Photoinduced Nickel-Catalyzed Reductive Acyl Cross-Coupling: Facile Access to All Carbon Quaternary Aliphatic Ketones

Yukun Chen^a,[†] Xiaoxiang Xi^a,[†] & Weiming Yuan^{a,b*}

^a Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, PR China

^b Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, PR China

E-mail: yuanwm@hust.edu.cn

Electronic Supplementary Information

Table of Contents

1	General Information	S2
2	Catalysts and Starting Materials	S3
3	Optimization of the Reaction Conditions	S5
4	General Procedure for Ketone Synthesis	S9
5	Unsuccessful Substrates	S10
6	Mechanistic Studies	S11
7	Spectroscopic Data of the Products	S19
8	References	.S40
9	NMR Spectra	S41

1 General Information

Reactions were performed in flame-dried glassware or conventional Schlenk techniques under a static pressure of nitrogen unless otherwise stated. All the materials were purchased and used as received unless otherwise noted; Anhydrous DMSO, DMF, DMAc, Dioxane, CH₃CN (99.8%, extra dry) were purchased from Energy Chemical and stored in a glovebox. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gels using the indicated solvents. All HRMS were recorded on high resolution Fourier transform mass spectrometer with Bruker Daltonics SolariX 7.0T with ESI mode, and the detector is FT-MS. GC analyses were performed on Shimadzu GC 2010 Pro instrument. GCMS analyses were performed on Thermo Scientific TRACE 1310 ISQ LT instrument. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker AV600 and Bruker AV400 instrument, respectively. Chemical shifts are reported in parts per million (ppm) and are referenced to the residual solvent signals were used as references for ¹H and ¹³C NMR spectra (CDCl₃: $\delta_{\rm H}$ = 7.26 ppm, $\delta_{\rm C}$ = 77.16 ppm). *n*-tridecane was used as an internal standard to calculate GC yields. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constants (Hz), and integration.

The photoreactor is homemade and each vial was illuminated by one lamp bead (parameters: 1W purple LED, λ_{max} = 390 nm) (Figure S1). Unless otherwise photoredox reactions were set-up in 10 mL vial and stirred (1000 rpm) at a distance of 1.5 cm from the irradiating plate. In addition, fan (rear part) was used to maintain the temperature of 25 – 30 °C.

Figure S1. Set-up for photoredox reactions

2 Catalysts and Starting Materials

2.1 2-Pyridyl esters were synthesized according to the published procedure [1-3]

2.2 The NHPI esters shown below were synthesized according to the published procedure^[4-8]

3 Optimization of the Reaction Conditions

3.1 Table S1. The Effect of solvent

		NiBr ₂ •glyme (10 mol%) ,4'-di(CO ₂ Me)bpy (10 mol%) HE (1.5 equiv)	0 Mo
Me Me 0.1 mmol	Ph O-N O 0.1 mmol	Solvent (0.1 M) rt, 24 h 390 nm LEDs	Me Ph Me
Entry	Solvent	Yield (%	6) ^[a]
1	DMAc	65	
2	DMF	23	
3	NMP	34	
4	MeCN	trace	9
5	THF	trace	9
6	toluene	trace	9
7	EA	trace	9
8	1,4-dioxane	trace	9
9	DMSO	N.D	

 $^{[a]}$ GC yield, with *n*-tridecane as internal standard. N.D. = not detected.

3.2 Table S2. The Effect of Ni-catalyst

Entry	Ni-catalyst	Yield (%) ^[a]
1	NiBr ₂ •glyme	65
2	Ni(OTf) ₂	N.D.
3	Ni(OAc) ₂	trace
4	NiCl ₂	37
5	NiBr ₂	27
6	Nil ₂	10
7	NiCl ₂ •glyme	12
8	Ni(cod) ₂	trace
9	NiCl ₂ (PPh ₃) ₂	trace

^[a] GC yield, with *n*-tridecane as internal standard. N.D. = not detected.

3.3 Table S3. The Effect of ligand

 $^{[a]}$ GC yield, with *n*-tridecane as internal standard.

3.4 Table S4. The Effect of reducing agent

^[a] GC yield, with *n*-tridecane as internal standard. N.D. = not detected.

3.5 Table S5. The Effect of ratio of each substrate 1a and 2a

Entry	1a:2a	Yield (%) ^[a]
1	1:1	65
2	1:1.2	54
3	1:1.5	54
4	1.2:1	80(78) ^[b]
5	1.5:1	65

^[a] GC yield, with *n*-tridecane as internal standard, ^[b] isolated yield.

3.6 Table S6. Control Experiments

 $^{[a]}$ GC yield, with *n*-tridecane as internal standard. N.D. = not detected.

4 General Procedure for Ketone Synthesis

Reactions were carried out in a glove box filled with N₂. An oven-dried vial equipped with a PTFE-coated stir-bar was added NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), 2-pyridyl ester **1** (0.24 mmol, 1.2 equiv), NHPI ester **2** (0.20 mmol, 1.0 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv), and DMAc (0.10 M, 2.0 mL) was added via a syringe. The vial was capped with a screw capfitted with a PTFEfaced silicon septum, removed from the glovebox and irradiated with a 1 W purple LED lamp (at approximately 1.5 cm away from the light source) with cooling from a fan for 24 h. The reaction was quenched by H₂O, extracted with ethyl acetate. The combined organic layers were dried with Na₂SO₄, filtered, and concentrated in vacuo. The residue was isolated by flash chromatography to give the corresponding pure product.

5 Unsuccessful substrates

6 Mechanistic Studies

6.1 Radical clock experiment

Prepared according to the general procedure using **1d** (95 mg, 0.24 mmol, 1.2 equiv), **2v** (49 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 20/1) to give the product **35** (45 mg, 64% yield) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ : 7.78 – 7.73 (m, 2H), 7.72 – 7.70 (m, 2H), 7.49 – ;7.45 (m, 2H), 6.83 – 6.80 (m, 2H), 5.79 – 5.72 (m, 1H), 5.02 (d, *J* = 17.2 Hz, 1H), 4.96 (dd, *J* = 10.8, 2.3 Hz, 1H), 2.75 – 2.71 (m, 2H), 2.34 (q, *J* = 7.1 Hz, 2H), 1.56 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 212.2, 194.3, 159.6, 138.6, 137.0, 136.4, 132.3, 131.3, 130.8, 128.7, 117.5, 115.7, 84.9, 35.5, 27.7, 24.3 ppm. **IR**: 2924, 1716, 1654, 1596, 1504, 1381, 1302, 1283, 1245, 1169, 1146, 1089, 1014, 926, 853, 762, 741 cm⁻¹. **HRMS** (ESI) for C₂₁H₂₂ClO₃⁺ [(M+H)⁺]: calculated 357.1252, found 357.1242.

6.2 Radical trapping experiment

The reaction was set up in a glove box filled with N₂. An oven-dried vial equipped with a PTFE-coated stir-bar was added NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), **1a** (43 mg, 0.24 mmol, 1.2 equiv), **2a** (59 mg, 0.20 mmol, 1.0 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv), 2,2,6,6-tetramethylpiperidine-*N*-oxyl (TEMPO, 94 mg, 0.60 mmol, 3.0 equiv) and DMAc (0.20 M, 2.0 mL) was added via a syringe. The reaction was quenched by H₂O, extracted with ethyl acetate. The organic layers were dried with Na₂SO₄, filtered, and concentrated in vacuo. The residue was

purified by flash column chromatography (PE/EA = 30/1) to give the TEMPO-trapped product **36** (35 mg, 68% yield) as a colorless oil.

No product **3** was observed and the TEMPO-trapped adduct **36** was detected by ¹H NMR ,¹³C NMR analysis. Spectroscopy data of **36** is agree with the literature values^[9]. ¹H NMR (600 MHz, CDCl₃) δ : 7.29 – 7.27 (m, 2H), 7.24 – 7.23 (m, 2H), 7.20 – 7.18 (m, 1H), 3.00 (t, *J* = 7.9 Hz, 2H), 2.68 (t, *J* = 7.9 Hz, 2H), 1.71 – 1.66 (m, 2H), 1.64 – 1.59 (m, 1H), 1.52 – 1.49 (m, 2H), 1.41 – 1.38 (m, 1H), 1.10 (s, 6H), 0.97 (s, 6H) ppm. ¹³C NMR (101 MHz, CDCl₃) δ : 140.6, 128.6, 128.5, 126.4, 60.0, 39.1, 32.0, 31.3, 20.6, 17.1 ppm.

