Hz), 126.9, 126.3 (d,  $J_{C-F} = 14$  Hz), 126.0 (d,  $J_{C-F} = 14$  Hz), 125.8, 124.0 (d,  $J_{C-F} = 3$  Hz), 121.1, 116.9, 115.1 (d,  $J_{C-F} = 22$  Hz), 55.7, 52.7, 51.3, 50.4, 49.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -118.2, -118.3; HRMS (ESI) calcd for C<sub>43</sub>H<sub>39</sub>F<sub>4</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 659.3049, found: 659.3047.

# (*E*)-3-(3-((bis(3-fluorobenzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(3-fluorobenzyl)prop-2-en-1-amine (3ae)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 159.6 mg, 81% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (d, *J* = 7.5 Hz, 1H), 7.20-7.29 (m, 6H), 7.13-7.17 (m, 1H), 7.03-7.10 (m, 8H), 6.82-6.94 (m, 5H), 5.85-5.93 (m, 1H), 5.46 (dd, *J* = 17.6 Hz, 1.4 Hz, 1H), 5.16-5.23 (m, 2H), 4.19 (d, *J* = 9.0 Hz, 1H), 3.49-3.57 (m, 10H), 2.95-3.06 (m, 2H); <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>)  $\delta$  161.9 (d,  $J_{C-F} = 244$  Hz), 161.8 (d,  $J_{C-F} = 244$  Hz), 145.8, 145.1, 144.5, 142.4

(d,  $J_{C-F} = 7$  Hz), 142.0 (d,  $J_{C-F} = 7$  Hz), 138.1, 134.4, 129.8 (d,  $J_{C-F} = 6$  Hz), 129.7 (d,  $J_{C-F} = 5$  Hz), 129.7, 129.5, 127.1, 126.0, 124.8 (d,  $J_{C-F} = 2$  Hz), 124.3 (d,  $J_{C-F} = 3$  Hz), 123.7, 120.9, 117.1, 115.9 (d,  $J_{C-F} = 21$  Hz), 115.4 (d,  $J_{C-F} = 21$  Hz), 114.0 (d,  $J_{C-F} = 21$  Hz), 113.8, 58.6 (d,  $J_{C-F} = 2$  Hz), 57.3 (d,  $J_{C-F} = 2$  Hz), 55.4, 52.6, 49.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -113.5, -113.6; HRMS (ESI) calcd for C<sub>43</sub>H<sub>39</sub>F<sub>4</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 659.3049, found: 659.3043.

# (*E*)-3-(3-((bis(2-fluorobenzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(2-fluorobenzyl)prop-2-en-1-amine (3af)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 150.2 mg, 76% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (d, *J* = 7.5 Hz, 1H), 7.21-7.27 (m, 10H), 7.13-7.17 (m, 1H), 6.93-7.00 (m, 8H), 6.81 (dd, *J* = 17.1 Hz, 11.2 Hz, 1H), 5.84-5.91 (m, 1H), 5.45 (dd, *J* = 17.6 Hz, 1.5 Hz, 1H), 5.15-5.21 (m, 2H), 4.19 (d, *J* = 9.0 Hz, 1H), 3.53 (s, 2H), 3.44-3.49 (m, 8H), 2.93-3.03 (m, 2H); <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  160.9 (d,  $J_{C-F} = 244$  Hz), 160.8 (d,  $J_{C-F} = 243$  Hz), 145.9, 144.9, 144.6, 138.4, 135.3, 135.1, 135.1, 130.8, 130.7, 130.3, 130.3, 130.0, 129.6, 127.0, 125.9, 123.7, 121.0, 116.9, 115.0 (d,  $J_{C-F} = 21$  Hz), 115.0 (d,  $J_{C-F} = 21$  Hz), 58.1, 56.9, 55.1, 52.6, 49.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -115.8, -116.1; HRMS (ESI) calcd for C<sub>43</sub>H<sub>39</sub>F<sub>4</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 659.3049, found: 659.3054.

(*E*)-3-(3-((bis(4-chlorobenzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(4-chlorobenzyl)prop-2-en-1-amine (3ag)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 141.2 mg, 65% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (d, *J* = 7.6 Hz, 1H), 7.19-7.27 (m, 18H), 7.15-7.17 (m, 1H), 6.80 (dd, *J* = 17.2 Hz, 10.8 Hz, 1H), 5.82-5.92 (m, 1H), 5.44 (dd, *J* = 17.6 Hz, 1.6 Hz, 1H), 5.13-5.21 (m, 2H), 4.18 (d, *J* = 8.8 Hz, 1H), 3.44-3.53 (m, 10H), 2.92-3.02 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 

145.9, 145.0, 144.5, 138.2, 138.1, 137.8, 134.3, 132.9, 132.7, 130.6, 130.1, 129.8, 129.5, 128.5, 127.1, 126.0, 123.7, 120.9, 117.0, 58.3, 57.0, 55.2, 52.6, 49.2; HRMS (ESI) calcd for C<sub>43</sub>H<sub>39</sub>Cl<sub>4</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 723.1867, found: 723.1865.

# (*E*)-3-(3-((bis(4-bromobenzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(4-bromobenzyl)prop-2-en-1-amine (3ah)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 205.8 mg, 76% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38-7.41 (m, 9H), 7.13-7.26 (m, 11H), 6.80 (dd, *J* = 17.6 Hz, 11.1 Hz, 1H), 5.81-5.88 (m, 1H), 5.44 (dd, *J* = 17.5 Hz, 1.2 Hz, 1H), 5.12-5.21 (m, 2H), 4.17 (d, *J* = 9.1 Hz, 1H), 3.42-3.53 (m, 10H), 2.92-3.02 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.8, 145.0, 144.4,

138.6, 138.3, 138.1, 134.3, 131.4, 130.9, 130.6, 130.5, 129.7, 129.5, 127.0, 126.0, 123.7, 121.0, 120.9, 120.8, 117.0, 58.3, 57.0, 55.1, 52.6, 49.2; HRMS (ESI) calcd for C<sub>43</sub>H<sub>38</sub>Br<sub>4</sub>N<sub>2</sub>Na [M+Na]<sup>+</sup>: 920.9661, found: 920.9645.

