Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2023

Supporting Information

Controllable cyclization of alkynyl thioethers via Brønsted acid-catalyzed dearomatization

Xin-Yang Fan,^{‡a} Xin Liu,^{‡a} Yin-Zhu Kong,^a Bo-Han Zhu,^b Jian Lin,^a Peng-Cheng Qian, ^{*b} Bo Zhou^a and Long-Wu Ye^{*a,c,d}

^a Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. E-mail: <u>longwuye@xmu.edu.cn</u>

^b Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China. E-mail: <u>qpc@wzu.edu.cn</u>

^c State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.

^d State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

Content	Page Number
1. General Information	2
2. Preparation of Starting Materials	3
3. General Procedures and Transformations	12
4. Crystal Data	36
5. HPLC Chromatograms	39
6. NMR Spectra	40

1. General Information

Ethyl acetate (ACS grade), hexanes (ACS grade), anhydrous 1,2-dichloroethane (ACS grade) and toluene (ACS grade) were obtained commercially and used without further purification. Methylene chloride and tetrahydrofuran were purified according to standard methods unless otherwise noted. Commercially available reagents were used without further purification. Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed over silica gel (300-400 mesh). Infrared spectra were recorded on a Nicolet AVATER FTIR330 spectrometer as thin film and are reported in reciprocal centimeter (cm⁻¹). Mass spectra were recorded with Micromass QTOF2 Quadrupole/Time-of-Flight Tandem mass spectrometer using electron spray ionization.

¹H NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data is being reported as (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, brs = broad singlet, coupling constant(s) in Hz, integration).

¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer and a Bruker AV-500 spectrometer in chloroform-d₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard.

2. Preparation of Starting Materials

Alkynyl thioethers **1a–10** were prepared according to the following procedure.^{1,2}

To a solution of 4-bromo-1-phenol derivative (2.0 mmol) and imidazole (2.4 mmol, 0.18 g) in DCM (10 mL) was added TIPSCI (2.2 mmol, 0.43 g) at room temperature. The resulting mixture was stirred at room temperature for 4 h, and the progress of the reaction was monitored by TLC. Upon completion, the solution was filtered through a pad of silica gel and concentrated under reduced pressure. The crude product was directly used in the next step without further purification. After dissolving above crude product 1,4-dioxane (15)mL) H₂O in and (3 mL), (2 -((trimethylsilyl)ethynyl)aryl)boronic acid (2.4 mmol), Cs₂CO₃ (2.4 mmol, 0.78 g) and Pd(PPh₃)₄ (0.04 mmol, 46 mg) were sequentially added at room temperature under N₂ atmosphere. The reaction mixture was stirred at 80 °C overnight, and the progress of the reaction was monitored by TLC. Upon completion, the reaction was filtered, extracted with ethyl acetate for 3 times, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the trimethyl(biarylethynyl)silane (47-89%, 2 steps). The above trimethyl(biarylethynyl)silane (1.0 mmol) was dissolved in MeOH (5 mL), and K₂CO₃ (2.5 mmol, 0.35 g) was added in one portion. The mixture was stirred at

room temperature for 30 min. Upon completion, the mixture was filtered through a pad of silica gel and the filtrate was concentrated under vacuum. The crude product was directly used in the next step without further purification. The obtained crude product was dissolved in dry THF (5.0 mL), and "BuLi (2.5 M in hexane, 1.2 mmol) was added dropwise at -78 °C under N₂ atmosphere. After stirring at this temperature for 0.5 h, sulfur powder (1.0 mmol, 32 mg) was added and the mixture was stirred at -78 °C for another 1 h. Then corresponding organobromide (1.0 mmol) was added dropwise at 0 °C, and the reaction mixture was stirred room temperature for additional 12 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with saturated aqueous NH₄Cl and extracted with ethyl acetate for 3 times. The organic layer was dried over MgSO₄, concentrated and purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the alkynyl thioether product (62–81%, 2 steps).

To a solution of above alkynyl thioether (0.2 mmol) in THF (2 mL) was added TBAF·3H₂O (0.24 mmol, 76 mg in 2 mL THF) dropwise at 0 °C. After stirring for 5 min, the reaction was quenched by saturated aqueous NH₄Cl and extracted with ethyl acetate for 3 times. The organic layer was dried over MgSO₄, concentrated and purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired alkynyl thioether **1a–1o** (95–99%).

2'-((benzylthio)ethynyl)-[1,1'-biphenyl]-4-ol (1a)

Compound **1a** was prepared in 65% yield (246.5 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.40 (m, 3H), 7.32 – 7.30 (m, 2H), 7.29 – 7.26 (m, 3H), 7.24 – 7.20 (m, 3H), 6.86 – 6.82 (m, 2H), 5.09 (s, 1H), 3.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 142.9, 136.8, 133.1, 132.7, 130.5, 129.3, 128.9, 128.5, 128.1, 127.6, 126.6, 121.6, 114.8, 94.4, 81.8, 40.3; IR (neat): 3113(bs), 2164(s), 1653, 1616, 1405, 1117, 963, 739; HRESIMS Calcd for [C₂₁H₁₆NaOS]⁺ (M + Na⁺) 339.0814, found 339.0816.

2'-((ethylthio)ethynyl)-[1,1'-biphenyl]-4-ol (1b)

Compound **1b** was prepared in 57% yield (180.1 mg) over 5 steps as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.48 (m, 1H), 7.47 – 7.44 (m, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.20 (m, 1H), 6.92 – 6.86 (m, 2H), 5.12 (s, 1H), 2.65 (q, *J* = 7.2 Hz, 2H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 142.9, 132.9, 132.4, 130.5, 129.2, 127.9, 126.5, 121.8, 115.0, 93.5, 81.9, 29.8, 14.7; IR (neat): 3410(bs), 2162(s), 1612, 1474, 1258, 1172, 834, 760; HRESIMS Calcd for [C₁₆H₁₄NaOS]⁺ (M + Na⁺) 277.0658, found 277.0663.

2'-((phenylthio)ethynyl)-[1,1'-biphenyl]-4-ol (1c)

Compound **1c** was prepared in 63% yield (199.2 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.35 – 7.33 (m, 2H), 7.29 – 7.16 (m, 6H), 6.87 (d, *J* = 8.4 Hz, 2H), 3.90 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 143.2, 133.1, 132.8, 132.5, 130.5, 129.4, 129.1, 128.4, 126.7, 126.3, 126.1, 121.4, 115.1, 98.0, 77.9; IR (neat): 3403(bs), 2228(s), 1635, 1405, 1107, 1080, 883, 739; HRESIMS Calcd for [C₂₀H₁₄NaOS]⁺ (M + Na⁺) 325.0658, found 325.0652.

2'-((benzylthio)ethynyl)-4'-methyl-[1,1'-biphenyl]-4-ol (1d)

Compound **1d** was prepared in 42% yield (132.7 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.27 – 7.23 (m, 5H), 7.21 – 7.19 (m, 2H), 7.11 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.83 – 6.80 (m, 2H), 5.23 (s, 1H), 3.86 (s, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 140.1, 136.7, 136.2, 133.2, 133.0, 130.4, 129.1, 128.9, 128.5, 127.6, 121.3, 114.8, 94.6, 81.3, 40.3, 20.7; IR (neat): 3309(bs), 2193(s), 1511, 1262, 910, 883, 717, 686; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0973.

2'-((benzylthio)ethynyl)-5'-methyl-[1,1'-biphenyl]-4-ol (1e)

Compound **1e** was prepared in 71% yield (224.3 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.39 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.25 (m, 3H), 7.22 – 7.20 (m, 2H), 7.13 (s, 1H), 7.04 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.84 – 6.81 (m, 2H), 5.05 (s, 1H), 3.87 (s, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.0, 142.9, 138.3, 136.8, 133.2, 132.8, 130.5, 130.0, 128.9, 128.5, 127.6, 127.4, 118.6, 114.8, 94.5, 80.7, 40.3, 21.4; IR (neat): 3447(bs), 2165(s), 1653, 1455, 1264, 1080, 819, 698; HRESIMS Calcd for $[C_{22}H_{18}NaOS]^+$ (M + Na⁺) 353.0971, found 353.0956.

2'-((benzylthio)ethynyl)-5'-methoxy-[1,1'-biphenyl]-4-ol (1f)

Compound **1f** was prepared in 51% yield (161.6 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.34 (m, 3H), 7.25 – 7.18 (m, 5H), 6.84 – 6.80 (m, 3H), 6.75 (dd, *J* = 8.6, 2.6 Hz, 1H), 5.27 (brs, 1H), 3.83 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 155.3, 145.0, 136.9, 134.6, 132.9, 130.4, 128.9, 128.5, 127.5, 114.8, 114.6, 113.9, 112.5, 94.2, 79.6, 55.3, 40.3; IR (neat): 3431(bs), 2160(s), 1600, 1517, 1481, 1221, 1173, 831, 698; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0916.

2'-((benzylthio)ethynyl)-5'-chloro-[1,1'-biphenyl]-4-ol (1g)

Compound **1g** was prepared in 66% yield (208.6 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.38 (m, 2H), 7.33 – 7.27 (m, 5H), 7.20 – 7.17 (m, 3H), 6.85 – 6.82 (m, 2H), 5.12 (s, 1H), 3.87 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 144.4, 136.6, 135.3, 133.8, 131.8, 130.4, 129.2, 128.9, 128.5, 127.7, 126.7, 120.1, 115.0, 93.5, 82.9, 40.2; IR (neat): 3439(bs), 2160(s), 1610, 1515, 1237, 1174, 1095, 837; HRESIMS Calcd for [C₂₁H₁₅ClNaOS]⁺ (M + Na⁺) 373.0424, found 373.0438.

2'-((benzylthio)ethynyl)-5'-fluoro-[1,1'-biphenyl]-4-ol (1h)

Compound **1h** was prepared in 37% yield (116.9 mg) over 5 steps as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.33 (m, 3H), 7.25 – 7.20 (m, 3H), 7.19 – 7.16 (m, 2H), 6.98 (dd, J = 9.6, 2.8 Hz, 1H), 6.90 (dd, J = 8.4, 2.4 Hz, 1H), 6.85 (d, J = 8.4 Hz, 2H), 6.32 (brs, 1H), 3.83 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.1 (d, J = 249.0 Hz), 155.7, 145.4 (d, J = 8.0 Hz), 136.6, 134.7 (d, J = 8.0 Hz), 131.6, 130.4, 128.9, 128.5, 127.6, 117.5 (d, J = 3.0 Hz), 116.0 (d, J = 22.0 Hz), 115.0, 113.7 (d, J = 22.0 Hz), 93.5, 81.2, 40.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -111.0; IR (neat): 3362(bs), 2167(s), 1701, 1598, 1517, 1259, 1182, 831, 699; HRESIMS Calcd for [C₂₁H₁₅FNaOS]⁺ (M + Na⁺) 357.0720, found 357.0716.

2'-((benzylthio)ethynyl)-5'-methoxy-[1,1'-biphenyl]-4-ol (1i)

Compound **1i** was prepared in 49% yield (155.8 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 7.32 – 7.27 (m, 4H), 7.23 – 7.21 (m, 2H), 7.10 (dd, J = 9.6, 2.8 Hz, 1H), 7.05 – 7.01 (m, 1H), 6.87 (d, J = 8.4 Hz, 2H), 4.54 (brs, 1H), 3.91 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1 (d, J = 246.0 Hz), 155.5, 139.1 (d, J = 3.0 Hz), 136.5, 132.0, 130.8 (d, J = 9.0 Hz), 130.5, 128.9, 128.6, 127.7, 123.1 (d, J = 10.0 Hz), 118.7 (d, J = 23.0 Hz), 115.3 (d, J = 21.0 Hz), 115.0, 93.6, 83.2, 40.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.5; IR (neat): 3383(bs), 2162(s), 1701, 1406, 1111, 1032, 880, 697; HRESIMS Calcd for [C₂₁H₁₅FNaOS]⁺ (M + Na⁺) 357.0720, found 357.0719.

4-(2-((benzylthio)ethynyl)phenyl)-5,6,7,8-tetrahydronaphthalen-1-ol (1j)

Compound **1j** was prepared in 56% yield (177.6 mg) over 5 steps as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, J = 7.2, 1.2 Hz, 1H), 7.30 – 7.22 (m, 5H), 7.18 (dd, J = 7.2, 1.2 Hz, 1H), 7.13 – 7.09 (m, 2H), 6.92 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 4.92 (brs, 1H), 3.71 (s, 2H), 2.71 (t, J = 6.4 Hz, 2H), 2.63 – 2.55 (m, 1H), 2.42 – 2.34 (m, 1H), 1.83 – 1.77 (m, 2H), 1.70 – 1.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 143.8, 137.0, 136.8, 133.4, 131.2, 130.0, 128.7, 128.6, 127.6, 127.5, 126.6, 123.5, 123.0, 111.3, 94.2, 82.1, 40.7, 27.9, 23.2, 22.8, 22.5; IR (neat): 3446(bs), 2162(s), 1652, 1558, 1257, 1057, 771, 699; HRESIMS Calcd for [C₂₅H₂₂NaOS]⁺ (M + Na⁺) 393.1284, found 393.1286.