6.3 Investigation of SET event

The reaction was set up in a glovebox filled with N₂. An oven-dried vial equipped with a PTFE-coated stir-bar was added **2a** (59 mg, 0.20 mmol, 1.0 equiv), Ni(cod)₂ (55 mg, 0.20 mmol, 1.0 equiv) and 4,4'-di(CO₂Me)bpy (54 mg, 0.20 mmol, 1.0 equiv) in DMAc (0.10 M, 2.0 mL). The mixture was stirred for 24 h in dark. The reaction was quenched by H₂O, extracted with ethyl acetate. The organic layers were dried with Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (PE) to give the homocoupling product **37** (22 mg, 52% yield) as a colorless oil.

¹H NMR (600 MHz, CDCl₃) δ: 7.29 – 7.25 (m, 4H), 7.18 – 7.16 (m, 6H), 2.65 – 2.62 (m, 4H), 1.69 – 1.65 (m, 4H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ: 142.7, 128.6, 128.4, 125.8, 36.0, 31.2 ppm. IR: 3025, 2925, 2854, 1602, 1495, 1452, 1081, 1029, 741, 696, 596 cm⁻¹.
HRMS (EI) for C₁₆H₁₈: calculated 210.1409, found 210.1403.

The reaction was set up in a glovebox filled with N₂. An oven-dried vial equipped with a PTFE-coated stir-bar was added **2b** (65 mg, 0.20 mmol, 1.0 equiv), ethyl acrylate (20 mg, 0.20 mmol, 1.0 equiv) and HE (76 mg, 0.30 mmol, 1.5 equiv) in DMAc (0.10 M, 2.0 mL). The mixture was irradiated with a 1 W purple LED lamp (at approximately 1.5 cm away from the light source) with cooling from a fan for 24 h. The reaction was quenched by H₂O, extracted with ethyl acetate. The combined organic layers were dried with Na₂SO₄, filtered, and concentrated in vacuo. The residue was isolated by flash chromatography (PE/EA = 30/1) to give the homocoupling product **38** (22 mg, 80% yield) as a colorless oil and Giese addition product **39** (8.1 mg, 17% yield) as a yellow oil.

Data of **38**:¹**H NMR** (600 MHz, CDCl₃) δ : 6.71 (d, *J* = 7.9 Hz, 2H), 6.66 (d, *J* = 1.7 Hz, 2H), 6.60 – 6.59 (m, 2H), 5.92 (s, 4H), 2.79 (s, 4H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 147.6, 145.8, 135.6, 121.3, 109.1, 108.2, 100.9, 38.0 ppm. **IR**: 2924, 2857, 1841, 1742, 1606, 1499, 1484, 1437, 1402, 1357, 1263, 1240, 1186, 1140, 1123, 1093, 1035, 935, 923, 870, 857, 812, 754, 726, 622 cm⁻¹. **HRMS** (EI) for C₁₆H₁₄O₄: calculated 270.0892, found 270.0887.

Data of **39**:¹**H NMR** (600 MHz, CDCl₃) δ : 6.72 (d, *J* = 7.9 Hz, 1H), 6.67 (s, 1H), 6.64 – 6.60 (m, 1H), 5.92 (s, 2H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.57 (t, *J* = 7.6 Hz, 2H), 2.30 (t, *J* = 7.5 Hz, 2H), 1.90 (p, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 6 Hz, 3H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 173.7, 147.7, 145.9, 135.4, 121.4, 109.1, 108.3, 100.9, 60.4, 35.0, 33.7, 26.9, 14.4 ppm. **IR**: 2953, 2922, 2852, 2361, 2158, 1732, 1503, 1489, 1443, 1375, 1245, 1188, 1146, 1038, 938, 856, 808, 735, 599 cm⁻¹. **HRMS** (EI) for C₁₃H₁₆O₄: calculated 236.1049, found 236.1043.

S13

6.4 UV/vis Studies

6.4.1 UV/vis studies about the EDA complex

The UV-Vis absorption spectra were measured in a 1 cm quartz cuvette and recorded on SHIMADZU UV-3600 UV-visible spectrophotometer. A bathochromic shift was observed for a mixture of NHPI ester **2a** and Hantzsch-ester (HE) in DMAc (0.1 M) (Figure S2-B, blue band), which was visibly yellow in color (Figure S2-A). This indicates the formation of an electron donor-acceptor (EDA) complex. Notably, The UV absorption was affected by the concentration of EDA complex, a dilute reaction mixture (0.02 M) exhibits a blue-shifted absorption band, indicating the inhibition of EDA complex formation (Figure S2-C, red band), a significant bathochromic shift was observed when the concentration increased to 0.2 M (Figure S2-C, blue band).

Α

Figure S2. Spectra A shows the color of individual reaction component and a combination dissolved in DMAc. Spectra B was measured in DMAc with **2a** (0.1 M), HE (0.1 M) and a

mixture of them. Spectra C was measured in DMAc with different concentration of the EDA complex.

6.4.2 Determination of association constant (KEDA)

The association constant of the EDA complex formed between NHPI ester **2a** and Hantzsch ester (HE) was determined by UV-vis spectrum in DMAc employing the Benesi-Hildebrand method^[10]. The absorbance of a constant concentration of **2a** (0.02 M) and an increasing concentration of HE (0.02-0.07 M) was recorded at 440 nm. All the absorption spectra were recorded in 1 cm path quartz cuvettes using a SHIMADZU UV-3600 UV-visible spectrophotometer. To determine the K_{EDA} , the reciprocal concentration of HE was plotted against the reciprocal absorbance of HE at 440 nm (Table S7 and Figure S4).

Figure S3. UV-vis absorption spectra of 2a (0.02 M) in combination with increasing

concentration of HE (0.02 M up to 0.07 M)

HE	ABS	1/HE	1/(ABS _{EDA} -A ₀)
0.02	0.099	50	10.1
0.03	0.147	33.3	6.8
0.04	0.197	25	5.08
0.05	0.25	20	4
0.06	0.295	16.7	3.39
0.07	0.337	14.3	2.97

Table S7. Data obtained by UV/vis absorption spectra for EDA complex in DMAc

Figure S4. Benesi-Hildebrand^[10] plot for the EDA complex generated in DMAc upon

association of 2a with HE

6.4.3 Job's method experiment

Job's method^[11] was used to determine the stoichiometry of the EDA complex with varying ratios of NHPI ester **2a** and Hantzsch-ester (HE) in DMAc (0.10 M) at 450 nm. The absorbance was plotted against the molar fraction of HE. Maximum absorbance was detected at 50% molar fraction of HE, indicating a 1:1 stoichiometry of the EDA complex.

Figure S5. UV-vis absorption spectra of HE and 2a with varying ratios

Table S8.	. Data	obtained by	∕ UV/vis	absorption	spectra fo	or EDA comp	lex in DMAc
-----------	--------	-------------	----------	------------	------------	-------------	-------------

Molar fraction of HE	10	20	30	40	50	60	70	80	90
Absorbance	1.315	2.270	2.811	3.268	3.390	3.228	2.917	1.784	1.081

Figure S6. Job Plot at 450 nm

6.4.4 Fluorescence quenching (Stern-Volmer) studies

Emission intensities were recorded using Agilent Technologies of Cary Eclipse Fluorescence spectrophotometer. All Hantzsch-ester (HE) solutions were excited at 440 nm and the emission intensity was collected at 400-600 nm. In a typical experiment, to a 1.0×10^{-4} M solution of HE in DMAc was added the appropriate amount of quencher in a screw-top 1.0 cm quartz cuvette. the emission of the sample was collected. The linear slope suggests that nickel catalyst is the quencher of HE.

Figure S7. Quenching with variable amounts of NiBr₂•glyme

Figure S8. Quenching with variable amounts of NHPI ester 2a

Figure S9. Quenching with variable amounts of 2-pyridyl ester 1a

Figure S10. Stern-Volmer plot

7 Spectroscopic Data of the Products

4,4-Dimethyl-1-phenylpentan-3-one (3)

Chemical Formula: C₁₃H₁₈O Molecular Weight: 190.2860

Prepared according to the general procedure using **1a** (43 mg, 0.24 mmol, 1.2 equiv), **2a** (59 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **3** (30 mg, 78% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.29 – 7.26 (m, 2H), 7.22 – 7.13 (m, 3H), 2.89 – 2.85 (m, 2H), 2.83 – 2.75 (m, 2H), 1.10 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 215.0, 141.7, 128.6, 128.5, 126.1, 44.2, 38.6, 30.2, 26.4 ppm. **IR**: 2974, 1718, 1632, 1607, 1512, 1460, 1387, 1359, 1173, 987, 836, 749, 620 cm⁻¹. **HRMS** (ESI) for C₁₃H₁₉O⁺ [(M+H)⁺]: calculated 191.1430, found 191.1435.