(*E*)-3-(3-((bis(4-(trifluoromethyl)benzyl)amino)methyl)-2-vinyl-1*H*-inden-1-yl)-*N*,*N*-bis(4-(trifluoromethyl)benzyl)prop-2-en-1-amine (3ai)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 233.8 mg, 91% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52-7.54 (m, 8H), 7.41-7.44 (m, 9H), 7.24-7.29 (m, 1H), 7.14-7.21 (m, 2H), 6.82 (dd, *J* = 17.6 Hz, 11.2 Hz, 1H), 5.86-5.93 (m, 1H), 5.46 (dd, *J* = 17.6 Hz, 1.2 Hz, 1H), 5.16-5.23 (m, 2H), 4.18 (d, *J* = 8.8 Hz, 1H), 3.55-3.63 (m, 10H), 2.96-3.07 (m, 2H); <sup>13</sup>C NMR

(100 MHz, CDCl<sub>3</sub>)  $\delta$  145.8, 145.2, 144.4, 143.7, 143.4, 138.0, 134.5, 129.5, 129.4, 129.2 (q,  $J_{C-F} = 32$  Hz), 128.9, 127.1, 126.1, 125.3 (q,  $J_{C-F} = 4$  Hz), 125.3 (q,  $J_{C-F} = 4$  Hz), 123.8, 123.0 (q,  $J_{C-F} = 271$  Hz), 123.0 (q,  $J_{C-F} = 271$  Hz), 120.9, 117.2, 58.8, 57.4, 55.5, 52.6, 49.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.4; HRMS (ESI) calcd for C<sub>47</sub>H<sub>39</sub>F<sub>12</sub>N<sub>2</sub> [M+H]<sup>+</sup>:859.2922, found: 859.2924.

## (*E*)-*N*-benzyl-3-(3-((benzyl((*R*)-1-phenylethyl)amino)methyl)-2-vinyl-1*H*-inden-1yl)-*N*-((*R*)-1-phenylethyl)prop-2-en-1-amine (3aj)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 143.7 mg, 78% yield, 3:2 dr. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29-7.33 (m, 3H), 7.10-7.25 (m, 20H), 7.01-7.05 (m, 1H), 6.69-6.78 (m, 1H), 5.77-5.81 (m, 1H), 5.36 (d, *J* = 17.5 Hz, 1H), 5.04-5.10 (m, 2H), 4.07-4.10 (m, 1H), 3.84-3.91 (m, 2H), 3.60-3.63 (m, 1H), 3.35-3.51 (m, 5H), 2.96-3.06 (m, 1H), 2.82-2.91 (m, 1H), 1.39 (d, *J* 

= 6.9 Hz, 3H), 1.27 (d, J = 6.8 Hz, 1.8H), 1.24 (d, J = 6.8 Hz, 1.2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>);  $\delta$  146.1, 146.1, 144.8, 144.8, 144.7, 144.1, 143.9, 142.3, 142.3, 140.8, 140.8, 140.4, 140.4, 138.8, 138.7, 133.5, 130.7, 129.7, 129.6, 129.3, 129.2, 128.7, 128.6, 128.6, 128.2, 128.2, 128.2, 128.0, 127.9, 127.9, 126.9, 126.9, 126.8, 126.8, 126.7, 126.7, 126.7, 127.9, 127.9, 126.9, 126.9, 126.8, 126.8, 126.7, 126.7, 126.7, 127.9, 127.9, 126.9, 126.9, 126.8, 126.8, 126.7, 126.7, 126.7, 126.7, 126.7, 126.7, 126.7, 126.8, 126.8, 126.8, 126.8, 126.7, 126.7, 126.7, 126.8, 126.8, 126.8, 126.8, 126.8, 126.7, 126.7, 126.8, 126.8, 126.8, 126.7, 126.7, 126.8, 126.8, 126.8, 126.8, 126.7, 126.7, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.7, 126.7, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.7, 126.7, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.8, 126.

125.7, 125.6, 123.6, 123.5, 121.3, 121.2, 116.6, 116.6, 57.7, 57.6, 56.9, 56.8, 54.2, 54.1, 53.5, 53.5, 52.7, 52.7, 51.3, 51.3, 44.6, 44.5, 16.2, 15.6, 12.9, 12.8; HRMS (ESI) calcd for C<sub>45</sub>H<sub>47</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 615.3739, found: 615.3747.

## (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5-methyl-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3ba)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 140.1 mg, 78% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.17-7.34 (m, 21H), 7.08 (d, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.84 (dd, *J* = 17.4 Hz, 11.0 Hz,

1H), 5.86-5.93 (m, 1H), 5.45 (dd, J = 17.5 Hz, 1.5 Hz, 1H), 5.15-5.21 (m, 2H), 4.16 (d, J = 9.1 Hz, 1H), 3.52-3.54 (m, 10H), 2.95-3.05 (m, 2H), 2.34 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  145.1, 144.9, 143.1, 139.8, 139.7, 138.5, 136.4, 134.3, 130.0, 129.7, 129.5, 129.0, 128.3, 127.1, 126.9, 126.5, 123.2, 121.9, 116.5, 58.9, 57.7, 55.3, 52.4, 48.9, 21.6; HRMS (ESI) calcd for C<sub>44</sub>H<sub>45</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 601.3583, found: 601.3582.