2'-((benzylthio)ethynyl)-2-methyl-[1,1'-biphenyl]-4-ol (1k)

Compound **1k** was prepared in 33% yield (124.3 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.28 – 7.23 (m, 5H), 7.17

(dd, J = 7.2, 1.2 Hz, 1H), 7.13 – 7.11 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 2.4 Hz, 1H), 6.69 (dd, J = 8.0, 2.4 Hz, 1H), 3.72 (s, 2H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 143.3, 137.9, 136.8, 133.5, 131.4, 131.0, 130.0, 128.8, 128.5, 127.6, 126.7, 123.4, 116.5, 112.2, 94.1, 82.1, 40.6, 20.1; IR (neat): 3369(bs), 2164(s), 1607, 1473, 1236, 1160, 760, 698; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0977.

2'-((benzylthio)ethynyl)-2-methoxy-[1,1'-biphenyl]-4-ol (11)

Compound **11** was prepared in 27% yield (105.3 mg) over 5 steps as an orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 7.2 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.42 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.38 – 7.30 (m, 6H), 7.28 (d, *J* = 1.6 Hz, 1H), 7.15 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 5.55 (brs, 1H), 3.97 (s, 2H), 3.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 145.2, 143.1, 136.6, 132.8, 132.5, 129.2, 128.8, 128.4, 128.2, 127.6, 126.5, 122.1, 121.4, 114.0, 112.0, 94.5, 81.9, 55.9, 40.2; IR (neat): 3506(bs), 2162(s), 1519, 1477, 1263, 1205, 760, 698; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0922.

2'-((benzylthio)ethynyl)-3-methyl-[1,1'-biphenyl]-4-ol (1m)

Compound **1m** was prepared in 54% yield (170.6 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.6 Hz, 1H), 7.33 – 7.21 (m, 8H), 7.20 – 7.17 (m, 2H), 6.78 (d, J = 8.4 Hz, 1H), 4.04 (brs, 1H), 3.87 (s, 2H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 143.1, 136.7, 133.0, 132.6, 131.8, 129.2, 128.9, 128.5, 128.1, 128.0, 127.6, 126.4, 123.2, 121.6, 114.4, 94.6, 81.8, 40.3, 15.8; IR (neat): 3415(bs), 2161(s), 1609, 1510, 1474, 1262, 757, 698; HRESIMS Calcd for $[C_{22}H_{18}NaOS]^+$ (M + Na⁺) 353.0971, found 353.0963.

2'-((benzylthio)ethynyl)-3-methoxy-[1,1'-biphenyl]-4-ol (1n)

Compound **1n** was prepared in 40% yield (124.0 mg) over 5 steps as an orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.6 Hz, 1H), 7.45 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.36 – 7.33 (m, 3H), 7.31 – 7.27 (m, 3H), 7.26 (d, *J* = 1.6 Hz, 1H), 7.13 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.06 (d, *J* = 8.4 Hz, 1H), 5.42 (brs, 1H), 3.95 (s, 2H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 145.2, 143.1, 136.6, 132.8, 132.4, 129.2, 128.8, 128.4, 128.2, 127.5, 126.5, 122.1, 121.3, 114.0, 112.0, 94.5, 81.9, 55.8, 40.2; IR (neat): 3510(bs), 2163(s), 1519, 1477, 1262, 1206, 923, 759, 698; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0927.

2'-((benzylthio)ethynyl)-3-methoxy-[1,1'-biphenyl]-4-ol (10)

Compound **10** was prepared in 69% yield (218.0 mg) over 5 steps as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, J = 2.0 Hz, 1H), 7.40 (d, J = 7.6 Hz, 1H), 7.32 (dd, J = 8.4, 2.0 Hz, 1H), 7.27 – 7.18 (m, 8H), 7.00 (d, J = 8.4 Hz, 1H), 5.11 (s, 1H), 3.89 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 141.6, 136.5, 133.6, 132.6, 129.6, 129.3, 129.1, 128.9, 128.5, 128.2, 127.6, 126.9, 121.6, 119.6, 116.0, 94.0, 82.5, 40.3; IR (neat): 3509(bs), 2163(s), 1507, 1472, 1288, 1184, 872, 761, 698; HRESIMS Calcd for [C₂₁H₁₅ClNaOS]⁺ (M + Na⁺) 373.0424, found 373.0412.

3. General Procedures and Transformations

3.1 General procedure for the synthesis of the phenanthrols 2

To a dry 4-mL vial were added alkynyl thioether **1** (0.1 mmol) and the solution of HNTf₂ in DCE (0.01 M, 0.01 mmol, 1 mL). The resulting mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched by Et₃N (0.012 mmol, 1.7 μ L), concentrated under reduced pressure and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired phenanthrol **2**.

10-(benzylthio)phenanthren-2-ol (2a)

Compound **2a** was prepared in 99% yield (31.5 mg) according to the general procedure (Table 2, entry 1). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 147–148 °C). ¹H NMR (400 MHz, CD₃OD) δ 8.58 (d, *J* = 8.8 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 2.4 Hz, 1H),

7.66 – 7.64 (m, 2H), 7.54 – 7.50 (m, 1H), 7.44 – 7.40 (m, 1H), 7.25 – 7.15 (m, 6H), 4.17 (s, 2H); ¹³C NMR (100 MHz, CD₃OD) δ 157.8, 138.9, 134.4, 131.9, 131.8, 131.4, 131.2, 130.1, 129.3, 129.0, 128.1, 127.8, 126.6, 126.0, 125.3, 122.9, 118.3, 110.1, 39.5; IR (neat): 3446(bs), 1635, 1540, 1452, 1219, 980, 745, 699; HRESIMS Calcd for [C₂₁H₁₆NaOS]⁺ (M + Na⁺) 339.0814, found 339.0819.

10-(ethylthio)phenanthren-2-ol (2b)

Compound **2b** was prepared in 99% yield (25.2 mg) according to the general procedure (Table 2, entry 2). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 223–226 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.03 (s, 1H), 8.67 (d, *J* = 8.0 Hz, 1H), 8.59 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 1H), 7.79 (s, 1H), 7.65 (d, *J* = 1.6 Hz, 1H), 7.58 – 7.48 (m, 2H), 7.23 (d, *J* = 8.8 Hz, 1H), 3.12 (q, *J* = 7.2 Hz, 2H), 1.32 (t, *J* = 7.2 Hz, 3H).; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 156.6, 132.1, 130.8, 130.1, 128.9, 127.7, 126.5, 125.8, 125.7, 125.2, 123.0, 122.0, 117.6, 108.2, 26.1, 13.9; IR (neat): 3423(bs), 1652, 1559, 1540, 1456, 1220, 901, 743; HRESIMS Calcd for [C₁₆H₁₄NaOS]⁺ (M + Na⁺) 277.0658, found 277.0651.

10-(phenylthio)phenanthren-2-ol (2c)

Compound **2c** was prepared in 99% yield (29.9 mg) according to the general procedure (Table 2, entry 3). The product was purified by chromatography on silica gel (eluent:

hexanes/ethyl acetate = 6/1) as a white solid (mp 173–175 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 9.93 (brs, 1H), 8.71 (d, J = 8.8Hz, 1H), 8.67 (d, J = 8.4 Hz, 1H), 8.13 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 2.0 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.60 – 7.52 (m, 1H), 7.29 – 7.23 (m, 3H), 7.20 – 7.16 (m, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 157.0, 136.1, 135.2, 133.0, 130.7, 129.8, 129.4, 128.6, 128.0, 127.9, 127.1, 126.2, 125.9, 125.4, 123.7, 122.2, 118.0, 109.3; IR (neat): 3433(bs), 1652, 1635, 1540, 1456, 1217, 741, 687; HRESIMS Calcd for [C₂₀H₁₄NaOS]⁺ (M + Na⁺) 325.0658, found 325.0663.

10-(benzylthio)-7-methylphenanthren-2-ol (2d)

Compound **2d** was prepared in 99% yield (32.7 mg) according to the general procedure (Table 2, entry 4). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 153–156 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 8.61 (d, *J* = 9.2 Hz, 1H), 8.48 (d, *J* = 8.4 Hz, 1H), 7.74 (s, 1H), 7.65 (d, *J* = 2.0 Hz, 1H), 7.59 (s, 1H), 7.43 – 7.40 (m, 3H), 7.32 – 7.28 (m, 2H), 7.25 – 7.19 (m, 2H), 4.36 (s, 2H), 2.46 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 156.3, 137.1, 134.9, 131.5, 130.5, 130.1, 129.0, 128.4, 128.3, 127.2, 127.1, 127.0, 126.4, 125.0, 123.1, 122.0, 117.5, 108.1, 36.6, 20.9; IR (neat): 3407(bs), 1652, 1506, 1362, 1028, 953, 698; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0958.

10-(benzylthio)-6-methylphenanthren-2-ol (2e)

Compound **2e** was prepared in 95% yield (31.4 mg) according to the general procedure (Table 2, entry 5). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 138–139 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 8.8 Hz, 1H), 8.30 (s, 1H), 7.86 (d, *J* = 2.8 Hz, 1H), 7.71 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 7.2 Hz, 1H), 7.24 – 7.21 (m, 6H), 5.25 (s, 1H), 4.14 (s, 2H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 137.6, 136.9, 133.4, 131.8, 130.1, 129.1, 129.0, 128.6, 128.4, 128.0, 127.7, 127.2, 125.0, 124.8, 121.8, 116.5, 109.1, 39.6, 22.2; IR (neat): 3446(bs), 1636, 1452, 1219, 1059, 996, 736, 698; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0963.

10-(benzylthio)-6-methoxyphenanthren-2-ol (2f)

Compound **2f** was prepared in 92% yield (31.9 mg) according to the general procedure (Table 2, entry 6). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 4/1) as a white solid (mp 176–180 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 8.8 Hz, 1H), 7.89 (s, 1H), 7.85 (s, 1H), 7.68 (s, 1H), 7.59 (d, *J* = 8.8 Hz, 1H), 7.21 – 7.11 (m, 7H), 5.55 (s, 1H), 4.07 (s, 2H), 3.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 154.8, 137.7, 133.8, 132.6, 131.6, 129.7, 129.0, 128.4, 127.1, 127.0, 125.4, 125.1, 124.5, 116.4, 116.0, 109.8, 103.4, 55.4, 39.8; IR (neat):

3403(bs), 1615, 1500, 1452, 1222, 1165, 818, 696; HRESIMS Calcd for $[C_{22}H_{18}NaO_2S]^+$ (M + Na⁺) 369.0920, found 369.0918.

10-(benzylthio)-6-chlorophenanthren-2-ol (2g)

Compound **2g** was prepared in 96% yield (33.3 mg) according to the general procedure (Table 2, entry 7). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 6/1) as a yellow solid (mp 171–173 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 8.70 (d, *J* = 8.8 Hz, 1H), 8.66 (s, 1H), 7.85 – 7.83 (m, 2H), 7.64 (d, *J* = 2.0 Hz, 1H), 7.51 (d, *J* = 8.4 Hz, 1H), 7.43 (d, *J* = 7.2 Hz, 2H), 7.32 – 7.28 (m, 2H), 7.25 – 7.22 (m, 2H), 4.39 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 157.2, 136.9, 132.1, 131.6, 131.4, 130.2, 129.6, 129.1, 128.5, 128.4, 127.3, 125.9, 125.8, 125.3, 121.9, 121.5, 117.9, 108.0, 36.4; IR (neat): 3443(bs), 1653, 1616, 1488, 1214, 1085, 860, 746; HRESIMS Calcd for [C₂₁H₁₅ClNaOS]⁺ (M + Na⁺) 373.0424, found 373.0425.

10-(benzylthio)-6-fluorophenanthren-2-ol (2h)

Compound **2h** was prepared in 99% yield (33.1 mg) according to the general procedure (Table 2, entry 8). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 123–126 °C). ¹H NMR (400 MHz,

CDCl₃) δ 8.40 (d, J = 8.8 Hz, 1H), 8.08 (dd, J = 11.2, 2.0 Hz, 1H), 7.86 (d, J = 2.8 Hz, 1H), 7.67 – 7.62 (m, 2H), 7.24 – 7.20 (m, 7H), 5.50 (s, 1H), 4.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.8 (d, J = 245.8 Hz), 155.1, 137.4, 133.5, 131.6 (d, J = 9.0 Hz), 130.9, 130.2, 130.1, 129.6 (d, J = 2.0 Hz), 129.0, 128.4, 127.2, 125.3, 124.3 (d, J = 4.0 Hz), 116.9, 114.9 (d, J = 24.0 Hz), 109.8, 107.1 (d, J = 20.0 Hz), 39.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.6; IR (neat): 3416(bs), 1616, 1496, 1212, 1171, 1078, 821, 698, 654; HRESIMS Calcd for [C₂₁H₁₅FNaOS]⁺ (M + Na⁺) 357.0720, found 357.0724.

10-(benzylthio)-7-fluorophenanthren-2-ol (2i)

Compound **2i** was prepared in 91% yield (30.3 mg) according to the general procedure (Table 2, entry 9). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 147–149 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.98 (brs, 1H), 8.67 – 8.61 (m, 2H), 7.83 (s, 1H), 7.65 – 7.60 (m, 2H), 7.46 – 7.42 (m, 2H), 7.40 (dd, *J* = 8.8, 2.4 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.26 – 7.22 (m, 2H), 4.39 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.1 (d, *J* = 241.0 Hz), 156.5, 136.8, 132.7, 131.3 (d, *J* = 9.0 Hz), 131.2, 129.1, 128.5, 127.3, 125.7 (d, *J* = 1.0 Hz), 125.2, 124.8 (d, *J* = 5.0 Hz), 124.7, 122.7, 118.0, 115.0 (d, *J* = 23.0 Hz), 111.4 (d, *J* = 20.0 Hz), 108.0, 36.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.1; IR (neat): 3377(bs), 1617, 1487, 1455, 1231, 1164, 804, 697; HRESIMS Calcd for [C₂₁H₁₅FNaOS]⁺ (M + Na⁺) 357.0720, found 357.0709.