1-(Benzo[d][1,3]dioxol-5-yl)-4-chloro-3,3-dimethylbutan-2-one (4)

Chemical Formula: C₁₃H₁₅ClO₃ Molecular Weight: 254.7100

Prepared according to the general procedure using **1b** (51 mg, 0.24 mmol, 1.2 equiv), **2b** (65 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1 to PE/DCM = 1/1) to give the product **4** (18 mg, 35% yield) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 6.75 (d, J = 7.9 Hz, 1H), 6.66 (d, J = 1.7 Hz, 1H), 6.61 – 6.59 (m, 1H), 5.94 (s, 2H), 3.76 (s, 2H), 3.65 (s, 2H), 1.30 (s, 6H) ppm. ¹³**C NMR** (101 MHz,

CDCl₃) δ: 210.0, 147.9, 146.7, 127.7, 122.8, 110.2, 108.40, 101.1, 52.0, 49.6, 44.1, 23.1 ppm. **IR:** 2923, 1712, 1503, 1490, 1444, 1246, 1038, 927, 811, 785, 734 cm⁻¹. **HRMS** (ESI) for C₁₃H₁₆ClO₃⁺ [(M+H)⁺]: calculated 255.0782, found 255.0777.

1-(Benzo[d][1,3]dioxol-5-yl)-6-(2,5-dimethylphenoxy)-3,3-dimethylhexan-2-one (5)

Chemical Formula: C₂₃H₂₈O₄ Molecular Weight: 368.4730

Prepared according to the general procedure using **1c** (65 mg, 0.24 mmol, 1.2 equiv), **2b** (65 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **5** (40 mg, 55% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.00 (d, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 7.9 Hz, 1H), 6.67 – 6.65 (m, 2H), 6.60 – 6.57 (m, 2H), 5.92 (s, 2H), 3.91 (t, *J* = 5.9 Hz, 2H), 3.71 (s, 2H), 2.31 (s, 3H), 2.18 (s, 3H), 1.82 – 1.77 (m, 2H), 1.69 – 1.62 (m, 2H), 1.21 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 212.7, 156.9, 147.7, 146.5, 136.6, 130.4, 128.4, 123.6, 122.7, 120.9, 112.0, 110.2, 108.3, 101.0, 67.8, 47.9, 43.1, 36.5, 25.1, 24.5, 21.5, 15.9 ppm. **IR:** 2953, 2922, 1707, 1503, 1489, 1443, 1245, 1156, 1129, 1036, 928, 805, 785 cm⁻¹. **HRMS** (ESI) for C₂₃H₂₉O₄⁺ [(M+H)⁺]: calculated 369.2060, found 369.2055.

1-(Benzo[a][1,3]dioxol-5-yl)-3-(4-(4-chlorobenzoyl)phenoxy)-3-methylbutan-2-one (6)

CI

Chemical Formula: C₂₅H₂₁ClO₅ Molecular Weight: 436.8880

Prepared according to the general procedure using 1d (95 mg, 0.24 mmol, 1.2 equiv), 2b

(65 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **6** (52 mg, 60% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.75 – 7.70 (m, 4H), 7.47 – 7.44 (m, 2H), 6.86 – 6.82 (m, 2H), 6.71 (d, *J* = 7.9 Hz, 1H), 6.60 (d, *J* = 1.8 Hz, 1H), 6.52 (dd, *J* = 7.9, 1.7 Hz, 1H), 5.92 (s, 2H), 3.83 (s, 2H), 1.59 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 210.6, 194.2, 159.5, 147.8, 146.7, 138.6, 136.3, 132.3, 131.3, 130.9, 128.7, 127.4, 122.9, 117.5, 110.2, 108.3, 101.1, 85.1, 42.4, 24.4 ppm. **IR**: 2924, 1720, 1652, 1596, 1502, 1488, 1443, 1241, 1165, 1144, 1088, 1037, 925, 852, 762, 735 cm⁻¹. **HRMS** (ESI) for C₂₅H₂₂ClO₅⁺ [(M+H)⁺]: calculated 437.1150, found 437.1146. **Melting point:** 96.5 – 97.6 °C.

2-(Benzo[*d*][1,3]dioxol-5-yl)-1-(1-methylcyclohexyl)ethan-1-one (7)

Chemical Formula: C₁₆H₂₀O₃ Molecular Weight: 260.3330

Prepared according to the general procedure using **1e** (53 mg, 0.24 mmol, 1.2 equiv), **2b** (65 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **7** (28 mg, 53% yield) as a colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ : 6.74 (d, *J* = 7.9 Hz, 1H), 6.68 (d, *J* = 1.9 Hz, 1H), 6.60 (dd, *J* = 7.9, 1.8 Hz, 1H), 5.93 (s, 2H), 3.69 (s, 2H), 2.00 – 1.97 (m, 2H), 1.56 – 1.54 (m, 2H), 1.45 – 1.42 (m, 1H), 1.37 – 1.31 (m, 5H), 1.14 (s, 3H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 213.1, 147.8, 146.5, 128.8, 122.8, 110.3, 108.3, 101.1, 48.7, 42.9, 34.8, 26.0, 24.8, 23.0 ppm. **IR**: 2927, 2854, 1705, 1503, 1489, 1443, 1254, 1187, 1038, 1015, 926, 782, 745 cm⁻¹. **HRMS** (ESI) for C₁₆H₂₁O₃⁺ [(M+H)⁺]: calculated 261.1485, found 261.1480. tert-Butyl 4-(2-(benzo[d][1,3]dioxol-5-yl)acetyl)-4-methylpiperidine-1-carboxylate (8)

Me Boc

Chemical Formula: C₂₀H₂₇NO₅ Molecular Weight: 361.4380

Prepared according to the general procedure using **1f** (77 mg, 0.24 mmol, 1.2 equiv), **2b** (65 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 20/1) to give the product **8** (28 mg, 38% yield) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ : 6.75 (d, *J* = 7.9 Hz, 1H), 6.67 (s, 1H), 6.60 (d, *J* = 7.9 Hz, 1H), 5.94 (s, 2H), 3.68 (s, 2H), 3.57 (s, 2H), 3.12 (s, 2H), 2.07 – 1.99 (m, 2H), 1.50 – 1.42 (m, 2H), 1.44 (s, 9H), 1.21 (s, 3H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 211.6, 154.9, 147.9, 146.7, 128.0, 122.7, 110.1, 108.4, 101.2, 79.7, 47.2, 43.2, 33.8, 28.6, 24.0 ppm. **IR:** 2927, 1686, 1503, 1490, 1443, 1423, 1365, 1246, 1158, 1039, 969, 928, 864, 784, 735 cm⁻¹. **HRMS** (ESI) for C₂₀H₂₇NO₅Na⁺ [(M+Na)⁺]: calculated 384.1781, found 384.1767.

3-(4-(4-Chlorobenzoyl)phenoxy)-3-methyl-1-(naphthalen-2-yloxy)butan-2-one (9)

Chemical Formula: C₂₈H₂₃ClO₄ Molecular Weight: 458.9380

Prepared according to the general procedure using **1d** (95 mg, 0.24 mmol, 1.2 equiv), **2c** (69 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **9** (56 mg, 61% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.70 – 7.76 (m, 4H), 7.73 – 7.70 (m, 2H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.46 – 7.40 (m, 3H), 7.37 – 7.33 (m, 1H), 7.25 – 7.23 (m, 1H), 7.02 (d, *J* = 2.6 Hz, 1H),

7.00 – 6.97 (m, 2H), 5.21 (s, 2H), 1.68 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ: 206.5, 194.2, 158.7, 156.0, 138.8, 136.1, 134.3, 132.4, 131.8, 131.3, 129.9, 129.5, 128.8, 127.8, 126.9, 126.7, 124.3, 118.9, 118.8, 107.4, 85.2, 69.2, 24.6 ppm. **IR:** 2926, 1739, 1654, 1629, 1597, 1505, 1468, 1273, 1247, 1217, 1170, 1148, 1089, 1032, 926, 852, 835, 762, 748 cm⁻¹. **HRMS** (ESI) for $C_{28}H_{24}ClO_{4^+}$ [(M+H)⁺]: calculated 459.1358, found 459.1351.