## (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5-methoxy-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3ca)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 149.9 mg, 81% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33-7.34 (m, 8H), 7.25-7.30 (m, 8H), 7.20-7.23 (m, 4H), 7.04-7.09 (m,

2H), 6.84 (dd, J = 17.5 Hz, 11.2 Hz, 1H), 6.68 (d, J = 8.1 Hz, 1H), 5.86-5.93 (m, 1H), 5.47 (d, J = 17.5 Hz, 1H), 5.13-5.19 (m, 2H), 4.14 (d, J = 9.1 Hz, 1H), 3.80 (s, 3H), 3.50-3.58 (m, 10H), 2.95-3.06 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.3, 146.1, 146.0, 139.8, 139.7, 138.4, 138.2, 134.4, 129.9, 129.5, 129.4, 129.0, 128.3, 128.3, 127.1, 126.9, 124.0, 116.9, 112.7, 106.0, 59.0, 57.7, 55.7, 55.3, 52.1, 49.2; HRMS (ESI) calcd for C<sub>44</sub>H<sub>45</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 617.3532, found: 617.3536.

# (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-6-methoxy-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3da)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 136.9 mg, 74% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.38 (m, 9H), 7.24-7.30 (m, 8H), 7.16-7.22 (m, 4H), 6.78-6.89 (m,

3H), 5.88-5.95 (m, 1H), 5.40 (d, J = 17.4 Hz, 1H), 5.18 (dd, J = 15.2 Hz, 9.2 Hz, 1H), 5.10 (d, J = 11.2 Hz, 1H), 4.16 (d, J = 9.1 Hz, 1H), 3.65 (s, 3H), 3.50-3.55 (m, 10H), 2.96-3.05 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  158.8, 148.0, 142.9, 139.8, 139.6, 138.4, 137.7, 134.4, 130.3, 129.7, 129.4, 128.9, 128.3, 127.1, 126.9, 121.8, 115.4, 112.9, 109.5, 58.9, 57.7, 55.5, 55.2, 52.7, 49.3; HRMS (ESI) calcd for C<sub>44</sub>H<sub>45</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 617.3532, found: 617.3533.

# (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5,6-dimethoxy-2-vinyl-1*H*-inden-1-yl)prop-2-en-1-amine (3ea)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 141.9 mg, 73% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.36 (m, 8H), 7.18-7.29 (m, 12H), 7.05 (s, 1H), 6.82 (dd, *J* =

17.5 Hz, 11.1 Hz, 1H), 6.76 (s, 1H), 5.88-5.95 (m, 1H), 5.41 (d, J = 17.4 Hz, 1H), 5.10-5.20 (m, 2H), 4.14 (d, J = 9.2 Hz, 1H), 3.87 (s, 3H), 3.65 (s, 3H), 3.49-3.60 (m, 10H), 2.96-3.06 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.3, 148.0, 143.8, 139.8, 139.8, 138.5, 138.4, 137.1, 134.8, 130.2, 129.4, 129.4, 128.8, 128.4, 128.3, 127.1, 126.9, 115.3, 107.0, 104.9, 58.9, 57.6, 56.3, 55.9, 55.2, 52.7, 49.3; HRMS (ESI) calcd for C<sub>45</sub>H<sub>47</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 647.3638, found: 647.3636.

(*E*)-*N*,*N*-dibenzyl-3-(7-((dibenzylamino)methyl)-6-vinyl-5*H*-indeno[5,6*d*][1,3]dioxol-5-yl)prop-2-en-1-amine (3fa)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 145.6 mg, 77% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.18-7.34 (m, 20H), 6.93 (s, 1H), 6.78 (dd, *J* = 17.5 Hz, 11.1 Hz, 1H),

6.70 (s, 1H), 5.84-5.96 (m, 3H), 5.39 (d, J = 17.5 Hz, 1H), 5.09-5.18 (m, 2H), 4.07 (d, J = 9.1 Hz, 1H), 3.47-3.66 (m, 10H), 2.94-3.08 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.9, 146.5, 144.1, 140.2, 139.8, 139.5, 138.6, 138.3, 134.1, 130.2, 129.4, 128.9, 128.3, 128.3, 127.1, 126.9, 115.5, 105.0, 102.2, 101.0, 58.9, 57.7, 55.2, 52.4, 49.2; HRMS (ESI) calcd for C<sub>44</sub>H<sub>43</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup>: 631.3325, found: 631.3330.

## (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5-fluoro-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3ga)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 155.7 mg, 86% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27-7.33 (m, 15H), 7.18-7.25 (m, 5H), 7.07-7.13 (m, 2H), 6.77-6.88 (m, 2H), 5.86-5.93 (m, 1H), 5.48

(d, *J* = 17.4 Hz, 1H), 5.12-5.22 (m, 2H), 4.13 (d, *J* = 9.2 Hz, 1H), 3.50-3.58 (m, 10H), 2.95-3.06 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 161.8 (d, *J*<sub>C-F</sub> = 240 Hz), 146.7, 146.5 (d, *J*<sub>C-F</sub> = 9 Hz), 141.2, 141.2, 139.8, 139.4, 137.9 (d, *J*<sub>C-F</sub> = 3 Hz), 133.6, 130.5, 129.4, 128.9, 128.4, 128.3, 127.2, 126.9, 124.2 (d, *J*<sub>C-F</sub> = 9 Hz), 117.6, 112.3 (d, *J*<sub>C-F</sub> = 23 Hz), 108.3 (d, *J*<sub>C-F</sub> = 23 Hz), 59.0, 57.8, 55.2, 52.1, 49.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -116.4; HRMS (ESI) calcd for C<sub>43</sub>H<sub>42</sub>FN<sub>2</sub> [M+H]<sup>+</sup>: 605.3332, found: 605.3329.