7-(benzylthio)-1,2,3,4-tetrahydrobenzo[c]phenanthren-5-ol (2j)

Compound **2j** was prepared in 81% yield (30.1 mg) according to the general procedure (Table 2, entry 10). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 132–134 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, *J* = 8.4 Hz, 1H), 7.81 (s, 1H), 7.70 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.66 (s, 1H), 7.51 – 7.44 (m, 2H), 7.26 – 7.23 (m, 5H), 5.28 (brs, 1H), 4.16 (s, 2H), 3.51 (t, *J* = 5.6 Hz, 2H), 2.93 (t, *J* = 6.8 Hz, 2H), 2.02 – 1.96 (m, 2H), 1.80 – 1.74 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 138.1, 137.5, 132.1, 131.8, 130.8, 130.4, 130.2, 129.0, 128.4, 128.0, 127.6, 127.2, 125.7, 125.6, 125.0, 106.9, 39.4, 34.4, 24.1, 24.0, 22.1; IR (neat): 3384(bs), 1652, 1596, 1456, 1257, 1056, 747, 698; HRESIMS Calcd for [C₂₅H₂₂NaOS]⁺ (M + Na⁺) 393.1284, found 393.1278.

10-(benzylthio)-4-methylphenanthren-2-ol (2k)

Compound **2k** was prepared in 94% yield (31.1 mg) according to the general procedure (Table 2, entry 11). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 133–134 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.63 (d, *J* = 8.4 Hz, 1H), 7.81 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.77 (s, 1H), 7.63 (d, *J* = 2.4 Hz, 1H), 7.55 – 7.46 (m, 2H), 7.40 – 7.38 (m, 2H), 7.29 – 7.25 (m, 2H), 7.23 – 7.19 (m, 1H), 7.10 (d, *J* = 2.4 Hz, 1H), 4.32 (s, 2H), 2.97 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 155.3, 137.8, 137.1, 133.5, 131.2(3), 131.2(0), 129.9, 129.1, 128.4, 127.9, 127.2, 126.9, 126.2, 125.7, 125.0, 122.9, 121.5, 107.0, 36.7, 27.0; IR (neat): 3398(bs),

1653, 1558, 1418, 1283, 1106, 881, 779, 669; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0979.

10-(benzylthio)-4-methoxyphenanthren-2-ol (21)

Compound **21** was prepared in 99% yield (34.3 mg) according to the general procedure (Table 2, entry 12). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 4/1) as a white solid (mp 176–180 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.86 (s, 1H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.15 (s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.71 (s, 1H), 7.69 (s, 1H), 7.58 – 7.53 (m, 1H), 7.52 – 7.47 (m, 1H), 7.41 – 7.39 (m, 2H), 7.32 – 7.27 (m, 2H), 7.24 – 7.20 (m, 1H), 4.34 (s, 2H), 4.03 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 149.1, 147.5, 137.3, 130.6, 130.4, 129.2, 128.6, 128.5, 127.8, 127.3, 126.2, 125.8, 125.6, 124.4, 124.0, 122.7, 108.9, 104.7, 56.0, 36.8; IR (neat): 3426(bs), 1597, 1271, 1221, 1145, 1026, 804, 698; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0934.

10-(benzylthio)-3-methylphenanthren-2-ol (2m)

Compound **2m** was prepared in 99% yield (32.7 mg) according to the general procedure (Table 2, entry 13). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 161–165 °C). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.05 (s, 1H), 8.61 (d, *J* = 8.0 Hz, 1H), 8.56 (s, 1H), 7.79 (d, *J* = 7.6 Hz,

1H), 7.75 (d, J = 10.0 Hz, 2H), 7.56 – 7.53 (m, 1H), 7.49 – 7.42 (m, 3H), 7.32 – 7.23 (m, 3H), 4.37 (s, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 155.4, 137.1, 130.5, 130.2, 130.1, 129.0, 128.8, 128.4, 127.7, 127.2, 126.7, 126.3, 125.6, 125.5, 125.2, 123.0, 122.0, 107.5, 36.6, 16.6; IR (neat): 3410(bs), 1623, 1451, 1270, 1134, 1021, 745, 696; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0968.

10-(benzylthio)-3-methoxyphenanthren-2-ol (2n)

Compound **2n** was prepared in 99% yield (34.3 mg) according to the general procedure (Table 2, entry 14). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 182–188 °C). ¹H NMR (400 MHz, DMSO- d_6) δ 9.82 (s, 1H), 8.68 (d, J = 7.6 Hz, 1H), 8.17 (s, 1H), 7.80 (d, J = 7.2 Hz, 1H), 7.77 – 7.69 (m, 2H), 7.58 – 7.48 (m, 2H), 7.45 – 7.38 (m, 2H), 7.32 – 7.22 (m, 3H), 4.36 (s, 2H), 4.04 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 149.0, 147.4, 137.2, 130.4, 130.3, 129.0, 128.4, 127.7, 127.2, 126.0, 125.7, 125.5, 124.3, 123.9, 122.5, 108.9, 105.9, 104.7, 55.8, 36.7; IR (neat): 3422(bs), 1497, 1457, 1270, 1194, 1143, 1016, 752; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0918.

10-(benzylthio)-3-chlorophenanthren-2-ol (20)

Compound **20** was prepared in 87% yield (30.5 mg) according to the general procedure (Table 2, entry 15). The product was purified by chromatography on silica gel (eluent:

hexanes/ethyl acetate = 5/1) as a white solid (mp 177–178 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 8.08 (s, 1H), 7.69 – 7.64 (m, 2H), 7.60 – 7.56 (m, 1H), 7.52 – 7.48 (m, 1H), 7.25 – 7.20 (m, 5H), 5.82 (s, 1H), 4.16 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 137.1, 132.2, 131.2, 130.9, 130.5, 129.0, 128.5, 128.2, 127.3, 127.1, 126.5, 125.5, 123.8, 122.0, 121.5, 111.0, 39.2; IR (neat): 3437(bs), 1523, 1456, 1016, 1056, 939, 676; HRESIMS Calcd for [C₂₁H₁₅CINaOS]⁺ (M + Na⁺) 373.0424, found 373.0429.

3.2. General procedure for the synthesis of the spirohexenones 3

To a dry 4-mL vial were added alkynyl thioether 1 (0.1 mmol) and the solution of MsOH in DCE (0.01 M, 0.01 mmol, 1 mL). The resulting mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched by Et₃N (0.012 mmol, 1.7 μ L), concentrated under reduced pressure and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to afford the desired spirohexenone **3**.

2'-(benzylthio)spiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3a)

Compound **3a** was prepared in 99% yield (31.3 mg) according to the general procedure (Table 3, entry 1). The product was purified by chromatography on silica gel (eluent:

hexanes/ethyl acetate = 5/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.23 (m, 7H), 7.13 – 7.10 (m, 1H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.71 (s, 1H), 6.49 (d, *J* = 10.0 Hz, 2H), 6.33 (d, *J* = 10.0 Hz, 2H), 4.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 186.0, 147.8, 145.9, 144.3, 141.1, 135.7, 130.8, 128.7, 128.6, 127.6, 127.3, 125.3, 123.3, 120.0, 61.0, 37.4; IR (neat): 2925, 1660(s), 1594, 1489, 1195, 1025, 753, 691; HRESIMS Calcd for [C₂₁H₁₆NaOS]⁺ (M + Na⁺) 339.0814, found 339.0819.

2'-(ethylthio)spiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3b)

Compound **3b** was prepared in 99% yield (25.2 mg) according to the general procedure (Table 3, entry 2). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 7/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2H), 7.14 – 7.10 (m, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.66 (s, 1H), 6.52 (d, *J* = 10.0 Hz, 2H), 6.39 (d, *J* = 10.0 Hz, 2H), 2.96 (q, *J* = 7.2 Hz, 2H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 148.2, 146.6, 144.6, 141.0, 130.7, 128.7, 125.6, 125.0, 123.3, 119.7, 60.9, 26.6, 13.4; IR (neat): 2977, 1659(s), 1540, 1464, 1165, 1063, 840, 813, 697; HRESIMS Calcd for [C₁₆H₁₄NaOS]⁺ (M + Na⁺) 277.0658, found 277.0670.

2'-(phenylthio)spiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3c)

Compound 3c was prepared in 91% yield (27.5 mg) according to the general procedure

(Table 3, entry 3). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 6/1) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.50 (m, 2H), 7.39 – 7.35 (m, 3H), 7.29 (dd, J = 8.0, 1.2 Hz, 1H), 7.22 – 7.19 (m, 1H), 7.16 – 7.11 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 6.61 (s, 1H), 6.48 – 6.43 (m, 2H), 6.39 – 6.33 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 186.0, 147.6, 146.0, 143.8, 141.9, 134.0, 131.4, 130.9, 130.7, 129.4, 128.9, 128.7, 125.7, 123.4, 120.5, 61.0; IR (neat): 2873, 1656(s), 1612, 1478, 1326, 1034, 920, 714, 689; HRESIMS Calcd for [C₂₀H₁₄NaOS]⁺ (M + Na⁺) 325.0658, found 325.0655.

2'-(benzylthio)-5'-methylspiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3d)

Compound **3d** was prepared in 99% yield (32.7 mg) according to the general procedure (Table 3, entry 4). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.25 (m, 5H), 7.07 (s, 1H), 6.95 – 6.91 (m, 2H), 6.66 (s, 1H), 6.47 (d, *J* = 10.0 Hz, 2H), 6.32 (d, *J* = 10.0 Hz, 2H), 4.12 (s, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 148.1, 145.9, 144.5, 138.7, 138.1, 135.8, 130.7, 128.7, 128.6, 127.6, 127.5, 126.1, 123.0, 120.8, 60.8, 37.5, 21.5; IR (neat): 2923, 1662(s), 1623, 1540, 1456, 1062, 883, 712, 679; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0965.

2'-(benzylthio)-6'-methylspiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3e)

Compound **3e** was prepared in 97% yield (32.0mg) according to the general procedure (Table 3, entry 5). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 6/1) as a white solid (mp 117–120 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.86 (s, 1H), 6.69 (s, 1H), 6.49 (d, *J* = 10.0 Hz, 2H), 6.33 (d, *J* = 10.0 Hz, 2H), 4.11 (s, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1, 148.1, 144.3, 141.8, 141.4, 135.9, 135.5, 130.8, 129.3, 128.8, 128.7, 128.0, 127.6, 124.2, 119.8, 61.0, 37.6, 21.3; IR (neat): 2921, 1662(s), 1623, 1558, 1540, 1063, 863, 699; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0979.

2'-(benzylthio)-6'-methoxyspiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3f)

3f

Compound **3f** was prepared in 95% yield (32.9 mg) according to the general procedure (Table 3, entry 6). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 109–113 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 5H), 7.15 (d, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 6.68 (s, 1H), 6.61 (s, 1H), 6.48 (d, *J* = 9.6 Hz, 2H), 6.31 (d, *J* = 9.6 Hz, 2H), 4.06 (s, 2H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 185.9, 158.3, 147.9, 143.1, 142.0, 137.2, 136.0, 130.7, 128.7, 128.5, 127.4, 120.6, 114.2, 109.6, 61.1, 55.5, 37.8; IR (neat): 2934, 1663(s), 1622, 1474, 1282, 1232, 864, 712, 696; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0903.

2'-(benzylthio)-6'-chlorospiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3g)

Compound **3g** was prepared in 93% yield (32.6 mg) according to the general procedure (Table 3, entry 7). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 6H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 1.6 Hz, 1H), 6.65 (s, 1H), 6.51 (d, *J* = 10.0 Hz, 2H), 6.31 (d, *J* = 10.0 Hz, 2H), 4.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 146.9, 146.8, 142.9, 142.7, 135.5, 131.2, 131.1, 128.9, 128.7, 128.7, 127.7, 126.1, 123.8, 120.6, 60.8, 37.4; IR (neat): 2924, 1663(s), 1623, 1454, 1063, 860, 731, 697; HRESIMS Calcd for [C₂₁H₁₅ClNaOS]⁺ (M + Na⁺) 373.0424, found 373.0426.

2'-(benzylthio)-6'-fluorospiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3h)

Compound **3h** was prepared in 95% yield (31.7 mg) according to the general procedure (Table 3, entry 8). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a yellow solid (mp 122–124 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 5H), 7.17 (dd, J = 8.4, 4.8 Hz, 1H), 7.00 – 6.95 (m, 1H), 6.76 (dd, J = 8.0, 2.4 Hz, 1H), 6.67 (s, 1H), 6.51 – 6.45 (m, 2H), 6.32 – 6.28 (m, 2H), 4.11 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 185.7, 161.3 (d, *J* = 246.0 Hz), 147.1, 145.4 (d, *J* = 4.0 Hz), 143.3 (d, *J* = 8.0 Hz), 140.3 (d, *J* = 2.0 Hz), 135.7, 131.1, 128.7, 128.6, 127.7, 126.7, 120.6 (d, *J* = 9.0 Hz), 115.5 (d, *J* = 22.0 Hz), 111.4 (d, *J* = 24.0 Hz), 60.9, 37.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -116.2; IR (neat): 2923, 1664(s), 1624, 1469, 1266, 1103, 865, 797, 713; HRESIMS Calcd for [C₂₁H₁₅FNaOS]⁺ (M + Na⁺) 357.0720, found

357.0723.