1-([1,1'-Biphenyl]-4-yl)-3-(4-(4-chlorobenzoyl)phenoxy)-3-methylbutan-2-one (10)

Chemical Formula: C₃₀H₂₅ClO₃ Molecular Weight: 468.9770

Prepared according to the general procedure using **1d** (95 mg, 0.24 mmol, 1.2 equiv), **2d** (72 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **10** (60 mg, 64% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.76 – 7.72 (m, 2H), 7.71 – 7.68 (m, 2H), 7.57 – 7.55 (m, 2H), 7.52 – 7.49 (m, 2H), 7.45 – 7.40 (m, 4H), 7.36 – 7.32 (m, 1H), 7.19 – 7.16 (m, 2H), 6.88 – 6.84 (m, 2H), 3.97 (s, 2H), 1.62 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 210.5, 194.2, 159.5, 140.8, 140.0, 138.6, 136.3, 132.9, 132.4, 131.3, 130.9, 130.3, 128.9, 128.7, 127.4, 127.3, 127.1, 117.6, 85.2, 42.4, 24.4 ppm. **IR:** 2924, 1719, 1652, 1596, 1504, 1486, 1396, 1381, 1301, 1283, 1242, 1166, 1144, 1088, 1049, 955, 926, 852, 754, 739, 697 cm⁻¹. **HRMS** (ESI) for C₃₀H₂₆ClO₃⁺ [(M+H)⁺]: calculated 469.1565, found 469.1556. **Melting point:** 135.2 – 133.5 °C.

4-(4-(4-Chlorobenzoyl)phenoxy)-4-methyl-1-phenylpentan-3-one (11)

С

Chemical Formula: C₂₅H₂₃ClO₃ Molecular Weight: 406.9060

Prepared according to the general procedure using **1d** (95 mg, 0.24 mmol, 1.2 equiv), **2a** (59 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **11** (55 mg, 68% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.72 – 7.66 (m, 4H), 7.47 – 7.44 (m, 2H), 7.26 – 7.22 (m, 2H), 7.18 – 7.15 (m, 1H), 7.14 – 7.11 (m, 2H), 6.75 – 6.71 (m, 2H), 2.97 – 2.88 (m, 4H), 1.50 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 212.1, 194.2, 159.5, 140.9, 138.6, 136.4, 132.3, 131.3, 130.7, 128.7, 128.6 (2C), 126.3, 117.4, 84.9, 38.1, 29.8, 24.2 ppm. **IR**: 2988, 2929, 1715, 1653, 1596, 1503, 1301, 1283, 1273, 1243, 1163, 1144, 1088, 1014, 952, 925, 852, 837, 762, 698, 678 cm⁻¹. **HRMS** (ESI) for C₂₅H₂₄ClO₃⁺ [(M+H)⁺]: calculated 407.1408, found 407.1401.

3,3-Dimethyl-1-(naphthalen-2-yloxy)butan-2-one (12)

Chemical Formula: C₁₆H₁₈O₂ Molecular Weight: 242.3180

Prepared according to the general procedure using **1a** (43 mg, 0.24 mmol, 1.2 equiv), **2c** (69 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1 to 10/1) to give the product **12** (30 mg, 61% yield) as a white solid.

1H), 7.37 – 7.32 (m, 1H), 7.24 (dd, J = 8.0, 4.0 Hz, 1H), 7.03 (d, J = 2.6 Hz, 1H), 4.97 (s, 2H), 1.29 (s, 9H) ppm. ¹³**C** NMR (101 MHz, CDCl₃) δ : 209.3, 156.1, 134.3, 129.8, 129.4, 127.8, 126.8, 126.5, 124.1, 118.9, 107.2, 69.0, 43.4, 26.5 ppm. IR: 2965, 1721, 1629, 1600, 1509, 1468, 1389, 1366, 1253, 1215, 1179, 1045, 990, 832, 744, 623 cm⁻¹. HRMS (ESI) for C₁₆H₁₈O₂Na⁺ [(M+Na)⁺]: calculated 265.1199, found 265.1191. Melting point: 97.8 – 98.7 °C.

3-(4-(2,2-Dichlorocyclopropyl)phenoxy)-3-methylbutan-2-one (13)

CI

Chemical Formula: C₁₄H₁₆Cl₂O₂ Molecular Weight: 287.1800

Prepared according to the general procedure using **1g** (88 mg, 0.24 mmol, 1.2 equiv), **2e** (41 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **13** (33 mg, 57% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.13 – 7.10 (m, 2H), 6.77 – 6.73 (m, 2H), 2.85 – 2.81 (m, 1H), 2.26 (s, 3H), 1.97 – 1.92 (m, 1H), 1.81 – 1.76 (m, 1H), 1.48 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 212.2, 154.9, 130.0, 128.3, 118.3, 84.3, 60.9, 34.9, 25.6, 24.5, 24.0 ppm. **IR:** 2988, 1716, 1509, 1240, 1160, 1125, 954, 833, 761 cm⁻¹. **HRMS** (ESI) for C₁₄H₁₇Cl₂O₂⁺ [(M+H)⁺]: calculated 287.0600, found 287.0602.

7-Chloro-2-(4-(2,2-dichlorocyclopropyl)phenoxy)-2-methylheptan-3-one (14)

Chemical Formula: C₁₇H₂₁Cl₃O₂ Molecular Weight: 363.7030

Prepared according to the general procedure using **1g** (88 mg, 0.24 mmol, 1.2 equiv), **2f** (56 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **14** (48 mg, 66% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.14 – 7.10 (m, 2H), 6.75 – 6.72 (m, 2H), 3.50 – 3.47 (m, 2H), 2.83 (dd, *J* = 10.7, 8.3 Hz, 1H), 2.72 – 2.68 (m, 2H), 1.95 (dd, *J* = 10.7, 7.4 Hz, 1H), 1.81 – 1.76 (m, 1H), 1.75 – 1.70 (m, 4H), 1.48 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 213.4, 154.7, 130.0, 128.5, 118.6, 84.4, 60.9, 44.7, 35.2, 34.9, 32.0, 26.0, 24.3, 21.0 ppm. **IR:** 2936, 1714, 1610, 1509, 1380, 1294, 1239, 1154, 1114, 1049, 956, 833, 759, 730, 650, 577 cm⁻¹. **HRMS** (ESI) for C₁₇H₂₂Cl₃O₂⁺ [(M+H)⁺]: calculated 363.0680, found 363.0676.

Ethyl 5-(4-(2,2-dichlorocyclopropyl)phenoxy)-5-methyl-4-oxohexanoate (15)

Chemical Formula: C₁₈H₂₂Cl₂O₄ Molecular Weight: 373.2700

Prepared according to the general procedure using **1g** (88 mg, 0.24 mmol, 1.2 equiv), **2g** (58 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **15** (39 mg, 53% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.15 – 7.11 (m, 2H), 6.79 – 6.76 (m, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.02 (t, *J* = 6.5 Hz, 2H), 2.83 (dd, *J* = 10.7, 8.3 Hz, 1H), 2.57 (t, *J* = 6.5 Hz, 2H), 1.97 – 1.93 (m, 1H), 1.80 – 1.76 (m, 1H), 1.50 (s, 6H), 1.26 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 212.2, 172.9, 154.6, 130.0, 128.6, 119.0, 84.5, 60.8, 34.9, 31.7, 28.0, 26.0, 24.4 (2C), 14.3 ppm. **IR:** 2983, 2930, 1716, 1610, 1509, 1376, 1227, 1148, 1114, 1079, 1016, 956, 865, 834, 761, 575 cm⁻¹. **HRMS** (ESI) for C₁₈H₂₃Cl₂O₄⁺ [(M+H)⁺]: calculated 373.0968, found 373.0966.