## (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-6-fluoro-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3ha)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 119.6 mg, 66% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.27-7.37 (m, 17H), 7.18-7.23 (m, 4H), 6.81-6.94 (m, 3H), 5.86-5.93 (m, 1H), 5.43 (d, *J* = 17.5 Hz, 1H),

5.15-5.21 (m, 2H), 4.15 (d, J = 9.0 Hz, 1H), 3.49-3.61 (m, 10H), 2.95-3.09 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  161.1 (d,  $J_{C-F} = 243$  Hz), 148.2 (d,  $J_{C-F} = 8$  Hz), 144.5 (d,  $J_{C-F} = 4$  Hz), 140.5, 140.5, 139.7, 139.5, 137.8, 133.3, 130.8, 129.4, 128.9, 128.3, 128.3, 127.2, 126.9, 122.0 (d,  $J_{C-F} = 8$  Hz), 116.7, 113.7 (d,  $J_{C-F} = 23$  Hz), 111.1 (d,  $J_{C-F} = 23$  Hz), 59.0, 57.8, 55.2, 52.7, 52.7, 49.3; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -116.8; HRMS (ESI) calcd for C<sub>43</sub>H<sub>42</sub>FN<sub>2</sub> [M+H]<sup>+</sup>: 605.3332, found: 605.3332.

# (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-7-fluoro-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3ia)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 159.3 mg, 88% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.17-7.33 (m, 22H), 6.78-6.88 (m, 2H), 5.84-5.91 (m, 1H), 5.46 (d, *J* = 17.1 Hz, 1H), 5.23-5.31 (m, 2H), 4.39 (d, *J* = 8.6

Hz, 1H), 3.46-3.55 (m, 10H), 2.98 (d, J = 6.6 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  157.8 (d,  $J_{C-F} = 246$  Hz), 147.8 (d,  $J_{C-F} = 6$  Hz), 145.8, 139.8, 139.5, 138.1 (d,  $J_{C-F} = 3$  Hz), 131.3, 130.8 (d,  $J_{C-F} = 16$  Hz), 130.7, 129.4, 129.0, 129.0, 128.9, 128.3, 128.2, 127.2, 126.8, 117.8, 117.4 (d,  $J_{C-F} = 3$  Hz), 112.9 (d,  $J_{C-F} = 20$  Hz), 58.9, 57.6, 55.2, 50.0, 49.2; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -120.8; HRMS (ESI) calcd for C<sub>43</sub>H<sub>42</sub>FN<sub>2</sub> [M+H]<sup>+</sup>: 605.3332, found: 605.3337.

(*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5,6-difluoro-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3ja)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 100.8 mg, 54% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27-7.33 (m, 15H), 7.16-7.25 (m, 6H), 6.94 (dd, J = 9.7 Hz, 7.4 Hz, 1H), 6.79 (dd, J = 17.6 Hz, 11.1 Hz,

1H), 5.85-5.92 (m, 1H), 5.45 (dd, J = 17.5 Hz, 1.1 Hz, 1H), 5.11-5.22 (m, 2H), 4.11 (d, J = 9.1 Hz, 1H), 3.57 (d, J = 13.6 Hz, 2H), 3.48-3.51 (m, 8H), 2.95-3.08 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  149.1 (dd,  $J_{C-F} = 243$  Hz, 13 Hz), 148.4 (dd,  $J_{C-F} = 245$  Hz, 14 Hz), 145.9 (d,  $J_{C-F} = 4$  Hz), 141.8, 140.7 (d,  $J_{C-F} = 5$  Hz), 139.7, 139.3, 137.3, 132.9, 131.1, 129.4, 129.1, 128.9, 128.4, 128.3, 127.3, 127.0, 117.5, 112.5 (d,  $J_{C-F} = 19$  Hz), 109.8 (d,  $J_{C-F} = 19$  Hz), 59.0, 57.8, 55.2, 52.5, 49.1; <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  - 140.4, -140.4, -141.2, -141.2; HRMS (ESI) calcd for C<sub>43</sub>H<sub>41</sub>F<sub>2</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 623.3238, found:623.3229.

# (*E*)-*N*,*N*-dibenzyl-3-(5-chloro-3-((dibenzylamino)methyl)-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3ka)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 107.9 mg, 58% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 (s, 1H), 7.18-7.32 (m, 20H), 7.07 (s, 2H), 6.81 (dd, *J* = 17.3 Hz, 11.1 Hz, 1H), 5.85-5.92 (m, 1H),

5.47 (d, J = 17.6 Hz, 1H), 5.11-5.23 (m, 2H), 4.14 (d, J = 9.0 Hz, 1H), 3.51-3.58 (m, 10H), 2.95-3.05 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.4, 146.3, 144.1, 139.7, 139.4, 137.7, 133.3, 132.9, 130.8, 129.4, 129.3, 128.9, 128.4, 128.3, 127.2, 126.9, 125.6, 124.4, 121.5, 117.7, 59.0, 57.8, 55.2, 52.3, 48.9; HRMS (ESI) calcd for C<sub>43</sub>H<sub>42</sub>ClN<sub>2</sub> [M+H]<sup>+</sup>: 621.3037, found:621.3034.

(*E*)-*N*,*N*-dibenzyl-3-(6-chloro-3-((dibenzylamino)methyl)-2-vinyl-1*H*-inden-1yl)prop-2-en-1-amine (3la)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 111.2 mg, 60% yield. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.26-7.33 (m, 17H), 7.17-7.24 (m, 6H), 6.82 (dd, *J* = 17.6 Hz, 11.2 Hz, 1H), 5.87-

5.93 (m, 1H), 5.47 (d, J = 17.5 Hz, 1H), 5.13-5.21 (m, 2H), 4.15 (d, J = 9.1 Hz, 1H), 3.48-3.62 (m, 10H), 2.94-3.10 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  147.7, 145.1, 143.1, 139.7, 139.4, 137.9, 133.0, 131.7, 130.9, 129.4, 129.3, 128.9, 128.3, 128.3, 127.2, 127.1, 126.9, 124.0, 122.1, 117.3, 59.0, 57.8, 55.2, 52.6, 49.1; HRMS (ESI) calcd for C<sub>43</sub>H<sub>42</sub>ClN<sub>2</sub> [M+H]<sup>+</sup>: 621.3037, found:621.3031.