2'-(benzylthio)-5'-fluorospiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3i)

Compound **3i** was prepared in 99% yield (33.3 mg) according to the general procedure (Table 3, entry 9). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a yellow solid (mp 126–128 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 6.96 – 6.90 (m, 2H), 6.80 – 6.76 (m, 1H), 6.64 (s, 1H), 6.48 (d, *J* = 10.0 Hz, 2H), 6.30 (d, *J* = 10.0 Hz, 2H), 4.14 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 185.6, 163.4 (d, *J* = 244.0 Hz), 148.7, 147.4, 146.1 (d, *J* = 9.0 Hz), 136.3 (d, *J* = 2.0 Hz), 135.3, 130.7, 128.6, 127.6, 125.7, 124.2 (d, *J* = 9.0 Hz), 111.7 (d, *J* = 23.0 Hz), 107.2 (d, *J* = 24.0 Hz), 60.1, 37.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -113.2; IR (neat): 2956, 1662(s), 1622, 1462, 1226, 1134, 885, 771, 697; HRESIMS Calcd for [C₂₁H₁₅FNaOS]⁺ (M + Na⁺) 357.0720, found 357.0710.

2-(benzylthio)-5',6',7',8'-tetrahydro-4'H-spiro[indene-1,1'-naphthalen]-4'-one (3j)

Compound **3j** was prepared in 99% yield (36.7 mg) according to the general procedure (Table 3, entry 10). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 6/1) as a white solid (mp 155–158 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.34 – 7.29 (m, 2H), 7.28 – 7.21 (m, 3H), 7.10 – 7.05 (m, 1H), 6.93 (d, *J* = 7.2 Hz, 1H), 6.68 (s, 1H), 6.45 (d, *J* = 10.0 Hz, 1H), 6.19 (d, *J* = 10.0

Hz, 1H), 4.13 (s, 2H), 2.46 – 2.41 (m, 2H), 1.81 – 1.75 (m, 1H), 1.69 – 1.61 (m, 3H), 1.54 – 1.48 (m, 1H), 1.44 – 1.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.6, 151.6, 148.0, 147.8, 144.8, 143.6, 135.9, 135.6, 129.5, 128.7, 128.6, 128.2, 127.6, 126.3, 125.1, 122.5, 119.8, 63.6, 36.9, 25.1, 22.6, 21.9, 21.7; IR (neat): 2923, 1653(s), 1635, 1540, 1456, 1300, 1043, 772, 754; HRESIMS Calcd for [C₂₅H₂₂NaOS]⁺ (M + Na⁺) 393.1284, found 393.1284.

2'-(benzylthio)-2-methylspiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3k)

Compound **3k** was prepared in 95% yield (31.4 mg) according to the general procedure (Table 3, entry 11). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.37 (m, 2H), 7.34 – 7.31 (m, 2H), 7.28 – 7.25 (m, 3H), 7.12 – 7.08 (zm, 1H), 6.95 (d, J = 7.6 Hz, 1H), 6.71 (s, 1H), 6.44 (dd, J =10.0, 1.6 Hz, 1H), 6.41 – 6.37 (m, 1H), 6.24 (d, J = 10.0 Hz, 1H), 4.15 (s, 2H), 1.43 (d, J = 1.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 157.1, 148.5, 147.1, 144.8, 142.7, 135.8, 129.9, 129.7, 128.7(4), 128.7(3), 128.6, 127.7, 126.8, 125.3, 122.7, 119.9, 63.8, 37.0, 18.4; IR (neat): 2917, 1670(s), 1522, 1457, 1289, 1126, 1056, 792, 698; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0965.

2'-(benzylthio)-2-methoxyspiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (3l)

Compound **31** was prepared in 99% yield (34.3 mg) according to the general procedure (Table 3, entry 12). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.34 (m, 2H), 7.33 – 7.29 (m, 2H), 7.28 – 7.23 (m, 3H), 7.13 – 7.08 (m, 1H), 7.03 (d, *J* = 7.6 Hz, 1H), 6.68 (s, 1H), 6.49 (d, *J* = 10.0 Hz, 1H), 6.24 (dd, *J* = 10.0, 2.4 Hz, 1H), 5.31 (d, *J* = 2.4 Hz, 1H), 4.12 (s, 2H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.1, 153.0, 148.4, 147.0, 143.9, 142.1, 135.8, 130.2, 128.6, 128.5, 128.4, 127.5, 126.3, 125.2, 123.0, 119.9, 114.3, 61.3, 55.0, 37.2; IR (neat): 2932, 1655(s), 1518, 1440, 1270, 1207, 1037, 867, 758, 696; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0917.

2'-(benzylthio)-3-methylspiro[cyclohexane-1,1'-indene]-2,5-dien-4-ol (3m)

Compound **3m** was prepared in 99% yield (32.8 mg) according to the general procedure (Table 3, entry 13). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) as a white solid (mp 183–185 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H), 7.29 – 7.25 (m, 2H), 7.25 – 7.21 (m, 1H), 7.13 – 7.09 (m, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.69 (s, 1H), 6.49 (d, *J* = 10.0 Hz, 1H), 6.31 (dd, *J* = 10.0, 2.8 Hz, 1H), 6.13 – 6.09 (m, 1H), 4.12 (s, 2H), 1.95 (d, *J* = 1.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7, 147.5, 146.5, 144.3, 142.7, 141.7, 137.5, 135.8, 130.6, 128.8, 128.7, 128.5, 127.6, 126.8, 125.2, 123.2, 119.9, 61.3, 37.4, 16.1; IR (neat): 2921, 1662(s), 1636, 1462, 1393, 1140, 910, 752, 715; HRESIMS Calcd for [C₂₂H₁₈NaOS]⁺ (M + Na⁺) 353.0971, found 353.0978.

2'-(benzylthio)-3-methoxyspiro[cyclohexane-1,1'-indene]-2,5-dien-4-ol (3n)

Compound **3n** was prepared in 99% yield (34.3 mg) according to the general procedure (Table 3, entry 14). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 4/1) as a yellow solid (mp 164–169 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.24 (m, 7H), 7.14 – 7.09 (m, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 6.68 (s, 1H), 6.51 (d, *J* = 10.0 Hz, 1H), 6.27 (dd, *J* = 10.0, 2.4 Hz, 1H), 5.31 (d, *J* = 2.4 Hz, 1H), 4.13 (s, 2H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 181.2, 153.1, 148.5, 147.2, 144.0, 142.2, 135.9, 130.3, 128.7, 128.6, 128.5, 127.6, 126.4, 125.3, 123.1, 119.9, 114.3, 61.4, 55.1, 37.3; IR (neat): 2928, 1669(s), 1635, 1452, 1206, 1098, 895, 750, 714; HRESIMS Calcd for [C₂₂H₁₈NaO₂S]⁺ (M + Na⁺) 369.0920, found 369.0934.

2'-(benzylthio)-3-chlorospiro[cyclohexane-1,1'-indene]-2,5-dien-4-one (30)

Compound **30** was prepared in 85% yield (29.8 mg) according to the general procedure (Table 3, entry 15). The product was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 7/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 7H), 7.16 – 7.11 (m, 1H), 7.05 (d, *J* = 7.2 Hz, 1H), 6.74 (s, 1H), 6.58 (d, *J* = 10.0 Hz, 1H), 6.47 (d, *J* = 2.0 Hz, 1H), 6.33 (dd, *J* = 10.0, 2.4 Hz, 1H), 4.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 179.0, 147.9, 144.9, 144.2, 143.5, 140.0, 135.6, 134.5, 130.1, 129.1, 128.8, 128.7, 128.4, 127.7, 125.7, 123.4, 120.3, 62.8, 37.7; IR (neat): 2926, 1669(s), 1653, 1558, 1457, 1062, 831, 749, 711; HRESIMS Calcd for [C₂₁H₁₅CINaOS]⁺ (M + Na⁺) 373.0424, found 373.0438.

3.3 Asymmetric dearomatization reaction

To a mixture of substrate **1j** (0.1 mmol, 37.1 mg) in HFIP (1.4 mL) and DCE (0.7 mL) was added CPA (0.005 mmol, 5.0 mg) at room temperature. The resulting mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched by Et₃N (0.012 mmol, 1.7 μ L), concentrated under reduced pressure and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) to afford the desired spirohexenone **3j** in 99% yield (36.7 mg). [α]_D²⁰ = -33.7° (c = 1.0, CHCl₃). 82:18 e.r. (determined by HPLC: Chiralpak IC Column, 10/90 i-PrOH/hexane, 1.0 mL/min, 254 nm; TR = 20.162 min (major), 23.022 min (minor).

3.4 Synthetic transformations

To a solution of 2a (0.1 mmol, 31.6 mg) in DCM (1 mL) were added TIPSCI (0.12 mmol, 23.2 mg) and imidazole (0.12 mmol, 8.2 mg) sequentially. The mixture was stirred at room temperature and the progress of the reaction was monitored by TLC. Upon completion, the mixture was filtered through a pad of silica gel and concentrated

under reduced pressure. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate) to give the desired product **4** in 95% yield (44.9 mg). White solid (mp 106–108 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, *J* = 9.2 Hz, 1H), 8.52 (d, *J* = 8.4 Hz, 1H), 8.01 (d, *J* = 2.4 Hz, 1H), 7.72 (s, 1H), 7.69 (d, *J* = 7.2 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.50 – 7.46 (m, 1H), 7.31 – 7.22 (m, 6H), 4.18 (s, 2H), 1.40 – 1.34 (m, 3H), 1.16 (d, *J* = 7.2 Hz, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 137.4, 133.0, 130.8, 130.7, 130.0, 128.9, 128.5, 128.0, 127.2, 126.8, 125.9, 125.1, 124.6, 122.0, 121.2, 114.3, 39.2, 18.1, 12.8; IR (neat): 2943, 1635, 1450, 1275, 1196, 993, 913, 749; HRESIMS Calcd for [C₃₀H₃₆NaOSSi]⁺ (M + Na⁺) 495.2148, found 495.2152.

benzyl(phenanthren-9-yl)sulfane (5)

To a solution of **2a** (0.1 mmol, 31.7 mg) and Et₃N (0.3 mmol, 30.3 mg)in DCM (1 mL) was added DMAP (0.01 mmol, 1.2 mg) and PhNTf₂ (0.11 mmol, 39.5 mg) sequentially. The mixture was reacted at room temperature for 1 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with 1M HCl, extracted with DCM for 3 times, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 15/1) to afford the desired triflate as a colorless oil. To the solution of triflate and Et₃N (0.6 mmol, 61.0 mg)in DMF (1 mL) was added formic acid (0.2 mmol, 9.2 mg) and PPh₃ (0.008 mmol, 2.1 mg) and Pd(OAc)₂ (0.004 mmol, 0.9 mg) sequentially. The mixture was reacted at 70 °C for 3 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with H₂O, extracted with EA for 3 times, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 15/1) or completion, the reaction was added formic acid (0.2 mmol, 9.2 mg) and PPh₃ (0.008 mmol, 2.1 mg) and Pd(OAc)₂ (0.004 mmol, 0.9 mg) sequentially. The mixture was reacted at 70 °C for 3 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with H₂O, extracted with EA for 3 times, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 50/1) to afford the desired

product **5** (26.1 mg, 87% yield). Pale yellow solid (mp 98–99 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.64 (m, 1H), 8.58 (d, *J* = 8.0 Hz, 1H), 8.50 – 8.48 (m, 1H), 7.71 – 7.66 (m, 2H), 7.65 – 7.60 (m, 2H), 7.59 – 7.50 (m, 2H), 7.28 – 7.19 (m, 5H), 4.18 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 132.0, 131.7, 131.2, 130.6, 129.7, 129.2, 129.0, 128.5, 127.9, 127.2, 126.9, 126.8, 126.6, 125.6, 123.0, 122.5, 39.0; IR (neat): 3059, 3027, 2923, 1959, 1585, 1491, 1450, 1429, 745, 721; HRESIMS Calcd for [C₂₁H₁₆NaS]⁺ (M + Na⁺) 323.0865, found 323.0871.

phenanthren-2-ol (6)

To a solution of **2a** (0.1 mmol, 31.6 mg) in THF (1 mL) was added PdCl₂ (0.005 mmol, 0.9 mg) and triethylsilane (0.22 mmol, 25.3 mg) sequentially. The mixture was reacted at room temperature for 1 h. The progress of the reaction was monitored by TLC. Upon completion, the mixture was added Tetrabutylammonium fluoride trihydrate (0.11 mmol, 34.7 mg), then quenched with NH₄Cl aqueous solution, extracted with EA for 3 times, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) to afford the desired product **6** (17.7 mg, 91% yield). White solid (mp 158–164 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.55 (s, 1H), 7.84 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 1H), 7.64 – 7.58 (m, 2H), 7.55 – 7.51 (m, 1H), 7.24 – 7.19 (m, 2H), 5.15 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.2, 133.6, 131.0, 130.4, 128.6, 127.7, 126.7, 126.0, 125.7, 124.8, 124.6, 122.1, 116.6, 111.8; IR (neat): 3440(bs), 2029, 1959, 1620, 1464, 1423, 1261, 810, 741; HRESIMS Calcd for [C₁₄H₁₀NaO]⁺ (M + Na⁺) 217.0624, found 217.0614.