2-(4-(2,2-Dichlorocyclopropyl)phenoxy)-2-methylhept-6-en-3-one (16)

Chemical Formula: C₁₇H₂₀Cl₂O₂ Molecular Weight: 327.2450

Prepared according to the general procedure using **1g** (88 mg, 0.24 mmol, 1.2 equiv), **2h** (49 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **16** (38 mg, 59% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.16 – 7.10 (m, 2H), 6.76 – 6.72 (m, 2H), 5.81 – 5.71 (m, 1H), 5.04 – 4.93 (m, 2H), 2.86 – 2.81 (m, 1H), 2.77 (t, *J* = 7.4 Hz, 2H), 2.35 – 2.29 (m, 2H), 1.97 – 1.92 (m, 1H), 1.80 – 1.76 (m, 1H), 1.48 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ: 213.1, 154.8, 137.3, 129.9, 128.4, 118.7, 115.5, 84.4, 60.9, 35.5, 34.9, 27.7, 26.0, 24.3 (2C) ppm. **IR:** 2981, 2930, 1715, 1610, 1509, 1240, 1153, 1114, 1054, 956, 915, 833, 760 cm⁻¹. **HRMS** (ESI) for C₁₇H₂₁Cl₂O₂⁺ [(M+H)⁺]: calculated 327.0913, found 327.0905.

2,2-Dimethyl-4-phenylhexan-3-one (17)

Chemical Formula: C₁₄H₂₀O Molecular Weight: 204.3130

Prepared according to the general procedure using **1a** (43 mg, 0.24 mmol, 1.2 equiv), **2i** (62 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **17** (25 mg, 61% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) *δ*: 7.30 – 7.24 (m, 4H), 7.22 – 7.18 (m, 1H), 3.98 (t, *J* = 7.4 Hz, 1H), 2.02 – 1.91 (m, 1H), 1.75 – 1.64 (m, 1H), 1.08 (s, 9H), 0.80 (t, *J* = 7.3 Hz, 3H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ: 215.7, 140.0, 128.7, 128.4, 126.9, 54.6, 45.3, 28.8, 26.6,
12.6 ppm. IR: 2954, 2922, 2852, 1740, 1659, 1632, 1459, 1377, 1189, 1082, 970, 848,
766, 668 cm⁻¹. HRMS (ESI) for C₁₄H₂₁O⁺ [(M+H)⁺]: calculated 205.1587, found 205.1585.

2-(3-Benzoylphenyl)-1-(1-methylcyclohexyl)propan-1-one (18)

Me

Chemical Formula: C₂₃H₂₆O₂ Molecular Weight: 334.4590

Prepared according to the general procedure using **1e** (53 mg, 0.24 mmol, 1.2 equiv), **2j** (80 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **18** (24 mg, 36% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.80 – 7.77 (m, 2H), 7.75 – 7.74 (m, 1H), 7.66 – 7.63 (m, 1H), 7.63 – 7.57 (m, 2H), 7.51 – 7.47 (m, 2H), 7.42 (t, *J* = 7.7 Hz, 1H), 4.35 (q, *J* = 6.9 Hz, 1H), 2.02 – 1.82 (m, 2H), 1.56 – 1.49 (m, 2H), 1.41 (d, *J* = 6.9 Hz, 3H), 1.38 – 1.25 (m, 6H), 1.08 (s, 3H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 215.8, 196.8, 142.0, 138.0, 137.7, 132.7, 131.9, 130.2, 129.8, 128.7, 128.4, 49.4, 45.9, 34.6, 34.5, 26.0, 22.9, 22.8, 21.6 ppm. **IR:** 2926, 2853, 1700, 1659, 1596, 1579, 1447, 1373, 1317, 1280, 1178, 1075, 998, 950, 820, 785, 718, 702, 644, 603 cm⁻¹. **HRMS** (ESI) for C₂₃H₂₇O₂+ [(M+H)+]: calculated 335.2006, found 335.2002.

tert-Butyl-2-(2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoyl)pyrrolidine-1carboxylate (19)

Chemical Formula: C₂₆H₃₀CINO₅ Molecular Weight: 471.9780

Prepared according to the general procedure using **1d** (95 mg, 0.24 mmol, 1.2 equiv), **2k** (72 mg, 0.20 mmol, 1.0 equiv), NiBr₂*glyme (6.1 mg, 20 μmol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μmol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **19** (43 mg, 46% yield, the ratio of two rotamers is 1.5:1) as a yellow oil. **¹H NMR** (600 MHz, CDCl₃) for rotamers (* minor rotamer) δ: 7.80 – 7.70 (m, 4H), 7.48 – 7.44 (m, 2H), 7.08 – 7.05 (m, 2H), (5.11*) 5.06 (dd, J = 12.0, 6.0 Hz, 1H), 3.61 – 3.42 (m, 2H), 2.43 – 1.91 (m, 2H), 1.92 – 1.77 (m, 2H), 1.64 (1.58*) (d, J = 6.0 Hz, 6H), 1.47 (1.45*) (s, 9H) ppm. ¹³C NMR (151 MHz, CDCl₃) for rotamers (* minor rotamer) δ: 210.4 (209.7*), 194.5 (194.4*), 159.1 (158.5*), 154.38 (154.0*), (138.9*) 138.7, 136.4 (136.2*), 132.9 (132.4*), (132.0*) 131.9, (131.6*) 131.4, (128.8*) 128.7, (121.7*) 120.8, (86.6*) 86.2, (80.2*) 79.7, (61.7*) 60.7, 47.1 (46.9*), (30.6*) 30.1, (28.7*) 28.6, 25.2 (25.1*), (24.4*) 24.4 ppm.IR: 2926, 2853, 2369, 2164, 2032, 1978, 1718, 1597, 1508, 1457, 1395, 1246, 1162, 927, 764, 645 cm⁻¹. HRMS (ESI) for C₂₆H₃₀CINO₅Na⁺ [(M+Na)⁺]: calculated 494.1705, found 494.1692.

1-(4,4-Difluorocyclohexyl)-5-(2,5-dimethylphenoxy)-2,2-dimethylpentan-1-one (20)

Chemical Formula: C₂₁H₃₀F₂O₂ Molecular Weight: 352.4658

Prepared according to the general procedure using **1c** (66 mg, 0.24 mmol, 1.2 equiv), **2l** (62 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **20** (25 mg, 35% yield) as a colorless oil.

¹H NMR (600 MHz, CDCl₃) δ: 7.00 (d, J = 7.4 Hz, 1H), 6.66 (d, J = 7.5 Hz, 1H), 6.60 (s, 1H), 3.92 (t, J = 5.9 Hz, 2H), 2.93 – 2.87 (m, 1H), 2.30 (s, 3H), 2.16 (s, 3H), 1.82 – 1.76

(m, 2H), 1.75 - 1.72 (m, 4H), 1.72 - 1.65 (m, 4H), 1.64 - 1.62 (m, 2H), 1.18 (s, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ : 217.1, 156.9, 136.7, 130.5, 123.5, 122.6 (t, J = 249.2 Hz), 121.0, 112.0, 67.9, 48.3, 42.4, 36.0, 33.1 (t, J = 24.2 Hz), 26.6, 26.5, 25.2, 24.0, 21.5, 16.0 ppm. ¹⁹F NMR (565 MHz, CDCl₃) δ : -91.65 (d, J = 231.7 Hz, 1F), -101.64 (d, J = 237.3 Hz, 1F) ppm. IR: 2922, 2852, 2953, 1735, 1654, 1507, 1458, 1376, 1188, 1129, 969, 856, 720, 668 cm⁻¹. HRMS (ESI) for C₂₁H₃₁F₂O₂⁺ [(M+H)⁺]: calculated 353.2287, found 353.2279.

4-(6-Methoxynaphthalen-2-yl)-2,2-dimethylpentan-3-one (21)

Chemical Formula: C₁₈H₂₂O₂ Molecular Weight: 270.3720

Prepared according to the general procedure using **1a** (43 mg, 0.24 mmol, 1.2 equiv), **2m** (69 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **21** (36 mg, 66% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.68 (dd, *J* = 3.4, 8.8 Hz, 2H), 7.63 (d, *J* = 1.8 Hz, 1H), 7.40 (dd, *J* = 1.9, 8.4 Hz, 1H), 7.13 (dd, *J* = 8.8, 2.5 Hz, 1H), 7.09 (d, *J* = 2.6 Hz, 1H), 4.38 (q, *J* = 6.9 Hz, 1H), 3.90 (s, 3H), 1.43 (d, *J* = 6.9 Hz, 3H), 1.12 (s, 9H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 216.4, 157.7, 136.7, 133.6, 129.4, 129.1, 127.3, 126.8, 126.3, 119.0, 105.6, 55.4, 46.4, 45.3, 26.8, 21.3 ppm. **IR**: 2954, 2924, 2868, 1702, 1633, 1605, 1505, 1478, 1463, 1392, 1366, 1264, 1227, 1213, 1172, 1034, 976, 922, 852, 811, 751 cm⁻¹. **HRMS** (ESI) for C₁₈H₂₃O₂⁺ [(M+H)⁺]: calculated 271.1693, found 271.1690. **Melting point:** 66.9 – 68.7 °C.