## (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5-(trifluoromethyl)-2-vinyl-1*H*inden-1-yl)prop-2-en-1-amine (3ma)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 60.6 mg, 31% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (s, 1H), 7.27-7.38 (m, 18H), 7.19-7.23 (m, 4H), 6.83 (dd, *J* = 17.5 Hz, 11.1

Hz, 1H), 5.89-5.96 (m, 1H), 5.50 (dd, J = 17.6 Hz, 1.2 Hz, 1H), 5.24 (dd, J = 11.2 Hz, 1.0 Hz, 1H), 5.13 (dd, J = 15.3 Hz, 9.1 Hz, 1H), 4.21 (d, J = 9.1 Hz, 1H), 3.51-3.58 (m, 10H), 2.96-3.07 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 149.4, 146.2, 145.1, 139.7, 139.4, 137.8, 132.7, 131.4, 129.3, 129.1, 129.1 (q,  $J_{C-F} = 32$  Hz), 128.9, 128.4, 128.3, 127.3, 127.0, 123.8 (q,  $J_{C-F} = 271$  Hz), 123.6, 122.5 (d,  $J_{C-F} = 4$  Hz), 118.7 (d,  $J_{C-F} = 4$  Hz), 118.1, 59.1, 57.8, 55.3, 52.8, 49.1; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -61.7; HRMS (ESI) calcd for C<sub>44</sub>H<sub>42</sub>F<sub>3</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 655.3300, found: 655.3297.

(*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-2-vinyl-1*H*-inden-1-yl)prop-2en-1-amine (3na)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 129.9 mg, 72% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (d, *J* = 7.5 Hz, 1H), 7.27-7.36 (m, 16H), 7.19-7.23 (m, 5H), 7.06-7.13 (m, 2H), 6.81 (dd, *J* = 17.5 Hz, 11.0 Hz, 1H),

5.24 (d, J = 17.5 Hz, 1H), 5.07 (d, J = 11.9 Hz, 1H), 4.90 (d, J = 10.0 Hz, 1H), 4.45 (d, J = 10.0 Hz, 1H), 3.41-3.54 (m, 10H), 2.86-2.92 (m, 2H), 2.04 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  146.5, 145.9, 144.9, 140.1, 139.6, 138.5, 135.4, 129.7, 129.4, 128.9, 128.6, 128.3, 127.1, 126.9, 126.7, 125.7, 123.3, 121.1, 116.1, 62.5, 58.9, 57.9, 49.3, 48.5, 15.8; HRMS (ESI) calcd for C<sub>44</sub>H<sub>45</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 601.3583, found: 601.3589.

## (*E*)-*N*-(5-(dibenzylamino)-2-((dibenzylamino)methyl)penta-2,3-dien-1-yl)-4methyl-*N*-(penta-2,4-dien-1-yl)benzenesulfonamide (30a)



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 123.1 mg, 58% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59-7.61 (m, 2H), 7.26-

7.33 (m, 16H), 7.16-7.23 (m, 6H), 6.06-6.16 (m, 1H), 5.89 (dd, J = 15.2 Hz, 10.4 Hz, 1H), 5.31-5.38 (m, 1H), 5.13-5.14 (m, 1H), 4.99-5.04 (m, 2H), 3.65-3.87 (m, 4H), 3.44-3.62 (m, 8H), 2.89-3.09 (m, 4H), 2.37 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  204.4, 143.1, 139.5, 139.2, 137.5, 135.9, 134.6, 129.6, 128.9, 128.8, 128.4, 128.0, 127.4, 127.0, 127.0, 117.9, 98.4, 90.4, 57.8, 57.7, 54.7, 52.5, 49.1, 47.6, 21.6; HRMS (ESI) calcd for C<sub>46</sub>H<sub>50</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup>: 708.3624, found: 708.3624.

# 6. Synthetic Transformation of Products Gram-scale synthesis of 3ca



*N*,*N*,*N*',*N*'-tetrabenzylmethanediamine **2a** (1.46 g, 3.6 mmol), Pd(Xantphos)(CH<sub>3</sub>CN)<sub>2</sub>(OTf)<sub>2</sub> (160.0 mg, 0.15 mmol), 2-(but-3-en-1-yn-1-yl)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene **1c** (0.63 g, 3 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (10 mL) were added to a 100 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at room temperature for 12 hours. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **3ca** (1.53 g, 83% yield).

#### Synthetic utility of the product



[IrCl(COD)]<sub>2</sub> (10.1 mg, 5 mol%) , 1,2-bis(diphenylphosphino)ethane (DPPE) (12.0 mg, 10 mol%) and THF (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The mixture was stirred for 10 minutes at room temperature. HBpin (87.1  $\mu$ L, 0.6 mmol) and (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5-methoxy-2-vinyl-1*H*-inden-1-yl)prop-2-en-1-amine **3ca** (184.9 mg, 0.3 mmol) were added dropwise in the order. The reaction was stirred at room temperature for 36 hours. The reaction was quenched by addition of MeOH (0.5 mL) at 0 °C, followed by water (0.5 mL). The reaction mixture was extracted with Et<sub>2</sub>O (5 mL × 3 mL), the combined organics were dried over sodium sulfate. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography (petroleum ether/ethyl acetate = 30/1 to 10/1) to give the desired product **4** (142.1 mg, 64% yield).

## (E)-N,N-dibenzyl-3-(3-((dibenzylamino)methyl)-5-methoxy-2-(2-(4,4,5,5-

### tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-1*H*-inden-1-yl)prop-2-en-1-amine (4)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34-7.36 (m, 8H), 7.26-7.29 (m, 9H), 7.20-7.22 (m, 3H), 7.04-7.06 (m, 2H), 6.62 (d, *J* = 8.0 Hz, 1H), 5.86-5.93 (m, 1H), 5.02 (dd, *J* = 15.0 Hz, 9.6 Hz, 1H), 3.91 (d, *J* = 9.3 Hz, 1H), 3.81 (s, 3H), 3.41-3.56 (m, 10H), 3.02 (d, *J* = 6.2 Hz, 2H), 2.65-2.73 (m,

1H), 2.30-2.37 (m, 1H), 1.14 (s, 12H), 0.88-1.07 (m, 2H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  159.1, 152.7, 146.9, 140.0, 139.9, 137.8, 133.7, 132.7, 130.7, 129.4, 129.0, 128.3, 128.3, 127.0, 126.9, 123.7, 111.0, 105.6, 83.2, 58.9, 57.7, 55.7, 55.3, 54.0, 49.8, 24.9, 24.9, 21.3;  $^{11}$ B NMR (160 MHz, CDCl<sub>3</sub>)  $\delta$  33.5; HRMS (ESI) calcd for C<sub>50</sub>H<sub>58</sub>BN<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 745.4540, found: 745.4601.