2'-(benzylthio)spiro[cyclohexane-1,1'-indene]-2,5-dien-4-ol (7)

To a solution of **3a** (0.1 mmol, 31.6 mg) in THF (1 mL) was added LiAlH₄ (0.4 mmol, 15.6 mg) in THF (1 mL) slowly at -10 °C and stirred at this temperature for 1 h. The progress of the reaction was monitored by TLC. Upon completion, the mixture was quenched with 10% NaOH (aq), extracted with ethyl acetate for 3 times, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 7/1) to give 7 in 99% yield (31.5 mg) with 6:1 dr. White solid (mp 139–143 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.34 – 7.29 (m, 2H), 7.28 – 7.18 (m, 3H), 7.11 – 7.03 (m, 2H), 6.53 (s, 1H), 6.23 (dd, *J* = 10.0, 3.6 Hz, 2H), 5.34 (d, *J* = 9.6 Hz, 2H), 4.76 – 4.64 (m, 1H), 4.11 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.6, 148.1, 143.2, 136.2, 129.9, 129.8, 128.9, 128.6, 127.7, 127.5, 125.2, 124.7, 123.4, 119.5, 61.6, 58.3, 37.4; IR (neat): 3449(bs), 2923, 1636, 1457, 1093, 1052, 747, 697; HRESIMS Calcd for [C₂₁H₁₈NaOS]⁺ (M + Na⁺) 341.0971, found 341.0966.

2'-(benzylsulfonyl)spiro[cyclohexane-1,1'-indene]-2,5-dien-4-ol (8)

To a solution of 3a (0.1 mmol, 31.6 mg) in DCM (2 mL) was added *m*-CPBA (0.22 mmol, 38.0 mg) and the mixture was reacted at room temperature for 1 h. The progress of the reaction was monitored by TLC. Upon completion, the reaction was quenched with NaHCO₃, extracted with DCM for 3 times, dried over MgSO₄ and concentrated

under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 1/1) to afford the desired product **8** (34.5 mg, 99% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.56 – 7.52 (m, 1H), 7.45 – 7.42 (m, 2H), 7.38 – 7.32 (m, 5H), 7.17 – 7.13 (m, 1H), 6.58 (d, *J* = 10.0 Hz, 2H), 6.33 (d, *J* = 10.0 Hz, 2H), 4.31 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 185.2, 147.2, 144.6, 144.4, 144.2, 139.6, 131.4, 131.0, 130.5, 129.5, 129.1, 128.9, 127.2, 125.1, 124.2, 62.1, 58.5; IR (neat): 2949, 1698(s), 1574, 1416, 1306, 1263, 748, 720; HRESIMS Calcd for [C₂₁H₁₆NaO₃S]⁺ (M + Na⁺) 371.0712, found 371.0714.

benzylfluoro(4-oxospiro[cyclohexane-1,1'-indene]-2,5-dien-2'-yl)sulfonium tetrafluoroborate (9)

To a solution of **3a** (0.1 mmol, 31.6 mg) in MeCN (0.9 mL) and H₂O (90 uL) was added selectfluor (0.12 mmol, 42.5 mg), and the mixture was stirred at room temperature for 10 min. The progress of the reaction was monitored by TLC. Upon completion, the reaction was extracted with ethyl acetate for 3 times, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 1/1) to afford the desired product **9** (32.9 mg, 78% yield). White solid (mp 196–197 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 1H), 7.49 (d, J = 7.6 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.37 – 7.32 (m, 4H), 7.24 – 7.20 (m, 2H), 7.15 (d, J = 7.6 Hz, 1H), 6.61 (d, J = 9.6 Hz, 1H), 6.53 – 6.47 (m, 2H), 6.25 (dd, J = 10.0, 2.8 Hz, 1H), 4.20 (d, J = 12.8 Hz, 1H), 4.04 (d, J = 12.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 185.2, 150.2, 146.2, 145.1, 143.7, 141.2, 139.5, 131.6, 131.3, 130.4, 129.3, 129.1, 128.8, 128.6 (d, J = 5.0 Hz), 123.6 (d, J = 15.0 Hz), 61.7, 58.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -151.1, -151.0; IR (neat): 2923, 1623(s), 1621, 1455, 1397, 1048, 858, 767, 701, 616; HRESIMS Calcd for [C₂₁H₁₆FOS]⁺ (M⁺) 335.0900, found 335.0904.

2'-(benzylthio)spiro[cyclohexane-1,1'-inden]-4-one (10)

To a solution of **3a** (0.1 mmol, 32.6 mg) in ethyl acetate (1 mL) was added Pd(OH)₂ (10% on carbon, 0.02 mmol, 3 mg) and stirred at 50 °C under H₂ atmosphere (4 MPa) for 24 h. The progress of the reaction was monitored by TLC. Upon completion, the mixture was concentrated and the residue was purified by chromatography on silica gel (eluent: hexanes/ethyl acetate = 5/1) to afford the desired product **10** (23.4 mg, 71% yield). White solid (mp 109–111 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.6 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.37 – 7.31 (m, 2H), 7.30 – 7.20 (m, 3H), 7.13 – 7.10 (m, 1H), 6.43 (s, 1H), 4.18 (s, 2H), 2.89 – 2.70 (m, 4H), 2.31 – 2.23 (m, 2H), 1.89 – 1.82 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 211.3, 153.4, 150.4, 142.7, 136.0, 128.8, 128.7, 127.6, 127.4, 123.7, 122.5, 121.9, 120.0, 53.9, 38.3, 37.5, 33.5; IR (neat): 2923, 1654(s), 1459, 1384, 1032, 897, 749, 787; HRESIMS Calcd for [C₂₁H₂₀NaOS]⁺ (M + Na⁺) 343.1127, found 343.1138.

References:

 Y.-Q. Zhang, X.-Q. Zhu, Y.-B. Chen, T.-D. Tan, M.-Y. Yang and L.-W. Ye, *Org. Lett.*, 2018, **20**, 23, 7721.

2. Y.-Q. Zhang, Y.-B. Chen, J.-R. Liu, S.-Q. Wu, X.-Y. Fan, Z.-X. Zhang, X. Hong and L.-W. Ye, *Nat. Chem.*, 2021, **13**, 1093.

4. Crystal Data

Crystal data and structure refinement for 4. CCDC Number = 2243824

C-C = 0.0032 A	Wavelength=	1.54184
a=27.2173(3)	b=10.9230(2)	c=9.0261(1)
alpha=90	beta=93.968(1)	gamma=90
233 K		
Calculated	Reported	
2676.98(6)	2676.98(6)	
P 21/c	P 1 21/c 1	
-P 2ybc	-P 2ybc	
C30 H35 O S Si	C30 H35 O	S Si
C30 H35 O S Si	C30 H35 O	S Si
471.73	471.73	
1.171	1.170	
4	4	
1.638	1.638	
1012.0	1012.0	
1016.61		
33,13,11	33,13,10	
5466	5296	
0.984,0.984	0.784,1.00	0
0.984		
d= # Reported T Lin SCAN	nits: Tmin=0.784 Tma	x=1.000
s= 0.969	Theta(max) = 74.321	
0.0464(4430)		wR2(reflections)=
Npar= 30	4	0.1012(0290)
	C-C = 0.0032 A a=27.2173(3) alpha=90 233 K Calculated 2676.98(6) P 21/c -P 2ybc C30 H35 O S Si C30 H35 O S Si C30 H35 O S Si 471.73 1.171 4 1.638 1012.0 1016.61 33,13,11 5466 0.984,0.984 0.984 d= # Reported T Lin SCAN s= 0.969 0.0464(4430) Npar= 30	C-C = 0.0032 A Wavelength= a=27.2173(3) b=10.9230(2) alpha=90 beta=93.968(1) 233 K Calculated Reported 2676.98(6) P 1 21/c 1 -P 2ybc -P 2ybc C30 H35 O S Si C30 H35 O C30 H35 O S Si C30 H35 O 471.73 471.73 1.171 1.170 4 4 1.638 1.638 1012.0 1012.0 1016.61 33,13,11 33,13,10 5466 5296 0.984,0.984 0.784,1.00 0.984 d= # Reported T Limits: Tmin=0.784 Tma SCAN s= 0.969 Theta(max)= 74.321 0.0464(4430) Npar= 304

Crystal data and structure refinement for 9. CCDC Number = 2253023

R(reflections) = 0.0522(2712)

S = 1.202

Npar= 227

0.1269(2819)

5. HPLC Chromatograms

Compound **3j:** HPLC (IC, *n*-hexane/2-propanol = 90/10, v = 1.0 mL/min, λ = 254 nm)

f1 (ppm)

Parameter	Value
1 Title	1b-Hfxy-4-242-hex-H
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	1'''
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-20T16:04:12
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

----5.124

	— 155. 45	— 142. 94	$ \begin{array}{c} & 132. \ 87 \\ & 132. \ 87 \\ & 132. \ 87 \\ & 127. \ 91 \\ & 126. \ 50 \\ & 114. \ 95 \\ & 114. \ 95 \\ \end{array} $		$\overbrace{76.68}^{81.94}$		
Parameter Value	7					—142.94	-114.95
1 Title1b-cfxy-4-242-hex-C2 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.0	C		SEt				, , , , , , , , , , , , , , , , , , ,
5 Number of Scans186 Acquisition Time1.36317 Acquisition Date2021-05-20T16:05:298 Spectrometer Frequency 100_61					al adam of an alter a sec	latel second to the local second second second	
9 Spectral Width 24038.5					155 1	50 145 140	135 130 125 120 115 110
							II (ppm)
					ļ		
anter de Marie e Balloure d'Ale Da kallour d'Ale de la parte la province de la ballour de la barge for de la ba Gant anter de la province de la companya de provinci de la ballour de parte de la de la companya de la barge de Cala de la provinció de la companya de provinció de la ballour de la dela companya de la provinció de la barge	as an formation of a formation of the second s		nije zavez na se na s Na se na s	and all a sea to a solar state, and all have a search the system of the search of the		n an	destante en les terres de la set et transmission proventing par particular a particular de la particular de la La particular de la particular de la particular particular de la particular de la particular de la particular d La particular de la particu

120 110 100 f1 (ppm)

-0.000

		— 155. 29	$\int_{120.54}^{143.21} 143.21$	120. 34 129. 39 128. 42 126. 69 126. 53 126. 10 126. 10 126. 10		$\overbrace{77.75}^{77.94}$			
Parameter	Value	1						133. 05 132. 76 132. 76 132. 49 130. 54 130. 54 129. 09 126. 69 33	↓126, 10 —121, 44 —121, 44 —115, 08
l Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans	1c-C-fxy-4-244-new-C Bruker BioSpin GmbH CDC13 300.0 37				SPh				
Acquisition Time Acquisition Date Spectrometer Frequency	1.3631 2021-05-21T10:07:21 y 100.61			OH 1c		and the second	Antonion, Balt relative production of the factor		and him was and because
Spectral "lutil	24030. 3						150 145 14	40 135 130 128 f1 (ppm)	5 120 115
				1 9, 10					
			ł						
					ĺ	i			
an filomatica et a distance a filoso de la seconda da seconda en la seconda da El su seguera es presenta en presenta en la seconda da seconda da seconda da seconda da seconda da seconda da s El su seconda da second	المار و الماري و الم محمول ماري و الماري و محمول ماري و الماري و	ha historia and and	hand a state of the state of th		enter the second second		d da bara antiska fasili fa sama fa bis si da bara Yang kati kana sa bis fa sana ƙasar ƙasar ƙasar ƙasar	ىلى ئەرەلىرى بىلىرىكى بىلىرىكى 1941-يىلىرىكى بىلىرىكى بىلىرىكى 1941-يىلىرىكى بىلىرىكى بىلىرىك	
na Áltan mallan sen að sens er eft sé en skuldins sen klinden sens senskande skr I skulgspæði nyr se spænskur og en sjúnner præfisker præfisker sjónner sjónna s	and for a first second se	Lanchi i hukhidi sa salara Nggan mendipi sa salara) ha de la constante de la cons La constante de la constante de		an ita di kanan kana Kanan kanan kan Kanan kanan kan	teran del teran met ta ta en a la califa de angala de la compañía de la compañía de la compañía de la compañía Presenta de la compañía	ed with an executed days. Mit a summit to the first days of a second second second second second second second	sin ha fastleden son, at ha did fa stin, a varie Atlena sin d gepen generagion agentagen a sono generative menerative gepen generative a sono generative menerative de sono d	ere este se la collection d'est de la collection de la collection de la collection de la collection de la colle La collection de la collection de La collection de la collection de

fl (ppm)

-2.314

-0.000

			140.14 136.74 136.23 133.23 133.23 133.24 133.02 129.13 129.13 129.59 121.25 114.80		$\overbrace{77.00}^{\bullet} 11.32$	40.25	
Parameter	Value		Ме		— 154. 93	$ \begin{array}{c} - 140.14 \\ - 140.14 \\ - 136.74 \\ - 133.18 \\ - 133.02 \\ - 1$	
1 Title 2 Origin 3 Solvent 4 Temperature	1d-C-FXY-2-205-C-2 Bruker BioSpin GmbH CDC13 300.0		SBn				
5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency	18 1. 3631 2020-07-14T09:41:25 7 100. 61		OH 1d		qualitation ^{appr} ation accompanyly and deal		
9 Spectral Width	24038.5				155 150	145 140 135 130 12 f1 (ppm)	25 120 115
			1		ľ		
					1		
i a sharana ya ƙasa ƙasa ƙasa ƙasa ƙasa ƙasa ƙasa	n pater in may me sense set if y with margine with a first present of the set	and die, and to the to stread of Programmer of the Programmer		ng as fild () for to a first some	1 1 1 1 1 1 1 1	ny dia farin'ny taona manjarana amin'ny distantsia dia mampiana dia mampiana dia kaominina dia mampiana Iny dia farin'ny dia mampiana dia mampiana dia mampiana dia mampiana dia mampiana dia kaominina dia mampiana dia	و معاول مربق بروی بروی بروی و این و منابع این و این این و مارو و معاول مربق بروی بروی بروی بروی و این و منابع این و ماروز این و میرو و میرو و میرو و این و مارو این و بروی و
220 210 200 10				100 90	80 70	60 50 40 30	

fl (ppm)

390 260	364 364	342	253	234	207	184	835	828	807	804	767	761	746	739
Γ ⁷ .	: -: 	r-7.	<u></u> -'-'	1-1-	12	1.2.	, 9.	ľ.	0.	6.	<u>ر</u> و.	<u>г</u> е.	-0.	- 0.