2-(4-(2,2-Dichlorocyclopropyl)phenoxy)-4-ethyl-2-methyloctan-3-one (22)

Chemical Formula: C₂₀H₂₈Cl₂O₂ Molecular Weight: 371.3420

Prepared according to the general procedure using **1g** (88 mg, 0.24 mmol, 1.2 equiv), **2n** (58 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **22** (31 mg, 41% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.21 – 7.07 (m, 2H), 7.01 – 6.83 (m, 2H), 3.35 – 3.20 (m, 1H), 2.86 (dd, J = 10.7, 8.3 Hz, 1H), 1.96 (dd, J = 10.7, 7.4 Hz, 1H), 1.81 (dd, J = 8.4, 7.4 Hz, 1H), 1.75 – 1.61 (m, 2H), 1.59 – 1.44 (m, 2H), 1.42 (s, 6H), 1.29 – 1.21 (m, 4H), 0.90 – 0.84 (m, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ: 216.3, 154.4, 134.5, 129.7, 122.0, 85.6, 60.9, 46.8, 35.0, 31.2, 29.8, 26.0, 24.8, 24.4, 24.3, 23.0, 14.1, 12.0 ppm. **IR:** 2959, 2930, 2872, 2359, 1711, 1609, 1509, 1459, 1378, 1228, 1159, 1114, 1044, 954, 836, 763, 578 cm⁻¹. **HRMS** (ESI) for C₂₀H₂₉Cl₂O₂⁺ [(M+H)⁺]: calculated 371.1539, found 371.1529.

8-(2,5-Dimethylphenoxy)-5,5-dimethyl-3-phenyloctan-4-one (23)

Chemical Formula: C₂₄H₃₂O₂ Molecular Weight: 352.5180

Prepared according to the general procedure using **1c** (66 mg, 0.24 mmol, 1.2 equiv), **2i** (62 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 40/1 to PE/DCM = 1/1) to give the product **23** (41 mg, 58% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.27 – 7.25 (m, 4H), 7.23 – 7.19 (m, 1H), 6.99 (d, J = 7.4 Hz, 1H), 6.65 (d, J = 7.5 Hz, 1H), 6.54 (s, 1H), 3.98 (t, J = 7.4 Hz, 1H), 3.79 – 3.69 (m, 2H), 2.30 (s, 3H), 2.15 (s, 3H), 1.99 – 1.89 (m, 1H), 1.77 – 1.75 (m, 1H), 1.72 – 1.57 (m, 2H), 1.54 – 1.23 (m, 2H), 1.09 (d, J = 8.4 Hz, 6H), 0.79 (t, J = 7.3 Hz, 3H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ: 215.3, 157.1, 139.6, 136.6, 130.4, 128.7, 128.5, 127.0, 123.7, 120.8, 112.1, 68.1, 54.8, 48.5, 36.2, 28.7, 25.0, 24.7, 24.6, 21.5, 15.9, 12.5 ppm. **IR:** 2959, 2923, 2870, 1699, 1614, 1584, 1508, 1453, 1378, 1284, 1263, 1156, 1129, 1032, 842, 802, 766, 740, 699, 586 cm⁻¹. **HRMS** (ESI) for C₂₄H₃₃O₂⁺ [(M+H)⁺]: calculated 353.2475, found 353.2468.

1-(1-(2,2-Difluorobenzo[*a*][1,3]dioxol-5-yl)cyclopropyl)-2,2-dimethylpropan-1-one(24)

Chemical Formula: C₁₅H₁₆F₂O₃ Molecular Weight: 282.2868

Prepared according to the general procedure using **1a** (43 mg, 0.24 mmol, 1.2 equiv), **2o** (77 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **24** (32 mg, 57% yield) as a colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ : 7.06 (dd, *J* = 8.2, 1.8 Hz, 1H), 7.04 (d, *J* = 1.7 Hz, 1H), 6.99 (d, *J* = 8.2 Hz, 1H), 1.45 – 1.42 (m, 2H), 1.03 (s, 9H), 1.03 – 1.00 (m, 2H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 212.4, 143.8, 142.8, 137.3, 131.8 (t, *J* = 255.2 Hz), 125.4, 111.2, 109.3, 46.0, 36.0, 28.5, 15.6 ppm. ¹⁹**F NMR** (565 MHz, CDCl₃) δ : -49.97 ppm. **IR:** 2954, 2924, 2854, 2359, 1686, 1495, 1458, 1364, 1238, 1160, 1032, 957, 815, 705, 639 cm⁻¹. **HRMS** (ESI) for C₁₅H₁₇F₂O₃⁺ [(M+H)⁺]: calculated 283.1140, found 283.1137.

2-(4-(2,2-Dichlorocyclopropyl)phenoxy)-2-methyl-1-(1-methylcyclopropyl)propan-1one (25)

CI

Chemical Formula: C₁₇H₂₀Cl₂O₂ Molecular Weight: 327.2450

Prepared according to the general procedure using **1g** (88 mg, 0.24 mmol, 1.2 equiv), **2p** (49 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'- di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **25** (40 mg, 61% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.14 – 7.08 (m, 2H), 6.79 – 6.73 (m, 2H), 2.83 (dd, *J* = 10.7, 8.3 Hz, 1H), 1.94 (dd, *J* = 10.7, 7.3 Hz, 1H), 1.86 – 1.73 (m, 1H), 1.55 (s, 6H), 1.44 (s, 3H), 1.35 – 1.33 (m, 2H), 0.66 – 0.63 (m, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 213.8, 155.4, 129.9, 127.9, 117.8, 85.3, 61.0, 35.0, 26.0, 25.4, 25.1, 25.0, 22.5, 22.4, 21.0 ppm. **IR:** 2925, 2359, 1681, 1610, 1510, 1464, 1380, 1264, 1241, 1154, 1054, 960, 878, 832, 735, 703, 557 cm⁻¹. **HRMS** (ESI) for C₁₇H₂₁Cl₂O₂⁺ [(M+H)⁺]: calculated 327.0913, found 327.0909.

2-(4-(2,2-Dichlorocyclopropyl)phenoxy)-2-methyl-1-(3-methyloxetan-3-yl)propan-1one (26)

Chemical Formula: C₁₇H₂₀Cl₂O₃ Molecular Weight: 343.2440

Prepared according to the general procedure using **1g** (88 mg, 0.24 mmol, 1.2 equiv), **2q** (52 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1)

to give the product 26 (34 mg, 50% yield) as a colorless oil.

¹**H NMR** (600 MHz, CDCl₃) δ : 7.18 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 7.1 Hz, 2H), 5.13 (d, *J* = 6.4 Hz, 2H), 4.42 (d, *J* = 6.4 Hz, 2H), 2.90 – 2.84 (m, 1H), 1.98 (m, 1H), 1.84 (s, 3H), 1.83 – 1.79 (m, 1H), 1.47 (s, 6H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 214.2, 153.1, 130.6, 129.9, 123.0, 87.1, 79.8, 60.8, 50.9, 34.9, 26.0, 25.6 (2C), 23.3 ppm. **IR**: 2960, 2877, 1710, 1608, 1509, 1463, 1375, 1225, 1171, 1152, 1041, 971, 937, 838, 763, 562 cm⁻¹. **HRMS** (ESI) for C₁₇H₂₁Cl₂O₃⁺ [(M+H)⁺]: calculated 343.0862, found 343.0860.

tert-Butyl (5-(4-methoxyphenyl)-2-methyl-3-oxopentan-2-yl)carbamate (27)

Chemical Formula: C₁₈H₂₇NO₄ Molecular Weight: 321.4170

Prepared according to the general procedure using **1h** (67 mg, 0.24 mmol, 1.2 equiv), **2r** (65 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1) to give the product **27** (43 mg, 67% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.18 – 7.04 (m, 2H), 6.85 – 6.74 (m, 2H), 3.78 (s, 3H), 2.89 – 2.77 (m, 4H), 1.43 (s, 9H), 1.32 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ: 210.4, 158.1, 154.7, 133.6, 129.5, 114.0, 79.9, 55.4, 37.8, 30.5, 29.8, 29.4, 28.5, 24.1 ppm. **IR:** 3365, 2926, 1711, 1611, 1511, 1454, 1365, 1299, 1244, 1176, 1082, 1035, 824, 737 cm⁻¹. **HRMS** (ESI) for C₁₈H₂₇NO₄Na⁺ [(M+Na)⁺]: calculated 344.1832, found 344.1825.