Pd<sub>2</sub>(dba)<sub>3</sub> (4.6 mg, 2.5 mol%), Ruphos (5.6 mg, 6 mol%), bromobenzene (37.7 mg, 0.24 mmol), Sodium *tert*-butoxide (57.7 mg, 0.60 mmol), (*E*)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5-methoxy-2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-1*H*-inden-1-yl)prop-2-en-1-amine **4** (148.9 mg, 0.2 mmol), toluene (0.8 mL), and water (0.08 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 80 °C for 20 hours, and then cooled to room temperature. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the desired product **5** (90.2 mg, 65% yield).

## (Z)-*N*,*N*-dibenzyl-3-(3-((dibenzylamino)methyl)-5-methoxy-2-phenethyl-1*H*inden-1-ylidene)propan-1-amine (5)



<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.38 (m, 5H), 7.25-7.31 (m, 13H), 7.18-7.23 (m, 6H), 7.14-7.15 (m, 2H), 7.07 (d, *J* = 2.4 Hz, 1H), 6.58 (dd, *J* = 8.3 Hz, 2.5 Hz, 1H), 6.14 (t, *J* = 6.8 Hz, 1H), 3.83 (s, 3H), 3.63 (s, 4H), 3.42 (s, 4H), 3.24 (s, 2H), 2.88 (dd, *J* = 13.9 Hz, 6.9 Hz, 2H), 2.75-2.84 (m,

4H), 2.69 (t, J = 7.1 Hz, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  159.3, 146.2, 142.0, 141.1, 139.8, 139.8, 139.3, 134.9, 129.5, 129.4, 128.9, 128.6, 128.5, 128.4, 128.2, 128.1, 127.0, 127.0, 126.1, 123.7, 110.4, 105.8, 58.9, 58.5, 55.6, 52.8, 49.8, 37.7, 27.4, 26.8; HRMS (ESI) calcd for C<sub>50</sub>H<sub>51</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 695.4001, found: 695.4009.

### 7. Mechanistic Experiments

To gain insights into the possible mechanism of this reaction, some mechanism experiments were conducted. The Xantphos-ligated palladium-complex-A was synthesized according to our previous report procedure in gram scale. With the Xantphos-ligated palladium-complex-A in hand, a series of control experiments were conducted.



Figure S1. Proposed reaction mechanism.

## Competitive reaction between 1,3-enyne and 1,3-diene to aminal 2a



*N*,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (122 mg, 0.30 mmol),, Pd(Xantphos)(CH<sub>3</sub>CN)<sub>2</sub>(OTf)<sub>2</sub> (16.0 mg, 5 mol %), but-3-en-1-yn-1-ylbenzene (46.1 mg, 0.36 mmol), buta-1,3-dien-1-ylbenzene (46.8 mg, 0.36 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at room temperature for 12 hours. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the 1,4-difunctionalization product **6** of 1,3-enyne as yellow oil (131.4 mg, 82% yield).

### Catalytic reaction of diene-tethered phenylacetylene 1p and aminal 2a



*N*,*N*,*N'*,*N'*-tetrabenzylmethanediamine **2a** (146 mg, 0.36 mmol), Pd(Xantphos)(CH<sub>3</sub>CN)<sub>2</sub>(OTf)<sub>2</sub> (16.0 mg, 5 mol %), 1-(buta-1,3-dien-1-yl)-2-(phenylethynyl)benzene **1p** (69.3 mg, 0.30 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at room temperature for 12 hours. After evaporation of the solvent under reduced pressure, /the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the difunctionalization product of 1,3-diene **3pa'** (52.6 mg, 28% yield) and **3pa''** (115.8 mg, 61% yield) as yellow oil.

# $(E) \cdot N^1, N^3, N^3 \cdot \text{tetrabenzyl-5-(2-(phenylethynyl)phenyl)pent-4-ene-1, 3-diamine} (3pa')$



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 52.6 mg, 28% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52-7.55 (m, 3H),

7.45 (d, J = 7.7 Hz, 1H), 7.34-7.35 (m, 3H), 7.22-7.31 (m, 15H), 7.15-7.17 (m, 7H),
6.83 (d, J = 15.8 Hz, 1H), 6.17 (dd, J = 15.8 Hz, 8.8 Hz, 1H), 3.75 (d, J = 13.6 Hz, 2H),
3.61 (d, J = 13.5 Hz, 2H), 3.32 (dd, J = 18.2 Hz, 13.6 Hz, 4H), 3.25-3.29 (m, 1H), 2.68-

2.75 (m, 1H), 2.29-2.36 (m, 1H), 1.99-2.08 (m, 1H), 1.73-1.81 (m, 1H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  140.4, 139.8, 138.7, 132.8, 131.8, 131.5, 130.2, 129.0, 128.9, 128.6, 128.5, 128.5, 128.3, 128.2, 127.2, 126.8, 126.8, 125.2, 123.5, 121.8, 93.9, 88.2, 58.7, 58.5, 53.8, 51.2, 30.3; HRMS (ESI) calcd for C<sub>47</sub>H<sub>45</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 637.3583, found: 637.3576.