Parameter	Value
1 Title	1f-H-fxy-4-243
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	11 //
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-20T16:12:24
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

----5. 273

----0. 000

	— 159. 46 — 155. 27	$ \begin{array}{c} 145.02 \\ 136.88 \\ 134.65 \\ 132.87 \\ 132.87 \\ 122.97 \\ 127.57 \\ 127.$	114.8, 114.65 , 114.65 , 113.90 , 113.90 , 112.50		$\overbrace{76, 68}^{77, 79, 63}$			
Parameter Va	lue				— 159. 46 — 155. 27		→ 136.88 134.63 132.87 130.44 130.44 128.47 128.47 127.54	
1 Title1f-C-FXY-22 OriginBruker Bid3 SolventCDC134 Tempeneture200.0	2-223-C oSpin GmbH	MeO						ł
4 Temperature500.05 Number of Scans336 Acquisition Time1.36317 Acquisition Date2020-07-2	1T14:37:12	Ĺ	ОН	I				
8 Spectrometer Frequency 100.61 9 Spectral Width 24038.5			1f		иницијанција иниција 	արտրձվիկոիկուսումվի 501	140 130	120 110

398 393 393 381 398 398 398 296 2296 2296 2283 2283 2283 2283 2283 2283	2202 202 194 168 168 842 829 829 829 829
	6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7

Parameter	Value
1 Title	lg-H
2 Origin	
3 Solvent	CDC13
4 Temperature	297.8
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2023-02-10T14:39:59
8 Spectrometer Frequency	399.90
9 Spectral Width	8012.0

----3.871

· ·	· ·	· .	· I	• •	· I	• •	• •				• •			· ·	• •				• •		· ·			· •
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
												fl (ppm)											

-0.000

-3.831

	163, 35	\sim 155. 70 < 145. 39 < 145. 31	136.60 134.66 134.66 134.66 134.66 133.35 133.35 133.35 133.35 133.35 135.88 133.35 135.88 140.89 10		$\overbrace{777, 00}^{81. 19}$				
						145.39145.31	-136.60 -134.74 -134.66 -131.64	\sim 130. 35 \sim 128. 88 - 128. 46 \sim 127. 60	<pre>> 117.49 > 117.49 > 116.15 > 116.15 > 116.15 > 115.93 < 115.93 < 113.57 < 113.57</pre>
Parameter	Value		F. A			Y			A Y//
1 Title	1h-C								1
2 Origin									
3 Solvent	CDC13			`op					
4 Temperature	297.8			SBn					
5 Number of Scans	30								
6 Acquisition Time	4.0002		Ŷ				11		<u>ii</u> II
7 Acquisition Date	2023-02-08T11:07:1	8	ÓH			1			
8 Spectrometer Frequence	су 399.90		1h					ul Ml	
9 Spectral Width	8012.0								

145

т

140

135

130 125 f1 (ppm)

120

115

Т

110

Parameter	Value
1 Title	1h-F
2 Origin	
3 Solvent	CDC13
4 Temperature	297.8
5 Number of Scans	30
6 Acquisition Time	1.0000
7 Acquisition Date	2023-02-08T12:12:17
8 Spectrometer Frequency	376.28
9 Spectral Width	96153.0

			· ·			· ·	· I		. 1	· I		· ·	• •	· I	• •	• •	•	•	· I	•	· I	· .		
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220
												fl (ppm)											

155.46	139, 14 139, 11 130, 131, 131, 131, 131, 131, 131, 131,			$\overbrace{77.6668}^{77.32}$	
--------	---	--	--	-------------------------------	--

Parameter	Value
1 Title	FXY-4-239-NEW-C
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	84
6 Acquisition Time	1.3631
7 Acquisition Date	2021-05-21T16:04:45
8 Spectrometer Frequency	100.61
9 Spectral Width	24038.5

Parameter	Value					
1 Title	fxy-li-f-nmr					
2 Origin						
3 Solvent	CDC13					
4 Temperature	296.8					
5 Number of Scans	32					
6 Acquisition Time	1.0000					
7 Acquisition Date	2023-03-03T09:14:24					
8 Spectrometer Frequency	376.28					
9 Spectral Width	96153.0					

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

7. 268 7. 383 7. 383 7. 364 7. 260 7. 220 7. 177 7. 177 7. 177	$\begin{array}{c} 1.139\\ 1.129\\ 1.12\\ 1.1$		3. 706	2. 704 2. 568 2. 688 2. 688 2. 688 2. 615 2. 552 2. 556 2.	
Parameter 1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequence 9 Spectral Width	Value 1 j-H-fxy-5-2-new Bruker BioSpin GmbH CDC13 298. 0 10 4.0894 2021-05-21T10:18:13 cy 400.13 8012.8	OH 1j	SBn	988 988 121 121 121 121 121 121 121 1	011 2 960 2 7. 05

Т

Parameter Value 1 Title 1j-c-fxy-5-2-new-C 2 Origin Bruker BioSpin GmbH				3.35	21 97 55	51 51 03
1 Title 1 j-c-fxy-5-2-new-C 2 Origin Bruker BioSpin CmbH	~		\sum_{13}^{13}	— 133		 127. 128. 123. 123.
2 StrightDraker Broophilombil3 SolventCDC134 Temperature300.05 Number of Scans496 Acquisition Time1.36317 Acquisition Date2021-05-21T10:19:408 Spectrometer Frequency 100.619 Spectral Width24038.5	OH 1j	ßn	when a superior of the superio	ปะกัฐงานมัน เห็ญสู่สารรูกไปเกิดอย่	harry to the state of the state	
			138 136	134 132	130 128 f1 (ppm)	126 124 122
			i II			
		1				

Parameter	Value
1 Title	1k-H-fxy-4-235-hhh
2 Origin	Bruker BioSpin GmbH
3 Solvent	¢DC13
4 Temperature	298.0
5 Number of Scans	10// //
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-19T10:14:57
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

-0.000

----2. 110

fl (ppm)

----7.561 ---7.543

 $\begin{array}{c} 475 \\ 455 \\ 438 \\ 438 \\ 419 \\ 417 \\ 370 \\ 358 \end{array}$

----0. 000

.1_____.

		\sim 145.79 \sim 145.18 \sim 143.11	-136.59 132.82 132.82 132.48 128.20 128.18 128.18 128.18 127.56 49 112.02		$\int_{76.68}^{81.90}$				
Parameter	Value					 ✓ 145. 79 ✓ 145. 18 ✓ 143. 11 		→ 132. 48 129. 20 128. 80 128. 18 128. 18 128. 18 121. 37	— 114. 02 — 112. 02
1 Title	11-C-fxy-4-240-hex-C								
2 Origin	Bruker BioSpin GmbH		Ľ "						
3 Solvent	CDC13		T N						
4 Temperature	300.0		MeO	SBn					
5 Number of Scans	13							! !!! !	1 !
6 Acquisition Time	1.3631		\checkmark						
7 Acquisition Date	2021-05-20T16:00:26		о́н						
8 Spectrometer Frequenc	y 100.61		1			enterstyle of the sector	uriphophilisseen and	Hannand Malasharan yandaharan in	10444cm/makenadarijariji/agi/agi/agi/agi/agi/agi/agi/agi/agi/ag
9 Spectral Width	24038.5								
					155 150	145 14	40 135 f	130 125 120 `1 (ppm)	115 110 105

$\begin{array}{c} 412\\ 393\\ 325\\ 325\\ 326\\ 326\\ 237\\ 237\\ 193\\ 193\\ 185\\ 185\\ 174\end{array}$	169 776 755
	∧ ^{7.} 6.

Parameter	Value
1 Title	1m+H-fxy-4-234-real
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC1B
4 Temperature	298.0
5 Number of Scans	6
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-19T10:20:31
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

-----4. 043 -----3. 866

----0. 000

		-143.07 133.00 132.57 131.84	128. 29 128. 49 128. 49 127. 98 127. 60		$\overbrace{76.68}^{81.80}$	— 40.30
ParameterValue1 Title1m-C-FXY-4-234-c'2 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.05 Number of Scans236 Acquisition Time1.36317 Acquisition Date2021-05-19T15:22:40		N		Bn	———————————————————————————————————————	- 136.70
8 Spectrometer Frequency 100.61 9 Spectral Width 24038.5			1m		145 14	tairada an la ga dha dha dha dha dha dha dha dha dha dh
yn. Cara mole fa ffi y eilidenni jilaan, kaanaa ka feytela een, vilka mod stytel byide Belder, waa, ke yn yn by y fefa stjalene Mitod am I'r enterne mer fan ffi y eilidenni jilaan, kaanaa da feytela een, vilka mod stytel byide Belder, waa, ke yn yn	hdirdane ita			Li Inden, Jeffens, Je		
220 210 200 190 180 170 160		140 1:	30 120 110		<u>- , , , , , , , , , , , , , , , , , , ,</u>	

fl (ppm)

528 141 138 143 143 128 128 123 073 052 ---7.

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overbrace{77.00}^{-81.88}$			
Parameter Value 1 Title 1n-C-fxy-5-1-C			→ 145. 79 → 145. 18 → 143. 09		$\begin{array}{c} 132.44 \\ 129.17 \\ 128.78 \\ 128.16 \\ 128.16 \\ 127.53 \\ 126.46 \\ 121.34 \\ 121.34 \end{array}$	
2 OriginBruker BioSpin GmbH3 SolventCDC134 Temperature300.05 Number of Scans106 Acquisition Time1.36317 Acquisition Date2021-05-21T10:15:118 Spectrometer Frequency100.619 Spectral Width24038.5	MeO OH 1n	1	150 145	140 135	130 125 120 f1 (ppm)	
n. 14) standtyr med de bar stat far send datt dal de far stratek sender. Ansman i dien a star soddinos begandedemiki, sen geb geographie source a two henring pyringen geograf waar of the particulation for a sender of the particulation of				enerity inging by the solution over	e sensites linguista a status linguista que se a linduid para p	al with bards and youth on the difference on party and which provide and
220 210 200 190 180 170 160	150 140 130 120 110 f1 (ppm)	100 90	80 70	60 50	40 30	20 10 0

7. 556 7. 555 7. 352 7. 393 7. 393 7. 393 7. 393 7. 393 7. 306 7. 306 7. 241 7. 241 7. 199 6. 993				
Parameter	Value			
1 Title	10-11-fxy-4-238-new			
2 Origin	Bruker BioSpin GmbH			
3 Solvent	CDC13			
4 Temperature	298.0			
5 Number of Scans	14"			
6 Acquisition Time	4.0894			
7 Acquisition Date	2021-05-21T09:57:23			
8 Spectrometer Frequency	400.13			
9 Spectral Width	8012.8			

---5.113

----0. 000

— 151. 31	-141.57 $-121.26.25$ -129.07 -129.07 -127.62 -127.62 -127.62 -119.55	 $-\frac{82.53}{77.32}$		
	CI OH OH 10	Hanger - Lafarante and a start all all		n, Pfuelowania (utangela, que apresidades)
		140	135 130 125 f1 (ppm)	120 115

Parameter	Value		
1 Title	10-C-fxy-4-238-new-C		
2 Origin	Bruker BioSpin GmbH		
3 Solvent	CDC13		
4 Temperature	300.0		
5 Number of Scans	13		
6 Acquisition Time	1.3631		
7 Acquisition Date	2021-05-21T09:59:35		
8 Spectrometer Frequency	100.61		
9 Spectral Width	24038.5		

		131.95 131.36 130.62 130.14 129.58 129.58 128.19 128.19 124.91 120.55	— 110. 99		
	Parameter	Value		~	
è		FXY-2adept)

1 Title	FXY-2adept	
2 Origin		
3 Solvent	DMSO	
4 Temperature	297.2	
5 Number of Scans	200	
6 Acquisition Time	1.0001	
7 Acquisition Date	2023-02-11T03:57:33	
8 Spectrometer Frequency	100.56	
9 Spectral Width	18028.0	