Benzyl (5-(4-methoxyphenyl)-2-methyl-3-oxopentan-2-yl)carbamate (28)

ОМе

Chemical Formula: C₂₁H₂₅NO₄ Molecular Weight: 355.4340 Prepared according to the general procedure using **1i** (75 mg, 0.24 mmol, 1.2 equiv), **2r** (65 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **28** (35 mg, 50% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.37 – 7.33 (m, 5H), 7.07 (d, J = 8.1 Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 5.07 (s, 2H), 3.78 (s, 3H), 2.91 – 2.74 (m, 4H), 1.39 (s, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ: 209.9, 158.1, 155.3, 133.3, 129.5, 128.7, 128.7, 128.3, 128.2, 114.0, 66.7, 61.1, 55.4, 37.9, 29.3, 23.9 ppm. **IR:** 3340, 2929, 1704, 1611, 1511, 1454, 1384, 1244, 1177, 1069, 1029, 953, 824, 739, 697 cm⁻¹. **HRMS** (ESI) for C₂₁H₂₆NO₄⁺ [(M+H)⁺]: calculated 356.1856, found 356.1849.

tert-Butyl (1-(3-phenylpropanoyl)cyclopropyl)carbamate (29)

Chemical Formula: C₁₇H₂₃NO₃ Molecular Weight: 289.3750

Prepared according to the general procedure using **1**j (67 mg, 0.24 mmol, 1.2 equiv), **2a** (59 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **29** (31 mg, 53% yield) as a yellow oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.30 – 7.28 (m, 2H), 7.22 – 7.14 (m, 3H), 5.12 (s, 1H), 3.05 – 2.91 (m, 2H), 2.91 – 2.85 (m, 2H), 1.58 – 1.50 (m, 2H), 1.44 (s, 9H), 1.16 – 1.02 (m, 2H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 209.4, 155.9, 141.5, 128.6, 128.5, 126.2, 80.4, 41.6, 40.2, 30.0, 28.4, 20.6 ppm. **IR:** 3347, 2976, 2927, 1688, 1496, 1454, 1365, 1248, 1163, 1070, 1013, 749, 698 cm⁻¹. **HRMS** (ESI) for C₁₇H₂₃NO₃Na⁺ [(M+Na)⁺]: calculated 312.1570, found 312.1559.

Benzyl -(4-ethyl-2-methyl-3-oxooctan-2-yl)carbamate (30)

Prepared according to the general procedure using **1i** (75 mg, 0.24 mmol, 1.2 equiv), **2n** (58 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 10/1) to give the product **30** (24 mg, 37% yield) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ : 7.40 – 7.28 (m, 5H), 6.08 (s, 1H), 5.07 (s, 2H), 2.77 (p, J = 6.4 Hz, 1H), 1.57 (s, 6H), 1.54 – 1.38 (m, 3H), 1.35 – 1.09 (m, 5H), 0.90 – 0.81 (m, 6H) ppm. ¹³**C NMR** (101 MHz, CDCl₃) δ : 213.5, 154.8, 136.8, 128.6, 128.2, 128.1, 66.3, 61.5, 46.5, 32.1, 29.9, 25.6, 23.3, 23.0, 14.1, 12.2 ppm. **IR**: 3396, 2930, 2872, 1699, 1497, 1454, 1383, 1262, 1087, 1029, 824, 735, 697 cm⁻¹. **HRMS** (ESI) for C₁₉H₃₀NO₃⁺ [(M+H)⁺]: calculated 320.2220, found 320.2211.

(9*H*-Fluoren-9-yl)methyl (5-(4,5-diphenyloxazol-2-yl)-2-methyl-3-oxopentan-2-yl)carbamate (31)

Chemical Formula: C₃₆H₃₂N₂O₄ Molecular Weight: 556.6620

Prepared according to the general procedure using **1k** (96 mg, 0.24 mmol, 1.2 equiv), **2s** (88 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1 to 10/1) to give the product **31** (34 mg, 31% yield) as a white solid.
¹**H NMR** (600 MHz, CDCl₃) δ: 7.76 – 7.73 (m, 2H), 7.62 – 7.54 (m, 6H), 7.43 – 7.36 (m, 2H), 7.36 – 7.31 (m, 5H), 7.31 – 7.27 (m, 3H), 5.55 (s, 1H), 4.43 (d, J = 6.3 Hz, 2H), 4.19 (t, J = 6.5 Hz, 1H), 3.16 – 3.07 (m, 4H), 1.50 (s, 6H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ: 209.0, 162.5, 155.1, 145.5, 143.9, 141.5, 135.1, 129.6, 129.1, 128.8, 128.7, 128.6, 128.1, 128.0, 127.8, 127.2, 126.6, 125.1, 120.1, 66.4, 61.1, 47.5, 32.6, 24.3, 22.6 ppm. **IR:** 2923, 1715, 1569, 1501, 1448, 1383, 1363, 1260, 1177, 1105, 1079, 1024, 963, 912, 761, 734, 693, 674, 620, 586 cm⁻¹. **HRMS** (ESI) for C₃₆H₃₃N₂O₄⁺ [(M+H)⁺]: calculated 557.2435, found 557.2433. **Melting point:** 68.5 – 69.5 °C.

tert-Butyl (1-cyclohexyl-2-methyl-1-oxopropan-2-yl)carbamate (32)

Me Me Boc

Chemical Formula: C₁₅H₂₇NO₃ Molecular Weight: 269.3850

Prepared according to the general procedure using **1h** (67 mg, 0.24 mmol, 1.2 equiv), **2t** (55 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1 to 10/1) to give the product **32** (23 mg, 43% yield) as a white solid.

¹**H NMR** (400 MHz, CDCl₃) δ : 2.94 – 2.76 (m, 1H), 1.83 – 1.73 (m, 2H), 1.72 – 1.68 (m, 2H), 1.67 – 1.54 (m, 2H), 1.48 (s, 6H), 1.43 (s, 9H), 1.40 – 1.14 (m, 4H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 214.2, 154.6, 79.4, 61.1, 44.3, 30.3, 29.8, 28.5, 25.9, 23.6 ppm. **IR**: 3415, 2930, 2853, 1734, 1598, 1436, 1376, 1248, 1195, 1154, 995, 859, 782 cm⁻¹. **HRMS** (ESI) for C₁₅H₂₈NO₃⁺ [(M+H)⁺]: calculated 270.2064, found 270.2054. **Melting point:** 78.5 – 79.8 °C.

tert-Butyl (1-(1-(2,2-difluorobenzo[*d*][1,3]dioxol-5-yl)cyclopropane-1-carbonyl)cyclopropyl)carbamate (33)

Chemical Formula: C₁₉H₂₁F₂NO₅ Molecular Weight: 381.3758

Prepared according to the general procedure using **1j** (67 mg, 0.24 mmol, 1.2 equiv), **2o** (77 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1 to 10/1) to give the product **33** (32 mg, 42% yield) as a white solid.

¹**H NMR** (600 MHz, CDCl₃) δ : 7.07 – 6.96 (m, 3H), 1.57 – 1.52 (m, 4H), 1.46 (s, 9H), 1.11 – 0.90 (m, 4H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ : 206.7, 155.0, 144.1, 142.7, 136.9, 131.8 (t, *J* = 255.2 Hz), 123.7, 109.7, 109.5, 80.1, 41.2, 35.3, 28.5, 20.5, 15.6 ppm. ¹⁹**F NMR** (565 MHz, CDCl₃) δ : -49.83 ppm. **IR:** 3378, 2927, 1704, 1495, 1441, 1391, 1366, 1234, 1154, 1085, 1055, 1031, 1018, 959, 911, 814, 738, 704, 638, 607 cm⁻¹. **HRMS** (ESI) for C₁₉H₂₂F₂NO₅⁺ [(M+H)⁺]: calculated 382.1461, found 382.1463. **Melting point:** 98.6 – 99.8 °C.