# (*E*)-*N*<sup>1</sup>,*N*<sup>2</sup>,*N*<sup>2</sup>-tetrabenzyl-5-(2-(phenylethynyl)phenyl)pent-3-ene-1,2-diamine (3pa'')



The title compound was prepared according to the general procedure and purified by column chromatography to give yellow oil, 115.8 mg, 61% yield. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51-7.53 (m,

1H), 7.37-7.39 (m, 2H), 7.24-7.32 (m, 12H), 7.16-7.21 (m, 13H), 6.91-6.93 (m, 1H), 5.59-5.73 (m, 2H), 4.40-4.46 (m, 1H), 3.48-3.64 (m, 8H), 3.01 (d, J = 5.7 Hz, 2H), 2.69-2.80 (m, 2H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  145.3, 139.9, 139.7, 135.4, 132.5, 131.6, 129.0, 128.9, 128.6, 128.5, 128.3, 128.2, 127.6, 126.8, 126.1, 123.5, 122.8, 93.2, 88.5, 58.9, 58.5, 57.9, 55.7, 44.3; HRMS (ESI) calcd for C<sub>47</sub>H<sub>45</sub>N<sub>2</sub> [M+H]<sup>+</sup>: 637.3583, found: 637.3585.

## Catalytic reaction of diene-tethered enyne 1a and N,O-acetal 2a-OMe



*N*,*N*-dibenzyl-1-methoxymethanamine **2a-OMe** (86.8 mg, 0.36 mmol), Pd(Xantphos)(CH<sub>3</sub>CN)<sub>2</sub>(OTf)<sub>2</sub> (16.0 mg, 5 mol %), 1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)benzene **1a** (54.0 mg, 0.30 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The reaction mixture was stirred at room temperature for 12 hours. After evaporation of the solvent under reduced pressure, the residue was purified by flash chromatography (petroleum ether/ethyl acetate = 200/1 to 50/1) to give the product **3aa** (33.4 mg, 19% yield) as yellow oil.

### HRMS-analysis of the catalytic reaction system

In order to provide a proof-of-concept for proposed reaction mechanism, the mother liquid of the catalytic reaction was characterized by HRMS (Figure S2). The palladium complex **B** or **C** (Figure S3) were detected in the mother liquid. These experimental results support the possibility of the catalytic cycle we proposed above.



1-(but-3-en-1-yn-1-yl)-2-(buta-1,3-dien-1-yl)benzene **1a** (36.0 mg, 0.20 mmol), [Pd(Xantphos)(CH<sub>2</sub>NBn<sub>2</sub>)]OTf (208 mg, 0.20 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) were added to a 25 mL flame-dried Young-type tube under N<sub>2</sub> atmosphere. The mixture was stirred at room temperature for 30 minutes and then some reaction mixture was taken and injected to HRMS (ESI). The HRMS (ESI) analysis of the reaction mixture showed a peck at m/z 1074.3203, which corresponds to the mass of [**B**-OTf]<sup>+</sup> or [**C**-OTf]<sup>+</sup>. Another peak at m/z 587.3429 was also detected, which was assigned to the mass of target product **3aa**.



Figure S2. Observed HRMS date for the catalytic reaction system.



Figure S3. Observed HRMS date for palladium complex **B** or **C**.


Figure S4. Observed HRMS date for target product 3aa.

#### 8. References

1. (a) Heaney, H.; Papageorgiou, G.; Wilkins, R. F. The Generation of Iminium Ions Using Chlorosilanes and Their Reactions with Electron Rich Aromatic Heterocycles. *Tetrahedron* **1997**, *53*, 2941. (b) Rosenau, T.; Potthast, A.; Kosma, P. Studies on the Carbenium-Iminium Ions Derived from *N*-methylmorpholine-*N*-oxide (NMMO). *Tetrahedron* **2004**, *60*, 301.

2. Yu, B.; Huang, R.; Li, R.; Zhang, H.; Huang, H. Silver-Catalyzed Chemodivergent Assembly of Aminomethylated Isochromenes and Naphthols. *Chem. Commun.* **2022**, *58*, 3969.

3.(a) Röse, P.; Emge, S.; Yoshida, J.-i.; Hilt, G. Electrochemical Selenium- and Iodonium-Initiated Cyclisation of Hydroxy-functionalised 1,4-dienes. *Beilstein J. Org. Chem.* **2015**, *11*, 174. (b) Sardini, S. R.; Brown, M. K. Catalyst Controlled Regiodivergent Arylboration of Dienes. *J. Am. Chem. Soc.* **2017**, *139*, 9823.

### 9. NMR Spectra of Materials and Products

#### <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for 1a



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1a



LRR-X220818-BZ-125M(in CDC13)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1b





#### <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 1b

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1c

LRR-X210917-4-OMe-400M(in CDC13)



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 1c



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1d

00000.0

LRR-X22X15-5-OMe-400M(in CDCl3)





<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1d



LRR-X22X15-5-OMe-125M(in CDCl3)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1e







<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1e



S48

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1f

LRR-X22X06-20Me-400M(in CDCl3)







<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1f



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1g

LRR-X220823-4-F-400M(in CDCl3)







<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1g



# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 1g



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1h

LRR-X220331-4-5-F-400M(in CDCl3)







<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 1h

LRR-X210331-4-5-F-100M(in CDCl3)



# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 1h



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1i



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 1i

LRR-X220819-6-F-100M(in CDCl3)





# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 1i



LRR-X210910-6-F-376M(in CDCl3)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1j

-0.0000

LRR-X22X05-2F-400M(in CDC13)







<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1j



<sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>) spectra for 1j



LRR-X22X05-2F-470M(in CDCl3)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1k

LRR-X22X31-4-Cl-400M(in CDCl3)





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 1k



LRR-X22X31-4-Cl-100M(in CDCl3)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 11

LRR-X210331-5C1-400M(in CDCl3)







<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 11



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1m



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1m

LRR-X22X05-1-CF3-125M(in CDCl3)



### <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 1m

LRR-X22X05-1-CF3-376M(in CDCl3)



### <sup>ti1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 1n



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 1n








## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 10



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 1p

LRR-X22Z14-PH-125M(in CDCl3)





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3aa

YHJ-X210120-2-6(in CDCl3)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3aa