142 124 105 087

		— 156. 61	132, 07 130, 84 130, 84 130, 10 125, 10 125, 48 125, 71 125, 80 121, 98	L 117.60 — 108.18			40. 13 39. 92 39. 50 39. 50 39. 50 39. 08	∟ 38.87 —26.09	— 13. 88	
Parameter	Value]				132.07 130.10 130.10 128.93 127.70	125. 48 125. 71 125. 21 122. 98 121. 98			
1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequenc 9 Spectral Width	2b-C-FXY-2-200-C Bruker BioSpin GmbH DMSO 300.0 55 1.3631 2020-07-14T14:43:07 y 100.61 24038.5		OH 2b	SEt				dag fill sails in figerik agits of give gran in figerik agits fo	destanded bio profil for a start of	•••
		-			140	135 130	125 120 f1 (ppm)	115 1	110 105	_
terenen felte ante fante junio ante este a la fante ente al fatte ante este titer este este este ante este fatte En general y teres este a general este general este general de la companya de la companya teres este ange	na. Tele de la part d'acti par de la participación en la constituíción des a sec a general de la participación de la primeira d'activitation de la constante de la constante de la constante de	undettiggingin einen utte Physica of Station of Stations of		aanaada maanaa dhaadaa dha	an da Bhallach e as faith ann a 1866 an d-Annai 187 An ga gus ann an an an ann an an an an an an an a	ydin halan a shahayi yi yana y			n hiyo yaa da ka	lain an an air an
220 210 200 1	90 180 170	160 150	140 130 120	110 100	90 80 '	70 60	50 40	30 2	20 10	0

fl (ppm)

Parameter	Value	
1 Title	2f-H	
2 Origin		
3 Solvent	CDC13	
4 Temperature	297.5	
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2023-02-09T18:43:49	
8 Spectrometer Frequency	399.90	
9 Spectral Width	8012.0	

---5.548

		137. 72 137. 72 137. 72 131. 65 133. 56 133. 65 138. 95 128. 95 128. 95 128. 95 127. 12 127. 12 127. 12 127. 12 126. 35 112. 95 115. 97		$\underbrace{ < }_{76.\ 68}^{77.\ 32}$					
Parameter 1 Title	Value 2f-C	MeO、				128. 35 127. 12 127. 07 125. 10 124. 54	<116.36	— 109. 84	— 103. 39
2 Origin 3 Solvent 4 Temperature 5 Number of Scans	CDC13 297.5 800		SBn						
6 Acquisition Time 7 Acquisition Date 8 Spectrometer Freque 9 Spectral Width	1.0000 2023-02-09T19:13:05 ncy 100.56 26041.0		 ОН 2f			30 125 12	20 115	110 105	5 100
						f1	(ppm)		
		li li							
		, n	1 1		1	I			
nana-terdapatikan inggapatna ingkakan ingkakan dipatikan ingkakan ingkakan ingkakan ingkakan ingkakan ingkakan	\$	inangipaandonononononononononononononononononon	ĸĸŧŔŔġŎĨŦĬŎĸĸŦġŎĸĸţ ^Ŕ ĸŔĊŔĊĸŎŊĸġŔġŎĸĸĸŎĸĸĬĸĬĸĸĸ	Anyolografia (noongogogogo	gelenenggesen w _{eren} gel wegter wijd ¹ westernerde onder	ŧġŀŧġĊŧſſĸġŧĸġŧŀĬŀĸĸŧġŀŧġĸţġĸĬĬĬŀĸġŀĸġŀĸŢĬĸ	,headinterfankjonkykenkjolanie, enkolonie	nganayyangan disebut sabahan kalan kala	аландаанын байлай байлай тараалар Аландаан байлай байлай байлай байлай байлай байлай байлай байлай байлай байла

0 -10 -20

190 180 170 160 150 140 130 120

Parameter	Value	
1 Title	2h-H	
2 Origin		,
3 Solvent	CDC13	
4 Temperature	297.8	J
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2023-02-10T15:14:28	
8 Spectrometer Frequency	399.90	
9 Spectral Width	8012.0	

----5. 497

----0. 000

Parameter	Value
1 Title	2h-F
2 Origin	
3 Solvent	CDC13
4 Temperature	297.8
5 Number of Scans	16
6 Acquisition Time	1.0000
7 Acquisition Date	2023-02-10T15:36:58
8 Spectrometer Frequency	376.28
9 Spectral Width	96153.0

		1		1		· ·		· ·			· I	· ·	· I		· I			· .						
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220
												fl (ppm)											

—-112. 63

Parameter	Value
1 Title	fxy-2i-f-nmr
2 Origin	
3 Solvent	CDC13
4 Temperature	296.3
5 Number of Scans	16
6 Acquisition Time	1.0000
7 Acquisition Date	2023-03-03T09:05:15
8 Spectrometer Frequency	376.28
9 Spectral Width	96153.0

60

-5.818

219

-0. 000

-4.129

--0.000

Parameter	Value				
1 Title	3a-dept-fxy-2-140-a-DEPT				
2 Origin	Bruker BioSpin GmbH				
3 Solvent	CDC13				
4 Temperature	300.0				
5 Number of Scans	5				
6 Acquisition Time	1. 3631				
7 Acquisition Date	2020-06-19T20:21:49				
8 Spectrometer Frequency	100.61				
9 Spectral Width	24038.5				

فتأج فانشو ليسأد مانظيفيه لمحراته الكحرا والقنظا

ana anna da ghana shi a tina ba a Mallina dana fir tha talanda a da ang mantala mini kan da kan dara ha Ma talami nganging ing ing ping mana talami ng iti gaya ni tananang na ping ing milananana na ping ing milanana يتكل بتحرال فليقر الأحير والاعتداء المتلأين ببالاستانية المتعالين والمريور بالمعتقا عاديا الانتقاف ا

بفا تفاسيا أجاد

خاف يحاط أنه انصبت التلوأت

$\sum_{i=1}^{2} \frac{2}{986} \frac{986}{2} \frac{2}{949} \frac{2}{2} \frac{949}{231}$	

00
$\dot{\mathbf{O}}_{ }$

Parameter	Value (
1 Title	3b-H-fxy-2-213
2 Origin	Bruker, BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298. 0
5 Number of Scans	7 11 7 11
6 Acquisition Time	4.0894
7 Acquisition Date	2020-07-15T14:26:36
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

Parameter	Value
1 Title	3c-H-fxy-3-52
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13/
4 Temperature	298.0
5 Number of Scans	4
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-25T16:50:53
8 Spectrometer Frequen	су 400.13
9 Spectral Width	8012.8

20 20 20 20 20 20 20 20 20 20 20 20 20 2	c0.001	147.61 147.61 144.604 144.881 $144.881144.881144.881131.406131.406131.406131.406122.128132.128132.128132.128122.128122.129$	$\underbrace{+}^{77.32}_{76.68}$	
Parameter	Value		→147.61 →146.04 →143.81	- 123.96 $- 133.96$ $- 133.40$ $- 130.74$ $- 129.41$ $- 125.72$ $- 123.39$ $- 120.49$
2 OriginBr3 SolventCD4 Temperature3C5 Number of Scans186 Acquisition Time1.7 Acquisition Date2C8 Spectrumeter Encourons10	Cl3 00.0 3 3631 021-05-25T16:51:52 00.61	SPh O 3c		
9 Spectral Width 24	038.5		150 145 140 f1	135 130 125 120 (ppm)
	n se de al motte la company en la de la serie de la de se serie de al de desta en la company de la desta de la			
n - n - n - n - n - n - n - n - n - n -	ann - Fran in Trainin Briadh an Bhadhankan I, ann Bhadhankan A	an e na de la construir de la construit la familie de la construit de la construir de la construir de la constr Anno 1997 de la construir de la construit la familie de la construit de la construir de la construir de la const	اند است. «ان است الله المعالم الله المعالم الله الله المعالم المعالم المعالم المعالم المعالم المعالم المعالم ال	, skratilik i i vorma ook alk ble alkondraanna (n. 2004) kulles dik, ali kak konderhete

03

f1 (ppm)

$\begin{array}{c} 364\\ 346\\ 312\\ 257\\ 066\\ 950\\ 929\\ 905\\ 661\\ 4461\\ 330\\ 305\end{array}$	
0.000000000000000000000000000000000000	

Parameter	Value
1 Title	3d-H-fxy-2-212-H
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	6
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-19T16:08:40
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

$\begin{array}{c} 363\\ 347\\ 314\\ 278\\ 1147\\ 1147\\ 1128\\ 1103\\ 082\\ 856\\ 690\\ 690\\ 690\\ 504\\ 173\\ 323\\ 323\\ 323\\ 323\\ 323\\ 323\\ 323\\ 3$	
ור רר ו אור הדדי	

Parameter	Value
1 Title	3e-H-fxy-3-94-H
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13 ()
4 Temperature	298.0
5 Number of Scans	12 1 1 1 1 1
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-25T16:35:28
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

		$\begin{array}{c} & \overbrace{141,25}\\ & \overbrace{135,96}\\ & \overbrace{135,96}\\ & \overbrace{135,96}\\ & \overbrace{135,13}\\ & \overbrace{127,42}\\ & 127,42\\ & -114,21\\ & -114,21\\ & -109,59\\ \end{array}$	$\underbrace{\swarrow^{77.02}_{77.00}}_{76.68}$			
Parameter Value	٦		— 158. 28	-147.86 -143.07 -143.07 -143.07 -137.16 -137.16	130.50	
1 Title3f-C-fxy-2-230-C2 OriginBruker BioSpin Gml3 SolventCDC134 Temperature300.05 Number of Scans96 Acquisition Time1.36317 Acquisition Date2021-05-19T16:15:38 Spectrometer Frequency 100.629 Spectral Width24038 5	н	MeO SBn 3f				
9 Spectral with 24058.5			160	150 140 f1	130 (ppm)	120 110
الم وقد فريس وقال من وقد من الم هو والفتراك وقد والمرافع الم وروف فريس ومن في وقد	Jima, Ball West, Jail de etc., de Una Bran		ntenny i stil Jerne Mileste i		line of a set the desired of the desired of the	دائة الم 100 من
ւն է մասուն Անդենտերեցին, Թենքի հայ հենցնեցին հայ նեն է հայ նվակում է ու մինդ լլմ ի մինչ է հետ թանց լստնան լլադ	y 16440,5334,444 (f 4 4 6 4 6 4 5 f f f 16 f 6 5 f 6 f 6 f 6 f 6 f 6 f 6 f 6 f 6	يا يا يونين من الماني المانية (1996)، والمانية (1996)، والمانية (1996)، والمانية (1996)، والمانية (1996)، والم المانية (1996)، والمانية (1996)، والمانية (1996)، والمانية (1996)، والمانية (1996)، والمانية (1996)، والمانية (and for a second se	uster på på kun inskrivå af forse perski kun forfans	u travni mitni prepira na polipi	verjahy, lavydaga ta ta kalynta, sig fyring ywa faranelly y ddan

fl (ppm)

$\begin{array}{c} 365\\ 322\\ 270\\ 244\\ 160\\ 1140\\ 014\\ 010\end{array}$	649 521 496 321 296
	V V 0.0 V V 0.0 0.0

Parameter	Value
1 Title	3g-H-FXY-3-26-Н
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	298.0
5 Number of Scans	7 7 7 7 7 7
6 Acquisition Time	4.0894
7 Acquisition Date	2020-08-05T14:12:20
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\underbrace{-}^{77.32}_{76.68}$	60. 92		
Parameter 1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Freque	Value FXY-3-28 CDC13 295.8 500 1.0000 2023-02-04T12:07:39 ncy 100.56	F SBn O 3h			$\sum_{\substack{147.13\\145.50\\145.50\\144.45}} \frac{147.13}{145.50}$	$\begin{bmatrix} 131.22\\128.81\\127.76\\126.78\\127.76\\126.78\\120.65\\115.73\\111.59\\111.35\\111.35\end{bmatrix}$
9 Spectral Width	26041.0		-	160	150 140 f1 (ppm)	130 120 110

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Parameter	Value
1 Title	FXY-3-28
2 Origin	
3 Solvent	CDC13
4 Temperature	295.9
5 Number of Scans	16
6 Acquisition Time	1.0000
7 Acquisition Date	2023-02-04T12:10:50
8 Spectrometer Frequency	376.28
9 Spectral Width	96153.0

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

--116.15

Parameter	Value
1 Title	fxy-3i-f-nmr
2 Origin	
3 Solvent	CDC13
4 Temperature	296.6
5 Number of Scans	32
6 Acquisition Time	1.0000
7 Acquisition Date	2023-03-03T09:09:49
8 Spectrometer Frequency	376.28
9 Spectral Width	96153.0

						· I	· I	· I		· ·	· ·	· ·	· I	· .	• •	• •	• •	• •	• •	• •	• •		• •	•
20	10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220
												fl (ppm	l)											

Parameter	Value
1 Title	3j-H-fxy-3-56
2 Origin	Bruker, BioSpin GmpH
3 Solvent	¢D¢13 / / / / /
4 Temperature	298.0
5 Number of Scans	8 1 1 1 1 1 1 1
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-24T16:42:38
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