(9*H*-Fluoren-9-yl)methyl (2-methyl-3-oxo-4-(11-oxo-6,11-dihydrodibenzo[*b,e*]oxepin-2-yl)butan-2-yl)carbamate (34)

Fmoc-

Chemical Formula: C₃₄H₂₉NO₅ Molecular Weight: 531.6080

Prepared according to the general procedure using **1k** (96 mg, 0.24 mmol, 1.2 equiv), **2u** (83 mg, 0.20 mmol, 1.0 equiv), NiBr₂•glyme (6.1 mg, 20 μ mol, 0.10 equiv), 4,4'-di(CO₂Me)bpy (5.4 mg, 20 μ mol, 0.10 equiv), HE (76 mg, 0.30 mmol, 1.5 equiv) and DMAc (0.10 M, 2.0 mL). The residue was purified by flash column chromatography (PE/EA = 30/1

to 10/1) to give the product 34 (40 mg, 38% yield) as a yellow oil.

¹**H NMR** (600 MHz, CDCl₃) δ: 7.99 (s, 1H), 7.88 (d, J = 6.5 Hz, 1H), 7.76 (d, J = 7.5 Hz, 2H), 7.61 (d, J = 7.5 Hz, 2H), 7.56 – 7.54 (m, 1H), 7.49 – 7.44 (m, 1H), 7.41 – 7.34 (m, 4H), 7.33 – 7.29 (m, 2H), 7.02 (d, J = 8.4 Hz, 1H), 5.45 (s, 1H), 5.18 (s, 2H), 4.49 – 4.45 (m, 2H), 4.22 – 4.21 (m, 1H), 3.80 (s, 2H), 1.49 (s, 6H) ppm. ¹³**C NMR** (151 MHz, CDCl₃) δ: 208.1, 191.0, 160.5, 155.1, 143.9, 141.5, 140.6, 137.2, 135.8, 132.9, 132.7, 129.6, 129.4, 128.4, 127.9 (2C), 127.2, 125.2, 121.0, 120.2, 73.8, 66.4, 61.3, 47.5, 41.2, 29.8, 24.3 ppm. **IR:** 3341, 2923, 2853, 1715, 1644, 1610, 1490, 1450, 1413, 1379, 1299, 1256, 1138, 1121, 1089, 1051, 1016, 906, 802, 759, 728, 643, 621, 540 cm⁻¹. **HRMS** (ESI) for C₃₄H₂₉NO₅Na⁺ [(M+Na)⁺]: calculated 554.1938, found 554.1919.

8 References

- [1] X. Xi, Y. Luo, W. Li, M. Xu, H. Zhao, Y. Chen, S. Zheng, X. Qi and W. Yuan, Angew. Chem. Int. Ed., 2022, 61, e202114731.
- [2] X. Wu, X. Li, W. Huang, Y. Wang, H. Xu, L. Cai, J. Qu and Y. Chen, *Org. Lett.*, 2019, 21, 2453.
- [3] J. Wang, B. P. Cary, P. D. Beyer, S. H. Gellman and D. J. Weix, *Angew. Chem. Int. Ed.*, 2019, 58, 12081.
- [4] J. T. M Correia, G. P. Silva, C. M. Kisukuri, E. André, B. Pires, P. S. Carneiro and M. W. Paixaõ. *J. Org. Chem.*, 2020, **85**, 9820.
- [5] C. M. Chan, Q. Xing, Y. C. Chow, S. F. Hung and W. Y. Yu, Org. Lett., 2019, 21, 8037.
- [6] H. M. Huang, M. Koy, E. P. Serrano, M. J. Pflüger, L. Schwarz and F. Glorius, *Nat. Catal.*, 2020, **3**, 393.
- [7] S. Ni, N. M. Padial, C. Kingston, J. C. Vantourout, D. C. Schmitt, J. T. Edwards, M. M. Kruszyk, R. R. Merchant, P. K. Mykhailiuk, B. B. Sanchez, S. Yang, M. A. Perry, G. M. Gallego, J. J. Mousseau, M. R. Collins, R. J. Cherney, P. S. Lebed, J. S. Chen, T. Qin and P. S. Baran, *J. Am. Chem. Soc.*, 2019, **141**, 6726.
- [8] X. J. Liu, S. Y. Zhou, Y. Xiao, Q. Sun, X. Lu, Y. Li and J. H. Li, Org. Lett., 2021, 23, 7839.
- [9] D. L. Wei, X. P. Li, L. Shen, Y. Z. Ding, K. J. Liang and C. F. Xia, Org. Chem. Front., 2021, 8, 6364.
- [10] H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.
- [11] J. S. Renny, L. L. Tomasevich, E. H. Tallmadge and D. B. Collum, Angew. Chem. Int. Ed., 2013, 52, 11998.

9 NMR Spectra

¹H NMR of 3 (400 MHz, CDCl₃)

170 160 150 140 130 -10 230 220 210 200 190 180 120 110 100 90 80 $\frac{1}{70}$ 60 50 30 20 10 0 40 fl (ppm)

¹³C NMR of 5 (101 MHz, CDCl₃)

¹³C NMR of 6 (101 MHz, CDCI₃)

¹H NMR of 7 (600 MHz, CDCl₃)

0 -10 210 200 180 170 160 150 140 130 fl (ppm)

¹H NMR of 10 (400 MHz, CDCl₃)

¹³C NMR of 10 (101 MHz, CDCI₃)

¹H NMR of 11 (400 MHz, CDCl₃)

¹³C NMR of 11 (101 MHz, CDCl₃)

¹³C NMR of 12 (101 MHz, CDCI₃)

S61

¹³C NMR of 13 (101 MHz, CDCl₃)

¹H NMR of 15 (400 MHz, CDCI₃)

0 -10 210 200 190 180 170 160 150 140 130 fl (ppm)

¹H NMR of 16 (400 MHz, CDCI₃)

¹³C NMR of 16 (101 MHz, CDCl₃)

¹H NMR of 17 (400 MHz, CDCl₃)

¹³C NMR of 17 (101 MHz, CDCl₃)

¹H NMR of 18 (400 MHz, CDCI₃)

¹³C NMR of 18 (151 MHz, CDCI₃)

 $\begin{array}{c} 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.12\\ 5.22\\$

¹H NMR of 19 (600 MHz, CDCl₃)

ブブブブブ

Σ

ファファファ

S73

¹³C NMR of 19) (151 MHz, CDCI₃)

¹³C NMR of 20 (151 MHz, CDCI₃)

S76

$^{19}\mathsf{F}$ NMR of 20 (565 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR of 21 (400 MHz, CDCI₃)

¹³C NMR of 21 (101 MHz, CDCI₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) ¹H NMR of 22 (400 MHz, CDCl₃)

¹³C NMR of 22 (101 MHz, CDCl₃)

¹H NMR of 23 (400 MHz, CDCl₃)

¹³C NMR of 23 (101 MHz, CDCl₃)

S84

¹³C NMR of 24 (151 MHz, CDCl₃)

¹⁹F NMR of 24 (565 MHz, CDCI₃)

24

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR of 25 (400 MHz, CDCl₃)

¹³C NMR of 25 (101 MHz, CDCl₃)

0 -10 210 200 190 180 170 160 150 140 130 110 100 fl (ppm)

¹H NMR of 26 (600 MHz, CDCl₃)

¹³C NMR of 26 (151 MHz, CDCI₃)

	— 153.06	- 130.60 - 129.93 - 123.02	 60.80 50.86	- 34.93 26.04 25.64 23.29	
CI CI CI Me Me O					
26					
			1		

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR of 27 (400 MHz, CDCl₃)

fl (ppm)

¹H NMR of 29 (400 MHz, CDCl₃)

¹³C NMR of 29 (101 MHz, CDCI₃)

¹H NMR of 30 (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of 31 (600 MHz, CDCl₃)

¹³C NMR of 31 (151 MHz, CDCI₃)

¹H NMR of 32 (400 MHz, CDCl₃)

¹³C NMR of 32 (151 MHz, CDCl₃)

S103

¹³C NMR of 33 (151 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR of 34 (600 MHz, CDCl₃)

¹³C NMR of 34 (151 MHz, CDCI₃)

¹H NMR of 35 (600 MHz, CDCl₃)
¹³C NMR of 35 (101 MHz, CDCl₃)

S110

¹³C NMR of 36 (101 MHz, CDCl₃)

¹H NMR of 37 (600 MHz, CDCl₃)

¹³C NMR of 37 (151 MHz, CDCl₃)

¹H NMR of 38 (600 MHz, CDCl₃)

¹³C NMR of 38 (151 MHz, CDCI₃)

¹³C NMR of 39 (151 MHz, CDCI₃)