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3aa-d<sub>2</sub>

--0.0001

0.0 ppm



S78



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ab YHJ-X210202-1-4CH3-400M(in CDCl3) -0.0001 24 86 28 111 88 32 85 Ŧ SSUL UN  $\nu$ Me Лe 3ab Me - 1 8 9 7 3 2 1 6 5 0 4 ppm 1.03 9.07 1.03 10.04 6.06 1.02 2.04 8 2:01 8

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ab



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ac



LRR-X220925-4nBu-500M(in CDCl3)

## <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3ac





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ad

YHJ-X210202-1-1-100M(in CDCl3)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 3ad

~-118.2 ~-118.3

YBK-X210202-1-1 (in CDCl3)





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ae

YBK-X210202-1-2 (in CDCl3)



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 3ae

YBK-X210202-1-2 (in CDCl3)



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3af YBK-X210202-1-3-400M(in CDCl3) -0.0000 0 0 900 N 3af ..... 8 2 9 7 6 5 4 3 1 0 ppm 틷 2.08 (**8** 50 2.04 8.02 1.0 1.07 8

## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3af



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 3af

YBK-X210202-1-3 (in CDCl3)



| _ |   | '   | ·   | '   | '   | ·    | '    | '    | ·    | ·    | '   '    |
|---|---|-----|-----|-----|-----|------|------|------|------|------|----------|
|   | 0 | -20 | -40 | -60 | -80 | -100 | -120 | -140 | -160 | -180 | -200 ppm |

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ag

YHJ-X210304-1-4-Cl (in CDCl3)



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ag





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ah



LRR-X220926-4-Br-100M(in CDCl3)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ai

YHJ-X210202-1-4-CF3 (in CDCl3)





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ai

YHJ-X210202-1-6-100M(in CDCl3)











<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ba

YBK-X220413-7-4-Me-400M(in CDC13)





<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3ba



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ca



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ca





<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3da



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ea

YBK-X210414-6-20Me-400M(in CDCl3)



-0.0001


## <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) spectra for 3ea



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3fa



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3fa



YBK-X210414-3 (in CDCl3)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ga



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3ga



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 3ga



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ha

-0.0000

LRR-X220831-5-F-400M(in CDCl3)





<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3ha



<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 3ha



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ia





<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3ia

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 3ia





<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3ja



LRR-X220917-2F-125M(in CDC13)

# <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>) spectra for 3ja

1.2



LRR-X220917-2F-470M(in CDCl3)

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ka









<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for 3la



S126

<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3la



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3ma LRR-X22X05-4-CF3-400M(in CDC13) -0.0000 8003 8 11/ 11/1 -NBn<sub>2</sub> F<sub>3</sub>C 3ma NBn<sub>2</sub> 10 9 8 7 5 2 6 4 3 1 0 ppm 4.02 2.01 00:01 1.04 8 8 8 (8)8)



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3ma

# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) spectra for 3ma



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3na



<sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3na









## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 4

## <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 4



LRR-X230216-BPin-125M(in CDCl3)









<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectra for 5









S139

<sup>1</sup>H-<sup>1</sup>H COSY NMR (500 MHz, CDCl<sub>3</sub>) spectra for 5





NOESY NMR (500 MHz, CDCl3) spectra for 5

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3pa'







# <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3pa'

LRR-X22Y02-PH-2.2.fid -

| 4 0 |     | $\infty$ | ω u | $\cap \cap$ | 0 | on w            | LC)      | LC) ( | $n \alpha$ | $\sim$ | 00 | ωc  | V LO |   | •        |   |    |   |              |   |                   |      |      |    |    |
|-----|-----|----------|-----|-------------|---|-----------------|----------|-------|------------|--------|----|-----|------|---|----------|---|----|---|--------------|---|-------------------|------|------|----|----|
|     |     |          |     |             |   |                 | •        |       |            |        |    |     |      |   | •        | 0 |    | 4 | NO           |   |                   | ഗര   | 0 0  | ~  | ٥. |
| 00  | 000 | N        |     | + 0         | 0 | $\infty \infty$ | $\infty$ | 00 0  | <u></u>    |        | 9  | Q L | 0 m  | - | -        |   |    |   |              |   |                   |      |      |    |    |
| 5 0 | n m | $\sim$   | 00  | n m         | N | NN              | N        | N O   | NN         | N      | N  |     | VN   | C | <b>V</b> | 3 | 00 |   | r v          | > | 8                 | 00 0 | 2 -1 | C  | 5  |
|     |     | -        |     |             | - |                 | -        |       |            | -      | -  |     |      | - | -        | 0 | 00 | - | 00           | - | S                 | U) U | C L  | (m | 5  |
|     |     | L        | -   |             |   | 5               | 2        | 4     |            | _      | -  |     |      |   | 1        |   |    | 5 | $\checkmark$ |   | $\langle \rangle$ | 1    | 1    | I  |    |



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectra for 3pa" LRR-X22X30-Ph-1-400M(in CDCl3) -0.0001 55838 39848 39848 39848 39848 39848 39848 39848 39848 39858 59868 59868 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 59888 598888 59888 59888 59888 59888 59888 59888 59888 59888 59888 5988 303 Ph NBn<sub>2</sub> NBn<sub>2</sub> 3pa'' 10 5 9 8 7 6 3 2 1 4 0 ppm 2.00 2.00 1.00 80
## <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectra for 3pa''

LRR-X22X30-PH-1-C.1.fid -

| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |       |          |              |            |     |
|-----------------------------------------|-------|----------|--------------|------------|-----|
|                                         |       | LC)      | 4 0 0        |            | (m) |
| 000000000000000000000000000000000000000 |       | •        |              |            |     |
| 4                                       | ~ ~ ~ | $\infty$ | FF 9         | 0 -1 00 00 | 4   |
|                                         | 0     | 8        |              | വവവ        | 4   |
|                                         |       |          | $\checkmark$ | 1//        | 1   |