			148. 51 147. 10 147. 10 1442. 80 1422. 68	$\begin{array}{c} 135 \\ 123, 82 \\ 129, 70 \\ 128, 73 \\ 128, 73 \\ 128, 55 \\ 128, 56 \\ 128, 56 \\ 128, 57 \\ 128, 57 \\ 128, 57 \\ 128, 57 \\ 128, 57 \\ 119, 92 \\ 119, 92 \\ \end{array}$	$\underbrace{\underbrace{77.37}_{77.05}}_{76.73}$			— 18. 42
Parameter	Value					→148.51 →147.10 →144.80		129, 70 128, 74 128, 74 128, 73 127, 70 126, 80 125, 32 119, 92
1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans	3k-C-FXY-2-197-C Bruker BioSpin GmbH CDC13 300.0 25			Me				
6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequence 9 Spectral Width	1. 3631 2020-07-13T16:07:38 cy 100. 61 24038. 5			o 3k	enter aller at a grant data per data per data data data data data data data dat		ininininininininininininininininininin	
					160 155	150 145 14 f1	0 135 (ppm)	130 125 120
					2			
				1)! { i }				1
htere with a part of out interesting themes data to a she we mark all do not be	silling one stream the case had a well MM, as, this effects a subfict	ter de la la constante de la co			kan Malaman mengena kan basis di Adalaman kati di Ka	dan de Merene etter meneret set deb son dan	. See Life to a loss lines lines lines a	Latin Inc. on which increases to be the same size of the same La she there are been
रक अगरु गरिस के स्थित के सिरि र सल्ल के थि गिर प्रियम् विशिष्ठ कि स्थिति स्थिति कि स्थिति कि स्थिति कि स्थिति क	سان. افاهد. ماهم هار این مانین به شده باید با شراع این مانین به مانین به مانین به مانین به مانین به مانین به م	- 11 <u>ave F</u> Åy då ø de å	ىلىلەر بىلەر مەمەي سەلەر يىر بايل	ى يەرىپىلەر يەرىپەر يەتىرىغىيە يەرىپىغىنىيە يەتىپىغىيە يەتىپىغىنىيە يەتىپەر يەتىپەر يەتىپەر يەتىپەر يەتىپەر يە يەتىپەر يەتىپەر	ան հուհում քնա հան է չու է մատելոյմնի	ىلىلىسانى يەرىپىلىغىنى يەرۋىر قىلىدىنىغىرىيە.	ન્ કાનિકાસ ત્રકાર્ત્વ કરતું ની કેન્ગ્ર & પ	करन्त - ऑन्स्करी हे का कि गा स्वित्यक्षर न जल्मी आया स्वीत स्वीत स्वीत स्वासिक्विय कि स्वीत है का
220 210 200	190 180 170	160	150 14	0 130 120 110 100 9 f1 (ppm)	90 80 70	60 50	40	30 20 10 0

-4.117

Parameter	Value
1 Title	31-H+fxy-2-175-H
2 Origin	Bruker BipSpin GmbH -
3 Solvent	CDC18
4 Temperature	298. 7
5 Number of Scans	23
6 Acquisition Time	3. 9846
7 Acquisition Date	2020-07-06T14:39:09
8 Spectrometer Frequency	400.03
9 Spectral Width	8223. 7

 $<_{5.305}^{5.311}$

		^{153.00} ^{148.39} ^{147.03} ^{147.03} ^{147.03} ^{143.87} ^{143.87} ^{143.87}	135.78 130.20 128.63 128.46 127.19 1125.19 113.01 113.87 113.87	$\frac{\sqrt{77.32}}{\sqrt{76.68}}$				
Parameter	Value						128. 56 128. 56 128. 56 128. 46 128. 46 127. 51 126. 30 125. 19 123. 01 123. 01	— 114. 28
1 Title	31-C-fxy-2-175-C							
2 Origin	Bruker BioSpin Gmb	Н						
3 Solvent	CDC13		MeO					
4 Temperature	298.8							
5 Number of Scans	22							
6 Acquisition Time	1.3631		Ĭ			1		I
7 Acquisition Date	2020-07-06T14:41:3	3	0			-		
8 Spectrometer Frequ	ency 100.59		31	યાનગર્મ	any and we are a set and a set a set a set a set a set a set	www.contente	anglingthatinhangentersonandange	annadamanda da anna anna anna anna anna
9 Spectral Width	24038.5							
					155 150 145 140) 135 f1 (pr	130 125 120 om)	115 110

$\begin{array}{c} 7, \ 378\\ 7, \ 355\\ 7, \ 320\\ 7, \ 291\\ 7, \ 291\\ 7, \ 291\\ 7, \ 201\\ 7, \ 201\\ 7, \ 201\\ 7, \ 201\\ 7, \ 201\\ 6, \ 201\\ 6, \ 201\\ 6, \ 112\\$

Parameter	Value
1 Title	FXY-3-80-h
2 Origin	Bruker BioSpin GmbH
3 Solvent	СФС1В ((((
4 Temperature	298.0
5 Number of Scans	
6 Acquisition Time	4.0894
7 Acquisition Date	2023-01-31T15:51:03
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

-4.124

----0. 000

 $<^{1.951}_{1.947}$

	— 181. 20	 153.09 144.45 147.17 143.96 143.96 142.16 135.87 130.32 	128.72 128.66 128.54 126.554 126.35 128.55 128.55 1	$ _{76.68}^{77.32} $		
Parameter	Value				-153.09 -153.09 -148.45 -147.17 -143.96 -142.16	-135.87 -135.87 130.32 128.72 128.54
Title Origin	3n-C					
Solvent Temperature Number of Scans Acquisition Time Acquisition Date	CDC13 297.5 800 1.0000 2023-02-11T16:20:03		SBn OMe 3n			
Spectrometer Frequer Spectral Width	су 100.56 26041.0				1 - 1 - 1	
						fl (ppm)
			1			

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

$\begin{array}{c} 367\\ 349\\ 349\\ 349\\ 349\\ 349\\ 349\\ 3592\\ 5592\\ 5592\\ 3349\\ 3349\\ 3325\\ $

Parameter	Value
1 Title	30-н-FXY-2-228-н
2 Origin	Bruker BioSpin GmbH
3 Solvent	¢DC13
4 Temperature	298. Ø/ [ʃʃʃ
5 Number of Scans	¹ 5 / J J J J
6 Acquisition Time	4.0894
7 Acquisition Date	2021-05-19T15:37:26
8 Spectrometer Frequency	400.13
9 Spectral Width	8012.8

----4.126

-0.000

Parameter	Value	
1 Title	FXY-11-19	
2 Origin	(
3 Solvent	CDC13	
4 Temperature //	295.5	
5 Number of Scans	16	
6 Acquisition Time	4.0002	
7 Acquisition Date	2023-02-15T22:47:39	
8 Spectrometer Frequency	399.90	
9 Spectral Width	8012.0	

-4.177

 $\begin{array}{c} 1.394 \\ \hline 1.374 \\ \hline 1.356 \\ \hline 1.174 \\ \hline 1.156 \end{array}$

	155.26 137.36 137.36 133.03 133.03 130.69 132.89 125.80 125.80 125.68 122.03 124.17 124.17 124.17	$\underbrace{\xi_{77.32}^{77.32}}_{76.68}$			
Parameter Value			$ \begin{array}{c} 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133\\ 133$	125.07 124.57 -122.03 -121.15	— 114. 27
2 Origin2 Origin3 SolventCDC134 Temperature295.55 Number of Scans800	SBn				
6 Acquisition Time 1.0000 7 Acquisition Date 2023-02-15T23 8 Spectrometer Frequency 100.56 9 Spectral Width 26041.0	56:54 OTIPS 4				
			135 130 12 f1	5 120 (ppm)	115 110
		1			
		1			

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

Parameter	Value
1 Title	FXY-11-19
2 Origin	
3 Solvent	CDC13
4 Temperature	295.2
5 Number of Scans	200
6 Acquisition Time	1.0001
7 Acquisition Date	2023-02-16T00:40:07
8 Spectrometer Frequency	100.56
9 Spectral Width	18028.0

Parameter Value 1 Title FXY=12=45=P Bruker BioSpin GmbH 2 Origin CDC13 3 Solvent 298.0 4 Temperature 5 Number of Scans 3 6 Acquisition Time 4.0894 7 Acquisition Date 2023-04-27T10:29:54 8 Spectrometer Frequency 400.13 9 Spectral Width 8012.8

----4. 184

-0.000

		137.16 131.67 131.67 131.67 131.67 131.67 131.22 132.66 122.84 122.84 122.61 126.85 122.51	$\overbrace{76.68}^{77.32}$		
Parameter	Value		— 137. 16	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date	FXY=12=45=c Bruker BioSpin GmbH CDC13 300.0 26 1.3631 2023-04-27T10:30:43	SBn 5	Plane all and an and build and and		·
9 Spectral Width	24038. 5		138 136 1	.34 132 130 128 126 124 122 f1 (ppm)	
en an a calenda a sela a se de encar da de la de la Na de la d	19 2 (1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1		t se a li se stati de de antes a se	و هذا به معرف من الله مع الله الله الله الله الله الله الله الل	, k s att de la beske kier
220 210 200	190 180 170 160	150 140 130 120 110 100	90 80 70	60 50 40 30 20 10	0

fl (ppm)

Parameter	Value
1 Title	FXY=12=45=DEPT
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	8
6 Acquisition Time	1.3631
7 Acquisition Date	2023-04-27T10:32:45
8 Spectrometer Frequency	100.61
9 Spectral Width	24038.5

ية عن الله معاملة عنام سالة أيامية سادية (يتقاليناً)، وكان محمد إن قال أوله عامله (

يرجع الملفانيسي الأ

	8. 573 8. 552 8. 552 7. 852 7. 852 7. 711 7. 711 7. 614	7. 578 7. 578 7. 578 7. 226 7. 198 7. 192
Parameter	Value	
1 Title 2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequency 9 Spectral Width	fxy-12 Fxy-12 Bruker BioSpin GmbH CDC13 298.0 7 4.0894 2023-04-26T22:55:05 400.13 8012.8	

---5.155

Parameter	Value
1 Title	fxy-12-47-DEPT
2 Origin	Bruker BioSpin GmbH
3 Solvent	CDC13
4 Temperature	300.0
5 Number of Scans	21
6 Acquisition Time	1.3631
7 Acquisition Date	2023-04-26T23:04:28
8 Spectrometer Frequency	100.61
9 Spectral Width	24038.5

f1 (ppm) -10

		143. 22 $136. 16$ $136. 16$ $-129. 87$ $-129. 85$ $-128. 60$ $-127. 70$ $-127. 70$ $-127. 49$ $-127. 38$	$ \begin{array}{c} 77.32 \\ 77.668 \\ 61.64 \\ 58.26 \end{array} $	
Parameter 1 Title 2 Origin	Value LJ-1-194-1		$- \begin{array}{c} & & \\ & &$	
3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequen 9 Spectral Width	CDC13 295.6 160 1.0000 2023-02-16T22:32:18 ncy 100.56 26041.0	OH 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
₩₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩				

Т				1										·				- I I	Ē
00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	
									f1	(ppm)									

سقدرا أسقيه فطعه

	Parameter	Value
1	Title	LJ-1-194-1
2	Origin	
3	Solvent	CDC13
4	Temperature	295.6
5	Number of Scans	160
6	Acquisition Time	1.0000
7	Acquisition Date	2023-02-16T22:32:18
8	Spectrometer Frequency	100.56
9	Spectral Width	26041.0

n bein ann had annth al bail an deine, abarti a nais à triansan, ar ais an ann ba ar bài ai an à traoch indar Na 1940 - An agus a' ann ag ann ann ag ann ag gar an ag gar agus gan ann ann ag ag ag ag banann ag ar an an an

								·											1			
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90	80	70	60	50	40	30	20	10	0	-10

Parameter	Value
1 Title	FXY-11-21
2 Origin	
3 Solvent	CDC1B
4 Temperature	295. 4]]
5 Number of Scans	16
6 Acquisition Time	4.0002
7 Acquisition Date	2023-02-15T21:45:17
8 Spectrometer Frequency	399.90
9 Spectral Width	8012.0

--0.000

27 66	$^{+49}_{-12}$
47. 44.	24. 24. 25. 29. 24.
ÎÌ	

Parameter	Value
1 Title	FXY-11-21
2 Origin	
3 Solvent	CDC13
4 Temperature	295.4
5 Number of Scans	150
6 Acquisition Time	1.0001
7 Acquisition Date	2023-02-15T22:42:35
8 Spectrometer Frequency	100.56
9 Spectral Width	18028.0

fl (ppm)

		$ \begin{array}{c} 150 \\ 146 \\ 146 \\ 146 \\ 146 \\ 146 \\ 141 \\ 120 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 131 \\ 128 $	$\underbrace{}_{77.\ 00}^{77.\ 32}$	61_60	58. 55	
Parameter 1 Title	Value 9-c			131 58	-131.29 -130.44 -130.44 -129.26 -128.75 -128.75 -128.56	✓123.64 ✓123.49
2 Origin 3 Solvent 4 Temperature 5 Number of Scans 6 Acquisition Time 7 Acquisition Date 8 Spectrometer Frequence 9 Spectral Width	CDC13 295.2 102 1.0000 2023-02-16T01:21:38 cy 100.56 26041.0	+ SFBn BF4 ⁻ 9				
					131 129 127 f1 (ppm)	125 123
			.t.			

				'	'						. 1	· ·					'	'	- 1	1 1	·			· 1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
											t	fl (ppm))											

---61.69

Parameter	Value
1 Title	9-dept
2 Origin	
3 Solvent	CDC13
4 Temperature	294.9
5 Number of Scans	16
6 Acquisition Time	1.0000
7 Acquisition Date	2023-02-16T01:47:31
8 Spectrometer Frequency	376.28
9 Spectral Width	96153.0

f1 (ppm) -10

 $<^{-151.04}_{-151.09}$

VV

f1 (ppm) -10-20

27	50	53
-38.	-37.	-33.
1		

	Parameter	Value							
1	Title	FXY-11-40							
2	Origin								
3	Solvent	CDC13							
4	Temperature	297.1							
5	Number of Scans	200							
6	Acquisition Time	1.0000							
7	Acquisition Date	2023-03-02T03:55:37							
8	Spectrometer Frequency	100.56							
9	Spectral Width	26041.0							

المانات أن الد

·	'					·			·			·											_
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm	90)	80	70	60	50	40	30	20	10	0	-10	